
Seminararbeit am Institut f�ur Informatik der Freien Universit�at Berlin,

Arbeitsgruppe Technische Informatik

Two-Phase Commit for FUCoin

Michael Kmoch
Matrikelnummer: 4289388

michael.kmoch@inf.fu-berlin.de

Yuri Lewash
Matrikelnummer: 4293181

yuri.lewash@inf.fu-berlin.de

Betreuer: S. Schmitt

Eingereicht bei: Prof. Dr. K. Wolter

Berlin, 24.07.2015

Abstract

In distributed systems a commit is needed to make changes in the
network permanent and visible to other participants. The two-phase
commit protocol includes a voting phase and a decision phase to coor-
dinate processes participating in a atomic transaction. We implement
a variant of this protocol for the FUCoin system.

mailto:michael.kmoch@inf.fu-berlin.de
mailto:yuri.lewash@inf.fu-berlin.de


1 Introduction Kmoch; Lewash

1 Introduction

For a transaction in the FUCoin system we have to make sure, that either
all operational participants commit the transaction or none of them. Each
participant has one of two votes for the possible transaction: YES or NO. For
the transaction to happen all participants have to vote YES, so a decision
cannot be reversed. The initial participant acts as the coordinator and sends
a ‘vote request’ to all other participants. After a participant receives this
request, it responds with either YES or NO. In case of NO the decision is already
‘Abort’. If all participants vote YES, the coordinator decides ‘Commit’ and
sends a commit message to all the other participants. Otherwise it sends an
abort message to all participants that voted YES.

Supervisor

Supervisor

Wallet 1

Wallet 1

ActionInvokeSentMoney

ActionInvokeDistributedCommitedTransfer

ActionPrepareDistributedCommitedTransfer

ActionPrepareDistributedCommitedTransferAnswer

ActionCommitDistributedCommitedTransfer

Wallet 2

Wallet 2

ActionPrepareDistributedCommitedTransfer

ActionCommitDistributedCommitedTransfer

ActionPrepareDistributedCommitedTransferAnswer

Figure 1: Flowchart of a complete transaction

1



2 Implementation Kmoch; Lewash

2 Implementation

The �rst action{ActionInvokeSentMoney{is invoked by the graphical user
interface of the wallets with the purpose to transfer an amount of FUCoins
to a given wallet ID. If this ID already has a mapping to an ActorRef, an Ac-

tionInvokeDistributedCommitedTransfer will be send to the supervisor.
Otherwise a gossip is invoked using the ActionSearchWalletReference fol-
lowing by ActionInvokeSentMoney again after 200 ms.
Next the ActionInvokeDistributedCommitedTransfer creates a Distribut-
edCommitedTransferRequest, which contains a random generated ID on
the server with a timeout of 500 ms and stores this to a map Long ->

Request accoring to the ID. The timeout is handled by the ActionUpdate-

Queue explained later. The request will spread out to all clients that can
answer with an acknowledgement or an abort afterwards (see below).
The clients will reply to a request with an acknowledgment if one of two
cases occur. In the �rst case the supervisor (bank) will send FUCoins to a
user. Otherwise the client would need to know the sender, who also needs
to have su�cient funds.
After an answer from a client reached the server, the server tries to �nd the
corresponding request. If the answer was a acknowledgement, the request
will get another positive answer. When the same amount of positive answers
equals the count of known neighbors received on the server, all client will
be informed to commit the change and the request will be deleted. If the
answer was an abort, all clients will be informed to abort the transaction.
If a client has to commit the given changes, it will perform the transaction
on the amounts map. Otherwise it will just print an abort transaction mes-
sage.
The ActionUpdateQueue event will be invoked each second on the server
and remove all outdated request. If a request is deleted, all clients will be
informed to abort this transaction.

Concerning the ACID properties, atomicity is complied with the two-phase
commit, which is an atomic commitment protocol. Consistency is also not
a problem here, since the only variables are the amount of FUCoins on each
node as well as the temporary holder of a wallet. None of them can invali-
date the state of the system. Isolation might be a problem while processing
two or more transactions simultaneously. Without a serialization responses
within a transaction can be read by another transaction. Durability was not
a subject for this implementation and therefore not met at all.

2



3 Development Kmoch; Lewash

3 Development

The Implementation was made with Akka, an open source toolkit for highly
concurrent, distributed Java applications and part of Typesafe’s \Reactive
Platform".
To get started, Typesafe recommends their \Typesafe Activator", a kind of
IDE and hub running in a web browser. While it’s quite easy to build a
�rst \Hello World" example within the Activator, it’s not very 
exible and
things get more complicated when trying to transfer a project to Eclipse.
Furthermore high hardware standards, like at least 4 GB of RAM on modern
desktop environments, are needed to avoid poor performance.
So, setting up a standalone distribution for use with Eclipse would seem the
thing to do. Maven is the weapon of choice for this job. After creating a
\Maven Project" in Eclipse, a Project Object Model like the following can
be used to add Akka as an external library.

<project >

~

<!−− p r o j e c t c o o r d i n a t e s −−>

<groupId >com.typesafe.akka</groupId >

<artifactId >akka -actor_2 .11</artifactId >

<version >2.4-M1</version >

~

</project >

4 Conclusion

Akka is a useful library for distributed programming with a steep learning
curve (in terms of both possible initial di�culties as well as a high rate of
acquiring skills). It is easy to develop distributed systems by dividing the
logic over multiple actors. Akka also provides support for networking, but
we didn’t use it in this application.

3


	Introduction
	Implementation
	Development
	Conclusion

