diff --git a/dune/solvers/iterationsteps/minimalpolynomialextrapolationstep.hh b/dune/solvers/iterationsteps/minimalpolynomialextrapolationstep.hh
index bc3af39da29e80a03b696c96d07693bb056478fa..d05acc6757e18cb36e7922cc07c8fb5625e3dc40 100644
--- a/dune/solvers/iterationsteps/minimalpolynomialextrapolationstep.hh
+++ b/dune/solvers/iterationsteps/minimalpolynomialextrapolationstep.hh
@@ -14,23 +14,23 @@
 #include <dune/solvers/iterationsteps/iterationstep.hh>
 
 /** \brief A single step of the Minimal Polynomial Extrapolation method
- *  
+ *
  * Minimal Polynomial Extrapolation (MPE) is a general method for sequence acceleration.
  * It takes a converging sequence (actually, it even works for some nonconverging ones)
  * and interpolates the iterates such as to obtain a second sequence which converges
  * faster.
- * 
+ *
  * In this implementation, the original sequence is produced by an IterationStep object.
 */
 template<class VectorType,
          class BitVectorType = Dune::BitSetVector<VectorType::block_type::dimension> >
-         class MinimalPolynomialExtrapolationStep 
+         class MinimalPolynomialExtrapolationStep
          : public IterationStep<VectorType, BitVectorType>
 {
 
 public:
-        
-    /** \brief Constructor 
+
+    /** \brief Constructor
       * \param iterationStep The iteration step object that creates the sequence being accelerated
       * \param restart Restart the method after this number of iterations
      */
@@ -46,19 +46,19 @@ public:
     /** \brief Retrieve the solution */
     virtual VectorType getSol();
 
-    /** \brief To be called before starting to iterate 
+    /** \brief To be called before starting to iterate
        \note This calls the preprocess method for the dependant iteration step class, too!
      */
     virtual void preprocess();
-    
+
     IterationStep<VectorType,BitVectorType>* iterationStep_;
 
     /** \brief Restart the method after this number of iterations */
     int restart_;
-    
+
     /** \brief The history of iterates of the original sequence */
     std::vector<VectorType> xHistory_;
-    
+
     /** \brief The history of differences between the iterates of the original sequence */
     std::vector<VectorType> U_;
 
@@ -76,10 +76,10 @@ inline
 void MinimalPolynomialExtrapolationStep<VectorType, BitVectorType>::preprocess()
 {
     iterationStep_->preprocess();
-    
+
     xHistory_.resize(1);
     xHistory_[0] = *this->x_;
-    
+
     U_.resize(0);
 }
 
@@ -89,13 +89,13 @@ void MinimalPolynomialExtrapolationStep<VectorType, BitVectorType>::iterate()
 {
     // append a copy of the last element to the history, for the starting value
     xHistory_.push_back(xHistory_.back());
-    
+
     // iterate once
     iterationStep_->x_ = &xHistory_.back();
     iterationStep_->iterate();
 
     //std::cout << "x[" << xHistory_.size()-1 << "]:\n" << xHistory_.back() << std::endl;
-    
+
     // update the history of sequence differences
     VectorType diff = xHistory_.back();
     diff -= xHistory_[xHistory_.size()-2];
@@ -103,30 +103,30 @@ void MinimalPolynomialExtrapolationStep<VectorType, BitVectorType>::iterate()
 
     // current number of iterates used for interpolation
     const size_t k= U_.size()-1;
-    
+
     /** Compute weights c by solving the system
     * \f[ U^T_{k-1} U_{k-1} c = -U_{k-1} u_k \f]
     */
     typedef Dune::Matrix<Dune::FieldMatrix<double,1,1> > ScalarMatrixType;
     typedef Dune::BlockVector<Dune::FieldVector<double,1> > ScalarVectorType;
-    
+
     // set up the matrix
     ScalarMatrixType UTU(k,k);
 
     for (size_t i=0; i<k; i++)
         for (size_t j=0; j<k; j++)
             UTU[i][j] = U_[i] * U_[j];
-    
+
     // set up the right hand side
     ScalarVectorType rhs(k);
     for (size_t i=0; i<k; i++)
         rhs[i] = U_[i] * U_[k];
     rhs *= -1;
-    
+
     // solve the system
     ScalarVectorType c(k);
-    c = 0;      
-    
+    c = 0;
+
     // Technicality:  turn the matrix into a linear operator
     Dune::MatrixAdapter<ScalarMatrixType,ScalarVectorType,ScalarVectorType> op(UTU);
 
@@ -147,32 +147,32 @@ void MinimalPolynomialExtrapolationStep<VectorType, BitVectorType>::iterate()
     // The last coefficient of the c array is '1'
     c.resize(c.size()+1, true);
     c[c.size()-1] = 1;
-    
+
     //std::cout << "c:\n" << c << std::endl;
-    
+
     /////////////////////////////////////////////////////////////
     //  Compute the new accelerated iterate
     /////////////////////////////////////////////////////////////
     VectorType& newIterate = *this->x_;
     newIterate = 0;
     double cSum = std::accumulate(c.begin(), c.end(), double(0));
-    
+
     for (size_t i=1; i<=k+1; i++)
         newIterate.axpy(c[i-1]/cSum, xHistory_[i]);
-    
+
     //std::cout << "y:\n" << newIterate << std::endl;
-        
+
     // Acceleration methods for nonlinear problems should be restarted
     // every now and then
     if (k==restart_) {
-        
+
         std::cout << "Restarting MPE..." << std::endl;
         U_.resize(0);
         xHistory_.resize(1);
         xHistory_[0] = *this->x_;
-        
+
     }
-    
+
 }
 
 #endif
diff --git a/dune/solvers/iterationsteps/projectedlinegsstep.cc b/dune/solvers/iterationsteps/projectedlinegsstep.cc
index f0fe5b099ac4d2fd5340eb2adf4b6d0bf6ec533b..b852c1afdd17ac7fcb365aaccffffe7182be1ef2 100755
--- a/dune/solvers/iterationsteps/projectedlinegsstep.cc
+++ b/dune/solvers/iterationsteps/projectedlinegsstep.cc
@@ -22,7 +22,7 @@ solveLocalSystem(const Dune::BTDMatrix<typename MatrixType::block_type>& matrix,
     // /////////////////////////////
     x = 0;
 
-    
+
     // //////////////////////////////////////
     //   The TNNMG loop
     // //////////////////////////////////////
@@ -35,12 +35,12 @@ solveLocalSystem(const Dune::BTDMatrix<typename MatrixType::block_type>& matrix,
     for (int iteration=0; iteration<10; iteration++) {
 
         VectorType oldX = x;
-        
+
         // ///////////////////////////
         //   Nonlinear presmoothing
         // ///////////////////////////
         VectorType rhsCopy = rhs;  // need a non-const version of rhs
-        
+
         ProjectedBlockGSStep<LocalMatrixType, VectorType> nonlinearSmootherStep(matrix, x, rhsCopy);
 
         nonlinearSmootherStep.ignoreNodes_ = &ignoreNodes;
@@ -49,11 +49,11 @@ solveLocalSystem(const Dune::BTDMatrix<typename MatrixType::block_type>& matrix,
 
         for (int i=0; i<3; i++)
             nonlinearSmootherStep.iterate();
-        
+
         // Compute residual
         VectorType residual = rhs;
         matrix.mmv(x,residual);
-        
+
         // ///////////////////////////
         //   Truncation
         // ///////////////////////////
@@ -70,10 +70,10 @@ solveLocalSystem(const Dune::BTDMatrix<typename MatrixType::block_type>& matrix,
                 // left off-diagonal:
                 if (i>0)
                     truncatedMatrix[i][i-1] = 0;
-                
+
                 // diagonal
                 truncatedMatrix[i][i] = Dune::ScaledIdentityMatrix<double,BlockSize>(1);
-                
+
                 // right off-diagonal:
                 if (i<truncatedMatrix.N()-1)
                     truncatedMatrix[i][i+1] = 0;
@@ -84,11 +84,11 @@ solveLocalSystem(const Dune::BTDMatrix<typename MatrixType::block_type>& matrix,
             }
 
         }
-        
+
         // ///////////////////////////
         //   Linear correction
         // ///////////////////////////
-        
+
         VectorType linearCorrection(residual.size());
         truncatedMatrix.solve(linearCorrection, residual);   // the direct linear solution algorithm
 
@@ -96,53 +96,53 @@ solveLocalSystem(const Dune::BTDMatrix<typename MatrixType::block_type>& matrix,
         //   Line search in the direction of the projected coarse
         //   grid correction to ensure monotonicity.
         // //////////////////////////////////////////////////////////
-        
+
         // L2-projection of the correction onto the defect obstacle
         for (size_t i=0; i<linearCorrection.size(); i++) {
-            
+
             for (int j=0; j<BlockSize; j++) {
-                
+
                 linearCorrection[i][j] = std::max(linearCorrection[i][j], localObstacles[i].lower(j) - x[i][j]);
                 linearCorrection[i][j] = std::min(linearCorrection[i][j], localObstacles[i].upper(j) - x[i][j]);
-                
+
             }
-            
+
         }
-        
+
         // Construct obstacles in the direction of the projected correction
         BoxConstraint<field_type,1> lineSearchObs;
         for (size_t i=0; i<linearCorrection.size(); i++) {
-            
+
             for (int j=0; j<BlockSize; j++) {
-                
+
                 if (linearCorrection[i][j] > 0) {
-                    
+
                     // This division can cause nan on some platforms...
                     if (!isnan( (localObstacles[i].lower(j)-x[i][j]) / linearCorrection[i][j]) )
                         lineSearchObs.lower(0) = std::max(lineSearchObs.lower(0),
                                                           (localObstacles[i].lower(j)-x[i][j]) / linearCorrection[i][j]);
-                    
+
                     if (!isnan( (localObstacles[i].upper(j)-x[i][j]) / linearCorrection[i][j]) )
-                        lineSearchObs.upper(0) = std::min(lineSearchObs.upper(0), 
+                        lineSearchObs.upper(0) = std::min(lineSearchObs.upper(0),
                                                           (localObstacles[i].upper(j)-x[i][j]) / linearCorrection[i][j]);
                 }
-                
+
                 if (linearCorrection[i][j] < 0) {
                     if (!isnan( (localObstacles[i].upper(j)-x[i][j]) / linearCorrection[i][j]) )
-                        lineSearchObs.lower(0) = std::max(lineSearchObs.lower(0), 
+                        lineSearchObs.lower(0) = std::max(lineSearchObs.lower(0),
                                                           (localObstacles[i].upper(j)-x[i][j]) / linearCorrection[i][j]);
                     if (!isnan( (localObstacles[i].lower(j)-x[i][j]) / linearCorrection[i][j]) )
-                        lineSearchObs.upper(0) = std::min(lineSearchObs.upper(0), 
+                        lineSearchObs.upper(0) = std::min(lineSearchObs.upper(0),
                                                           (localObstacles[i].lower(j)-x[i][j]) / linearCorrection[i][j]);
                 }
-                
+
             }
-            
+
         }
 
         // abort when the linear correction has a small norm
         field_type correctionNormSquared = EnergyNorm<LocalMatrixType,VectorType>::normSquared(linearCorrection,truncatedMatrix);
-        
+
         // Line search
         field_type alpha = (residual*linearCorrection) / correctionNormSquared;
         alpha = std::max(std::min(alpha, lineSearchObs.upper(0)), lineSearchObs.lower(0));
@@ -187,7 +187,7 @@ void ProjectedLineGSStep<MatrixType, VectorType, BitVectorType>::iterate()
 
         const int current_block_size = this->blockStructure_[b_num].size();
 
-        //! compute and save the residuals for the curent block: 
+        //! compute and save the residuals for the curent block:
         // determine the (permuted) residuals r[p(i)],..., r[p(i+current_block_size-1)]
         // this means that we determine the residuals for the current block
         VectorType permuted_r_i(current_block_size);
@@ -206,7 +206,7 @@ void ProjectedLineGSStep<MatrixType, VectorType, BitVectorType>::iterate()
         // (Later: x_now[p(i+k)] = x_now[p(i+k)] + v[p(i+k)] )
 
         // //////////////////////////////////////////////////////////////////////////////////////////////////
-        // Copy the linear system for the current line/block into a tridiagonal matrix 
+        // Copy the linear system for the current line/block into a tridiagonal matrix
         // //////////////////////////////////////////////////////////////////////////////////////////////////
 
         Dune::BTDMatrix<typename MatrixType::block_type> tridiagonalMatrix(current_block_size);
@@ -218,10 +218,10 @@ void ProjectedLineGSStep<MatrixType, VectorType, BitVectorType>::iterate()
                 // left off-diagonal:
                 if (j>0)
                     tridiagonalMatrix[j][j-1] = 0;
-                
+
                 // diagonal
                 tridiagonalMatrix[j][j] = Dune::ScaledIdentityMatrix<field_type,BlockSize>(1);
-                
+
                 // left off-diagonal:
                 if (j<current_block_size-1)
                     tridiagonalMatrix[j][j+1] = 0;
@@ -231,10 +231,10 @@ void ProjectedLineGSStep<MatrixType, VectorType, BitVectorType>::iterate()
                 // left off-diagonal:
                 if (j>0)
                     tridiagonalMatrix[j][j-1] = matrix[this->blockStructure_[b_num][j]][this->blockStructure_[b_num][j-1]];
-                
+
                 // diagonal
                 tridiagonalMatrix[j][j] = matrix[this->blockStructure_[b_num][j]][this->blockStructure_[b_num][j]];
-                
+
                 // left off-diagonal:
                 if (j<current_block_size-1)
                     tridiagonalMatrix[j][j+1] = matrix[this->blockStructure_[b_num][j]][this->blockStructure_[b_num][j+1]];
diff --git a/dune/solvers/iterationsteps/projectedlinegsstep.hh b/dune/solvers/iterationsteps/projectedlinegsstep.hh
index a03aae099d14315184d6d0bf06febf98a23ded8f..e02ab0df30fee5bdc902ef19e52c64969bac22af 100755
--- a/dune/solvers/iterationsteps/projectedlinegsstep.hh
+++ b/dune/solvers/iterationsteps/projectedlinegsstep.hh
@@ -15,34 +15,34 @@ template<class MatrixType,
          class BitVectorType = Dune::BitSetVector<VectorType::block_type::dimension> >
 class ProjectedLineGSStep : public LineGSStep<MatrixType, VectorType, BitVectorType>
 {
-    
+
     typedef typename VectorType::block_type VectorBlock;
-    
+
     typedef typename VectorType::field_type field_type;
-    
+
     enum {BlockSize = VectorBlock::dimension};
-    
+
 public:
-    
+
     //! Default constructor.  Doesn't init anything
     ProjectedLineGSStep() {}
-    
+
     //! Constructor for usage of Permutation Manager
     ProjectedLineGSStep( const std::vector<std::vector<unsigned int> >& blockStructure)
         : LineGSStep<MatrixType, VectorType, BitVectorType>( blockStructure )
     {}
-    
+
     /** \brief Solve one tridiagonal system */
     void solveLocalSystem(const Dune::BTDMatrix<typename MatrixType::block_type>& matrix,
                           VectorType& x,
                           const VectorType& rhs,
                           const std::vector<BoxConstraint<field_type,BlockSize> >& localObstacles) const;
-    
+
     //! Perform one iteration
     virtual void iterate();
-    
+
     const std::vector<BoxConstraint<field_type,BlockSize> >* obstacles_;
-    
+
 };