diff --git a/code/cnv_analysis_PGC.Rmd b/code/cnv_analysis_PGC.Rmd
index 7a9d8a3769e91535b2fe3b34a126915bfb9b6e18..7f81152d811b195a415e27886826263235da0d28 100644
--- a/code/cnv_analysis_PGC.Rmd
+++ b/code/cnv_analysis_PGC.Rmd
@@ -128,15 +128,56 @@ RecCNV[RecCNV[,"q.value"]==0, "q.value"] <- as.numeric(minval)
 RecCNV[,"score"] <- sapply(RecCNV[,"q.value"], function(x) -log10(as.numeric(x)))
 ```
 
+```{r}
+library(biomaRt)
+library(GenomicRanges)
+
+#Set up an gene annotation template to use
+mart <- useMart(biomart="ensembl", dataset="hsapiens_gene_ensembl")
+mart <- useMart(biomart="ENSEMBL_MART_ENSEMBL", host="grch37.ensembl.org", path="/biomart/martservice", dataset="hsapiens_gene_ensembl")
+genes <- getBM(attributes=c("hgnc_symbol","chromosome_name","start_position","end_position"), mart=mart)
+genes <- genes[genes[,1]!="" & genes[,2] %in% c(1:22,"X","Y"),]
+xidx <- which(genes[,2]=="X")
+yidx <- which(genes[,2]=="Y")
+genes[xidx, 2] <- 23
+genes[yidx, 2] <- 24
+genes[,2] <- sapply(genes[,2],as.integer)
+genes <- genes[order(genes[,3]),]
+genes <- genes[order(genes[,2]),]
+colnames(genes) <- c("GeneSymbol","Chr","Start","End")
+genes_GR <- makeGRangesFromDataFrame(genes,keep.extra.columns = TRUE)
+```
+
+```{r}
+colnames(RecCNV) <- c("chr","aberation", "start", "end", "size", "q.value","score")
+df_GR <- makeGRangesFromDataFrame(RecCNV, keep.extra.columns = TRUE)
+hits <- findOverlaps(genes_GR, df_GR, type="within")
+df_ann <- cbind(RecCNV[subjectHits(hits),],genes[queryHits(hits),])
+head(df_ann)
+write.table(df_ann, file = "/data/gpfs-1/users/phgi10_c/work/Uni/MultiOmic_Datascience/results/cnv_analysis/final_cnv.csv", sep = "\t", quote = FALSE, row.names = FALSE)
+```
+```{r}
+AberrantRegion <- paste0(df_ann[,1],":", df_ann[,3],"-", df_ann[,4])
+GeneRegion <- paste0(df_ann[,7],":", df_ann[,8],"-", df_ann[,9])
+Final_regions <- cbind(df_ann[,c(6,2,5)], AberrantRegion, GeneRegion)
+Final_regions[seq(1, nrow(Final_regions), 20),]
+```
+
+```{r}
+hist(Final_regions$q.value)
+```
+```{r}
+final_cnv_set <- subset(Final_regions, q.value <= 0.01)
+```
 ```{r}
 #Create a function for plotting the recurrent copy number variants
 gaiaCNVplot <- function (calls, threshold=0.05, main="main") {
-  Calls <- calls[order(calls[,"Region.Start..bp."]),]
-  Calls <- Calls[order(Calls[,"Chromosome"]),]
+  Calls <- calls[order(calls[,"start"]),]
+  Calls <- Calls[order(Calls[,"chr"]),]
   rownames(Calls) <- NULL
-  Chromo <- Calls[,"Chromosome"]
-  Gains <- apply(Calls,1,function(x) ifelse(x["Aberration.Kind"]==1, x["score"], 0))
-  Losses <- apply(Calls, 1,function(x) ifelse(x["Aberration.Kind"]==0, x["score"], 0))
+  Chromo <- Calls[,"chr"]
+  Gains <- apply(Calls,1,function(x) ifelse(x["aberation"]==1, x["score"], 0))
+  Losses <- apply(Calls, 1,function(x) ifelse(x["aberation"]==0, x["score"], 0))
   plot(Gains, ylim=c(-max(Calls [,"score"]+2), max(Calls[,"score"]+2)), type="h", col="red2", xlab="Chromosome", ylab=expression("-log"[10]~italic(Q)~"value"), main=main, cex.main=4, xaxt="n", font=2, font.axis=2, font.lab=2, font.axis=2)
   points(-(Losses), type="h", col="forestgreen")
   abline(h= 0, cex=4)