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Chapter 1

Calculations of powder
trEPR spectrum

1.1 Parameters

We try to simulate the powder trEPR spectrum of PSI. The used parameters are:

• g1 = [2.0030, 2.0026, 2.0023], g2 = [2.0062, 2.0051, 2.0022] for P700+ and
A1- respectively;

• Euler angles [-10, -128, -83] to transform from the reference frame of
P700+ to the one of A1-;

• dipolar interaction and exchange coupling dip = -0.177 mT and J = 0.001
mT (following the spin Hamiltonian convention used by Zech);

• zD, direction of the spin-spin interaction, corresponding to the negative
x-axis of the A1- frame of reference (hence Euler angles [0, 90, 0] to go
from the dipolar frame of reference to the A1- frame of reference);

• hyperfine coupling of the A1- radical with three equivalent hydrogen nu-
clei, A = [9, 9, 12.8] MHz and [-60, 90, 0] Euler angles to transform from
the frame of the hyperfine to the one of A1-.

1.2 Transition frequencies and intensities

To calculate the powder average, we keep our frame fixed with the frame of A1-
and calculate the trEPR stick spectra for different orientations of the external
magnetic field. As explained in Zech’s thesis [1] chapter 4, the stick spectrum
at a given orientation of the magnetic field is going to be similar to what shown
in Fig. 1.1. As shown in Fig. 1.1, the position of the resonances is given by the
values of J, dip and:

ω0 =
µBB0

h
(g1 + g2)/2 +

1

2

∑
j

(A1,j +A2,j)mj , (1.1)
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Figure 1.1: Stick spectrum for an orientation such that d = dip·(cos(θD)−1/3) <
0. Taken from [1], Fig 4.2.

and:
Ω =

√
∆ω2 + (J + d/2)2, (1.2)

where:

∆ω =
µBB0

h
(g1− g2)/2 +

1

2

∑
j

(A1,j −A2,j)mj . (1.3)

The absolute value of the intensity is the same for all the transitions at a given
orientation. In particular:

I12 = −I34 = I13 = −I24 ∝ ∆ω2

Ω2
= sin2(2α), (1.4)

where α is the mixing angle used in Zech’s thesis, defined as:

sin(2α) =
∆ω

Ω
, cos(2α) =

J + d/2

Ω
, tan(2α) =

∆ω

J + d/2
. (1.5)

Note that |α| → π/4 for weakly interacting spin pair while α → 0 for strongly
interacting spin pair.

1.3 Computational steps

1. Calculate d, effective g-values and effective hyperfine coupling for each
orientation
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2. Calculate ω0, ∆ω and Ω

3. Find the transition frequencies

4. Calculate the lineshapes for each transition with a certain linewidth and
the correct intensity

5. Sum all the lines and average over all orientations

1.3.1 Calculate orientation-dependent parameters

We define a grid of angles θ and ϕ. These correspond to the polar and azimuthal
angles of the external magnetic field with respect to the frame of reference of
A1- (which we keep fixed).
An example of the code where a step of 3 degree is used both for θ and for ϕ:

% Theta and phi g r i d
the ta s = ( 0 : 3 : 1 8 0 ) ∗ pi /180 ;
nTheta = numel ( the ta s ) ;
ph i s = ( 0 : 3 : 3 6 0 ) ∗ pi /180 ;
nPhi = numel ( ph i s ) ;

In this case the array thetas will be thetas = [0, 3, 6, ..., 180]o and the number
of angles will be nTheta = 61.
From here we can calculate the effective g-values at each orientations. First we
calculate the versor n indicating the direction of B0:

% Direc t ion o f B0
clear ( ’ nVers ’ )
nVers (1 , : , : ) = sin ( thetas ’ ) ∗ cos ( ph i s ) ;
nVers (2 , : , : ) = sin ( thetas ’ ) ∗ sin ( ph i s ) ;
nVers (3 , : , : ) = cos ( thetas ’ ) ∗ ones (1 , nPhi ) ;

The matrix nVers will be a 3D matrix of dimensions 3 x nTheta x nPhi. For
example, for the 61st value of the first dimension (θ = 180 degrees) and the first
value of the second dimension (ϕ = 0 degrees), we will obtain nVers(:, 61, 1) =
[0, 0, -1], as expected.
Next step: calculate g2, that is the effective g-value of A1-. Since the g2 tensor
is diagonal in this reference frame, for each orientation it will be:

geff =
√
(gxx · nx)2 + (gyy · ny)2 + (gzz · nz)2. (1.6)

We basically want to multiply element-wise g2 by the value of nVers for each
orientation and then take the square root of the sum of the squares of the
projections. The code looks like:

% E f f e c t i v e g−va l u e s
g2 = squeeze ( sqrt ( sum( ( Sys . g (2 , : ) ’ . ∗ nVers ) . ˆ 2 ) ) ) ;

First, the element-wise multiplication is carried out: Sys.g(2, :)’ is the column
vector 3 x 1 of [gxx, gyy, gzz]. The operator .* does the element-wise multipli-
cation at each fixed θ and ϕ value. As a consequence, the result of Sys.g(2,
:)’.*nVers is still a 3 x nTheta x nPhi matrix. Afterwards these values are
squared (also element wise), then they are summed along the first dimension
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and then the square root is calculated. At this point the result is a 1 x nTheta
x nPhi matrix. The function squeeze() makes it a nTheta x nPhi matrix corre-
sponding to the effective g-values for each orientation.
For the P700+ radical the process to calculate the effective g-values is the same,
but we first need to transform the g-tensor to the frame of A1-. The code is:

euMatrixg1 = ero t ( Sys . gFrame (1 , : ) ) ;
g1TensorInFrame2 = euMatrixg1 ’∗ diag ( Sys . g (1 , : ) ) ∗ euMatrixg1 ;
g1 = squeeze ( sqrt ( sum( ( pagemtimes ( g1TensorInFrame2 , nVers ) ) . ˆ 2 ) ) ) ;

Here erot(Sys.gFrame(1, :)) is the rotation matrix with Euler angles Sys.gFrame(1,
:) = [-10, -128, -83]. It is applied transposed on the left (’ sign) and not trans-
posed on the right side of the diagonal matrix (diag(Sys.g(1, :))). Afterwards
we calculate the effective g-value multiplying the g-tensor by the nVers for each
orientation. This is done by the function pagemtimes(), that enables multipli-
cations of 3 x 3 matrices by 3 x 1 vectors for each value of θ and ϕ. The rest is
analogous to the A1- case.
For the dipolar interaction:

% Dipolar i n t e r a c t i o n
zD = ero t ( Sys . eeFrame ) ∗ [ 0 , 0 , 1 ] ’ ;
dd = squeeze ( dipFunc ( dip , nVers , zD ) ) ;

We first transform the zD vector to the A1- frame using the Euler angles
Sys.eeFrame = [0, 90, 0], therefore obtaining zD = [-1, 0, 0]. Afterwards we
the function dipFunc to calculate the value of the dipolar coupling for every
orientation. The function is defined as:

% Dipolar i n t e r a c t i o n
% Makes use o f the f a c t t h a t cos ( thetaD ) = dotProduct (B0 , zD)
% Expected input :
% dip : 1 x 1
% nVers : 3 x nTheta x nPhi
% zD : 3 x 1
dipFunc = @( dip , nVers , zD) dip ∗ ( (sum( nVers .∗ zD ) ) . ˆ 2 − 1/3 ) ;

Finally we calculate the effective hyperfine interaction for each orientation.

%
% Hyperf ine i n t e r a c t i o n wi th a number nNuc o f equa l nu c l e i
%
% For sp in 2
euMatrixHfi2 = ero t ( Sys .AFrame(1 , 4 : 6 ) ) ;
Ahfi2TensorInFrame2 = euMatrixHfi2 ’∗ diag ( Sys .A(1 , 4 : 6 ) )∗ euMatrixHfi2 ;
Ahfi2 = squeeze ( sqrt ( sum( ( pagemtimes ( Ahfi2TensorInFrame2 ’ , nVers ) ) . ˆ 2 ) ) ) ;

We calculate it only for spin 2, being the radical on A1-, because that is the
electron that should interact with the nNuc = 3 identical hydrogen atoms.
erot(Sys.AFrame(1, 4:6)) is the rotation matrix using Euler angles [-60, 90, 0]
and it is used to transform the values of Sys.A(1, 4:6) = [9, 9, 12.8] MHz to the
reference frame of A1-. Afterwards, the effective hyperfine Ahfi2 is calculated,
analogously to Eq. 1.6.
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1.3.2 Calculate ω0, ∆ω, Ω and the transition frequencies

We want to calculate ω0, ∆ω and Ω using Eq. 1.1, Eq. 1.3 and Eq. 1.2. First
we calculate ω0 and ∆ω neglecting the hyperfine couplings:

w0 = g2wFunc (B0 , ( g1 + g2 ) / 2 ) ; % GHz
deltaw = g2wFunc (B0 , ( g1 − g2 ) / 2 ) ; % GHz

where:

% Expected input : B0 in mT
% Output : f requency nu in GHz
g2wFunc = @(B0 , g ) bmagn∗B0/planck ∗g∗1e−12;

Afterwards we define A+ = A1 + A2 (in our case A1 = 0 because there is no
interaction between electron 1, that is the radical on P700+, and the nuclei),
we adjust the shapes of the vectors and then we add to ω0 the following values:
[−nNuc/2]A+, ·[−(nNuc − 1)/2]A+, ... , [(nNuc − 1)/2]A+, [nNuc/2]A+. We
obtain therefore the values of Eq. 1.1 for each orientation.
We follow analogous steps to obtain ∆ω as in Eq. 1.3.
The code look like:

% Sh i f t resonances due to hype r f i n e i n t e r a c t i o n
Aplus = ( Ahfi1 + Ahfi2 )/2∗1 e−3;
% Make w0 have s i z e [ nHfiLine , nTheta , nPhi ]
w0 = insertDimens ionPos1 (w0 , nHf iLine ) ;
% Make Aplus have s i z e [ 1 , nTheta , nPhi ]
Aplus = reshape ( Aplus , [ 1 , s ize ( Aplus ) ] ) ;
% Mul t i p l y by a l l p o s s i b l e va l u e s o f sum of quantum number o f the nuc l e i
% Fina l s i z e = [ nHfiLine , nTheta , nPhi ]
Aplus = pagemtimes((−nNuc / 2 : 1 : nNuc/2) ’ , Aplus ) ;
w0 = w0 + Aplus ;
% Same fo r de l taw and Aminus
Aminus = ( Ahfi1 − Ahfi2 )/2∗1 e−3;
deltaw = insertDimens ionPos1 ( deltaw , nHf iLine ) ;
Aminus = reshape (Aminus , [ 1 , s ize (Aminus ) ] ) ;
Aminus = pagemtimes((−nNuc / 2 : 1 : nNuc/2) ’ , Aminus ) ;
deltaw = deltaw + Aminus ;

In our case for example, we have nNuc = 3, which means that we expect a
number of lines equal to nHfiLine = 2 · nNuc · 1/2 + 1 = nNuc + 1 = 4. The
distance of the lines from ω0 will be: −3/2 ·A+, −1/2 ·A+, 1/2 ·A+, 3/2 ·A+.
That is what the code is doing.
We must take into consideration that the intensity of the lines will follow the
Pascal triangle. Therefore we calculate the Pascal triangle:

% Pascal f a c t o r s because some va l u e s o f the sum of the quantum number come
% up more than o the r s
pasca lMatr ix = pascal ( nHf iLine ) ;
pasca lFactor = pasca lMatr ix ( nHf iLine : nHf iLine − 1 :end − 1 ) ;
% Antid iag

With the Matlab built-in function pascal(n) we obtain a square matrix, where
each super anti-diagonal corresponds to a row of the Pascal triangle. Since
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we are interested in the row number nHfiLine, we generate the square pas-
cal(nHfiLine) and then we calculate the antidiagonal and store it in the vector
pascalFactor. This will be useful later to properly calculate the intensity of the
lines. Finally we calculate Ω:

Omega = OmegaFunc( deltaw , JJ , insertDimens ionPos1 (dd , nHf iLine ) ) ;
% GHz

where:

% Expected input : de l taw in GHz, J in MHz, d in MHz
% Output : Omega in GHz
OmegaFunc = @( deltaw , J , d) sqrt ( deltaw .ˆ2 + (J∗1e−3 + d/2∗1e −3) . ˆ2 ) ;

The position of each resonance depends on the difference between the energies
of the eigenstates of the Hamiltonian. Following Zech’s thesis [1]:

d i p I n t e r a c t i on = ( JJ − insertDimens ionPos1 (dd , nHf iLine ) )∗1 e−3;
% GHz
wReson (1 , : , : , : ) = w0 − d i p I n t e r a c t i on − (Omega ) ; % w12
wReson (2 , : , : , : ) = w0 + d ip In t e r a c t i on − (Omega ) ; % w34
wReson (3 , : , : , : ) = w0 − d i p I n t e r a c t i on + (Omega ) ; % w13
wReson (4 , : , : , : ) = w0 + d ip In t e r a c t i on + (Omega) ; % w24

The function insertDimensionPos1 is used to have proper dimensions and can
be ignored here. The matrix wReson has dimensions [4, nHfiLine, nTheta, nPhi].

1.3.3 Calculate the lineshapes for each transition with a
certain linewidth and the correct intensity

At this point we calculate the lines for each of these transitions:

% Lineshapes f o r each t r a n s i t i o n
t r S i g n a l = . . .

g a u s s i a n t r a n s i t i o n s ( xxSim ’ , wReson , tr lw , ”fwhm” ) ;

where guassiantransitions returns the gaussian lineshapes in the range xxSim
centered at wReson with FWHM equal to trlw. In our case, trlw is around
[0.7, 0.7, 0.35, 0.35] mT, that means that the transitions of P700+ have larger
linewidth than the ones of A1-.
The intensity of each of these lines is determined by Eq. 1.4:

i n t ens i tyReson = 1/8∗( deltaw . ˆ 2 ) . / (Omega . ˆ 2 ) ;
% Sign o f in t ens i t yReson a l t e r n a t e s f o r the t r a n s i t i o n s w12 , w34 , w13 , w24
i n t ens i tyReson = [ 1 ; −1; 1 ; −1].∗ insertDimens ionPos1 ( intens i tyReson , 4 ) ;

The normalization factor such that the integral of each of these lines is equal to
the intensities of Eq. 1.4 is equal to:

% Normal izat ion to account f o r p o s s i b l e d i f f e r e n t l i n ew i d t h s
intens ityNorm = insertDimens ionPos1 ( intens i tyReson , 1) . / sum( t r S i g n a l ) ;

Finally we multiply the lineshapes by the normalization factor and the Pascal
triangle factors:

t r S i g n a l = t r S i g n a l .∗ intens ityNorm .∗ insertDimens ionPos1 ( pasca lFactor , 1 ) ;
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1.3.4 Sum all the lines and average over all orientations

The final part of the code is:

trS ignalSumHfi = squeeze (sum( t rS i gna l , 3 ) ) ; % Sum over h f i l i n e s
trSignalSum = squeeze (sum( trSignalSumHfi , 2 ) ) ; % Sum over t r a n s i t i o n s

so l idAngleWeight = sin ( the ta s )/sum( sin ( thetas ’ ) ∗ ones (1 , nPhi ) , ’ a l l ’ ) ;
trSignalPowder = sum( squeeze (sum( trSignalSum .∗ sol idAngleWeight , 3 ) ) , 2 ) ;

The matrix trSignalSumHfi is a [nAx, 4, nTheta, nPhi] matrix, where the line-
shapes due to the hyperfine have been summed. Here nAx is the number of
points of the frequency sweep that we are calculating (usually more than 100, I
use 1024 or 2048). Each line of trSignalSumHfi is long nAx and is equivalent to
the spectrum of the separate transitions 1 → 2 or 3 → 4 or 1 → 3 or 2 → 4 for
each orientation. Note that the Pascal triangle factors were already taken into
consideration.
The matrix trSignalSum is a [nAx, nTheta, nPhi] matrix, where the lineshapes
due to the four transitions have been summed. This matrix shows the crystal
spectrum for each orientation.
Finally, trSignalPowder is an array long nAx, where all the contribution have
been averaged over all θ and ϕ values with weight equal to sin(θ) (normalized by
the sum of sin(θ) over the all sphere, neglecting global proportionality factors
that play no role in determining the lineshape of the spectrum).

1.4 Comparison with Easyspin

We calculate the spectrum using our code with parameters:

• linewidth trlw = 0.42 mT = 12 MHz, same for all the transitions;

• all the other parameters as specified at the beginning of this document.

We compare it with a simulation obtained using Easyspinusing the same param-
eters (changing the sign of the dipolar coupling and dividing it by 1.5 due to a
different definition of the spin Hamiltonian). The comparison is in Fig. 1.2.

1.5 Comparison with experimental data

We calculate the spectrum using our code with parameters:

• linewidth trlw = [0.84, 0.84, 0.42, 0.42] mT = [];

• all the other parameters as specified at the beginning of this document.

The calculation from our code is compared to experimental data in Fig. 1.3
(the spectrum is flipped and the axis is transformed to magnetic field axis).
The high field part of the spectrum is not well reproduced. Nevertheless, the
simulation is in agreement with the simulation reported in [2] Fig. 5, where the
used linewidths were [0.7, 0.7, 0.35, 0.35] mT.
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Figure 1.2: Comparison between Easyspin and our spectrum.
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Figure 1.3: Comparison between experimental data and our spectrum.
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