// Copyright 2019 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. use crate::crypto::rng256::Rng256; use crate::ctap::data_formats::PublicKeyCredentialSource; use crate::ctap::status_code::Ctap2StatusCode; use crate::ctap::PIN_AUTH_LENGTH; use alloc::string::String; use alloc::vec::Vec; use core::convert::TryInto; use ctap2::embedded_flash::{self, StoreConfig, StoreEntry, StoreError, StoreIndex}; #[cfg(any(test, feature = "ram_storage"))] type Storage = embedded_flash::BufferStorage; #[cfg(not(any(test, feature = "ram_storage")))] type Storage = embedded_flash::SyscallStorage; // Those constants may be modified before compilation to tune the behavior of the key. // // The number of pages should be at least 2 and at most what the flash can hold. There should be no // reason to put a small number here, except that the latency of flash operations depends on the // number of pages. This will improve in the future. Currently, using 20 pages gives 65ms per // operation. The rule of thumb is 3.5ms per additional page. // // Limiting the number of residential keys permits to ensure a minimum number of counter increments. // Let: // - P the number of pages (NUM_PAGES) // - K the maximum number of residential keys (MAX_SUPPORTED_RESIDENTIAL_KEYS) // - S the maximum size of a residential key (about 500) // - C the number of erase cycles (10000) // - I the minimum number of counter increments // // We have: I = ((P - 1) * 4092 - K * S) / 12 * C // // With P=20 and K=150, we have I > 2M which is enough for 500 increments per day for 10 years. #[cfg(feature = "ram_storage")] const NUM_PAGES: usize = 2; #[cfg(not(feature = "ram_storage"))] const NUM_PAGES: usize = 20; const MAX_SUPPORTED_RESIDENTIAL_KEYS: usize = 150; // List of tags. They should all be unique. And there should be less than NUM_TAGS. const TAG_CREDENTIAL: usize = 0; const GLOBAL_SIGNATURE_COUNTER: usize = 1; const MASTER_KEYS: usize = 2; const PIN_HASH: usize = 3; const PIN_RETRIES: usize = 4; const NUM_TAGS: usize = 5; const MAX_PIN_RETRIES: u8 = 6; #[derive(PartialEq, Eq, PartialOrd, Ord)] enum Key { // TODO(cretin): Test whether this doesn't consume too much memory. Otherwise, we can use less // keys. Either only a simple enum value for all credentials, or group by rp_id. Credential { rp_id: Option<String>, credential_id: Option<Vec<u8>>, user_handle: Option<Vec<u8>>, }, GlobalSignatureCounter, MasterKeys, PinHash, PinRetries, } pub struct MasterKeys<'a> { pub encryption: &'a [u8; 32], pub hmac: &'a [u8; 32], } struct Config; impl StoreConfig for Config { type Key = Key; fn num_tags(&self) -> usize { NUM_TAGS } fn keys(&self, entry: StoreEntry, mut add: impl FnMut(Key)) { match entry.tag { TAG_CREDENTIAL => { let credential = match deserialize_credential(entry.data) { None => { debug_assert!(false); return; } Some(credential) => credential, }; add(Key::Credential { rp_id: Some(credential.rp_id.clone()), credential_id: Some(credential.credential_id), user_handle: None, }); add(Key::Credential { rp_id: Some(credential.rp_id.clone()), credential_id: None, user_handle: None, }); add(Key::Credential { rp_id: Some(credential.rp_id), credential_id: None, user_handle: Some(credential.user_handle), }); add(Key::Credential { rp_id: None, credential_id: None, user_handle: None, }); } GLOBAL_SIGNATURE_COUNTER => add(Key::GlobalSignatureCounter), MASTER_KEYS => add(Key::MasterKeys), PIN_HASH => add(Key::PinHash), PIN_RETRIES => add(Key::PinRetries), _ => debug_assert!(false), } } } pub struct PersistentStore { store: embedded_flash::Store<Storage, Config>, } #[cfg(feature = "ram_storage")] const PAGE_SIZE: usize = 0x100; #[cfg(not(feature = "ram_storage"))] const PAGE_SIZE: usize = 0x1000; // We have the following layout: // 0x00000-0x2ffff: Tock // 0x30000-0x3ffff: Padding // 0x40000-0xbffff: App // 0xc0000-0xfffff: Store #[cfg(not(any(test, feature = "ram_storage")))] const STORE_ADDR: usize = 0xC0000; const STORE_SIZE_LIMIT: usize = 0x40000; const STORE_SIZE: usize = NUM_PAGES * PAGE_SIZE; impl PersistentStore { /// Gives access to the persistent store. /// /// # Safety /// /// This should be at most one instance of persistent store per program lifetime. pub fn new(rng: &mut impl Rng256) -> PersistentStore { // This should ideally be a compile-time assert, but Rust doesn't have native support. assert!(STORE_SIZE <= STORE_SIZE_LIMIT); #[cfg(not(any(test, feature = "ram_storage")))] let storage = PersistentStore::new_prod_storage(); #[cfg(any(test, feature = "ram_storage"))] let storage = PersistentStore::new_test_storage(); let mut store = PersistentStore { store: embedded_flash::Store::new(storage, Config).unwrap(), }; store.init(rng); store } #[cfg(not(any(test, feature = "ram_storage")))] fn new_prod_storage() -> Storage { let store = unsafe { // Safety: The store cannot alias because this function is called only once. core::slice::from_raw_parts_mut(STORE_ADDR as *mut u8, STORE_SIZE) }; unsafe { // Safety: The store is in a writeable flash region. Storage::new(store).unwrap() } } #[cfg(any(test, feature = "ram_storage"))] fn new_test_storage() -> Storage { let store = vec![0xff; STORE_SIZE].into_boxed_slice(); let options = embedded_flash::BufferOptions { word_size: 4, page_size: PAGE_SIZE, max_word_writes: 2, max_page_erases: 10000, strict_write: true, }; Storage::new(store, options) } fn init(&mut self, rng: &mut impl Rng256) { if self.store.find_one(&Key::MasterKeys).is_none() { let master_encryption_key = rng.gen_uniform_u8x32(); let master_hmac_key = rng.gen_uniform_u8x32(); let mut master_keys = Vec::with_capacity(64); master_keys.extend_from_slice(&master_encryption_key); master_keys.extend_from_slice(&master_hmac_key); self.store .insert(StoreEntry { tag: MASTER_KEYS, data: &master_keys, sensitive: true, }) .unwrap(); } if self.store.find_one(&Key::PinRetries).is_none() { self.store .insert(StoreEntry { tag: PIN_RETRIES, data: &[MAX_PIN_RETRIES], sensitive: false, }) .unwrap(); } } pub fn find_credential( &self, rp_id: &str, credential_id: &[u8], ) -> Option<PublicKeyCredentialSource> { let key = Key::Credential { rp_id: Some(rp_id.into()), credential_id: Some(credential_id.into()), user_handle: None, }; let (_, entry) = self.store.find_one(&key)?; debug_assert_eq!(entry.tag, TAG_CREDENTIAL); let result = deserialize_credential(entry.data); debug_assert!(result.is_some()); result } pub fn store_credential( &mut self, credential: PublicKeyCredentialSource, ) -> Result<(), Ctap2StatusCode> { let key = Key::Credential { rp_id: Some(credential.rp_id.clone()), credential_id: None, user_handle: Some(credential.user_handle.clone()), }; let old_entry = self.store.find_one(&key); if old_entry.is_none() && self.count_credentials() >= MAX_SUPPORTED_RESIDENTIAL_KEYS { return Err(Ctap2StatusCode::CTAP2_ERR_KEY_STORE_FULL); } let credential = serialize_credential(credential)?; let new_entry = StoreEntry { tag: TAG_CREDENTIAL, data: &credential, sensitive: true, }; match old_entry { None => self.store.insert(new_entry)?, Some((index, old_entry)) => { debug_assert_eq!(old_entry.tag, TAG_CREDENTIAL); self.store.replace(index, new_entry)? } }; Ok(()) } pub fn filter_credential(&self, rp_id: &str) -> Vec<PublicKeyCredentialSource> { self.store .find_all(&Key::Credential { rp_id: Some(rp_id.into()), credential_id: None, user_handle: None, }) .filter_map(|(_, entry)| { debug_assert_eq!(entry.tag, TAG_CREDENTIAL); let credential = deserialize_credential(entry.data); debug_assert!(credential.is_some()); credential }) .collect() } pub fn count_credentials(&self) -> usize { self.store .find_all(&Key::Credential { rp_id: None, credential_id: None, user_handle: None, }) .count() } pub fn global_signature_counter(&self) -> u32 { self.store .find_one(&Key::GlobalSignatureCounter) .map_or(0, |(_, entry)| { u32::from_ne_bytes(*array_ref!(entry.data, 0, 4)) }) } pub fn incr_global_signature_counter(&mut self) { let mut buffer = [0; core::mem::size_of::<u32>()]; match self.store.find_one(&Key::GlobalSignatureCounter) { None => { buffer.copy_from_slice(&1u32.to_ne_bytes()); self.store .insert(StoreEntry { tag: GLOBAL_SIGNATURE_COUNTER, data: &buffer, sensitive: false, }) .unwrap(); } Some((index, entry)) => { let value = u32::from_ne_bytes(*array_ref!(entry.data, 0, 4)); // In hopes that servers handle the wrapping gracefully. buffer.copy_from_slice(&value.wrapping_add(1).to_ne_bytes()); self.store .replace( index, StoreEntry { tag: GLOBAL_SIGNATURE_COUNTER, data: &buffer, sensitive: false, }, ) .unwrap(); } } } pub fn master_keys(&self) -> MasterKeys { // We have as invariant that there is always exactly one MasterKeys entry in the store. let (_, entry) = self.store.find_one(&Key::MasterKeys).unwrap(); let data = entry.data; // And this entry is well formed: the encryption key followed by the hmac key. let encryption = array_ref!(data, 0, 32); let hmac = array_ref!(data, 32, 32); MasterKeys { encryption, hmac } } pub fn pin_hash(&self) -> Option<&[u8; PIN_AUTH_LENGTH]> { self.store .find_one(&Key::PinHash) .map(|(_, entry)| array_ref!(entry.data, 0, PIN_AUTH_LENGTH)) } pub fn set_pin_hash(&mut self, pin_hash: &[u8; PIN_AUTH_LENGTH]) { let entry = StoreEntry { tag: PIN_HASH, data: pin_hash, sensitive: true, }; match self.store.find_one(&Key::PinHash) { None => self.store.insert(entry).unwrap(), Some((index, _)) => { self.store.replace(index, entry).unwrap(); } } } fn pin_retries_entry(&self) -> (StoreIndex, u8) { let (index, entry) = self.store.find_one(&Key::PinRetries).unwrap(); let data = entry.data; debug_assert_eq!(data.len(), 1); (index, data[0]) } pub fn pin_retries(&self) -> u8 { self.pin_retries_entry().1 } pub fn decr_pin_retries(&mut self) { let (index, old_value) = self.pin_retries_entry(); let new_value = old_value.saturating_sub(1); self.store .replace( index, StoreEntry { tag: PIN_RETRIES, data: &[new_value], sensitive: false, }, ) .unwrap(); } pub fn reset_pin_retries(&mut self) { let (index, _) = self.pin_retries_entry(); self.store .replace( index, StoreEntry { tag: PIN_RETRIES, data: &[MAX_PIN_RETRIES], sensitive: false, }, ) .unwrap(); } pub fn reset(&mut self, rng: &mut impl Rng256) { loop { let index = { let mut iter = self.store.iter(); match iter.next() { None => break, Some((index, _)) => index, } }; self.store.delete(index).unwrap(); } self.init(rng); } } impl From<StoreError> for Ctap2StatusCode { fn from(error: StoreError) -> Ctap2StatusCode { match error { StoreError::StoreFull => Ctap2StatusCode::CTAP2_ERR_KEY_STORE_FULL, StoreError::InvalidTag => unreachable!(), StoreError::InvalidPrecondition => unreachable!(), } } } fn deserialize_credential(data: &[u8]) -> Option<PublicKeyCredentialSource> { let cbor = cbor::read(data).ok()?; cbor.try_into().ok() } fn serialize_credential(credential: PublicKeyCredentialSource) -> Result<Vec<u8>, Ctap2StatusCode> { let mut data = Vec::new(); if cbor::write(credential.into(), &mut data) { Ok(data) } else { Err(Ctap2StatusCode::CTAP2_ERR_INVALID_CREDENTIAL) } } #[cfg(test)] mod test { use super::*; use crate::crypto; use crate::crypto::rng256::{Rng256, ThreadRng256}; use crate::ctap::data_formats::{PublicKeyCredentialSource, PublicKeyCredentialType}; fn create_credential_source( rng: &mut ThreadRng256, rp_id: &str, user_handle: Vec<u8>, ) -> PublicKeyCredentialSource { let private_key = crypto::ecdsa::SecKey::gensk(rng); PublicKeyCredentialSource { key_type: PublicKeyCredentialType::PublicKey, credential_id: rng.gen_uniform_u8x32().to_vec(), private_key, rp_id: String::from(rp_id), user_handle, other_ui: None, cred_random: None, } } #[test] fn format_overhead() { // nRF52840 NVMC const WORD_SIZE: usize = 4; const PAGE_SIZE: usize = 0x1000; const NUM_PAGES: usize = 100; let store = vec![0xff; NUM_PAGES * PAGE_SIZE].into_boxed_slice(); let options = embedded_flash::BufferOptions { word_size: WORD_SIZE, page_size: PAGE_SIZE, max_word_writes: 2, max_page_erases: 10000, strict_write: true, }; let storage = Storage::new(store, options); let store = embedded_flash::Store::new(storage, Config).unwrap(); // We can replace 3 bytes with minimal overhead. assert_eq!(store.replace_len(false, 0), 2 * WORD_SIZE); assert_eq!(store.replace_len(false, 3), 3 * WORD_SIZE); assert_eq!(store.replace_len(false, 4), 3 * WORD_SIZE); } #[test] fn test_store() { let mut rng = ThreadRng256 {}; let mut persistent_store = PersistentStore::new(&mut rng); assert_eq!(persistent_store.count_credentials(), 0); let credential_source = create_credential_source(&mut rng, "example.com", vec![]); assert!(persistent_store.store_credential(credential_source).is_ok()); assert!(persistent_store.count_credentials() > 0); } #[test] #[allow(clippy::assertions_on_constants)] fn test_fill_store() { let mut rng = ThreadRng256 {}; let mut persistent_store = PersistentStore::new(&mut rng); assert_eq!(persistent_store.count_credentials(), 0); // To make this test work for bigger storages, implement better int -> Vec conversion. assert!(MAX_SUPPORTED_RESIDENTIAL_KEYS < 256); for i in 0..MAX_SUPPORTED_RESIDENTIAL_KEYS { let credential_source = create_credential_source(&mut rng, "example.com", vec![i as u8]); assert!(persistent_store.store_credential(credential_source).is_ok()); assert_eq!(persistent_store.count_credentials(), i + 1); } let credential_source = create_credential_source( &mut rng, "example.com", vec![MAX_SUPPORTED_RESIDENTIAL_KEYS as u8], ); assert_eq!( persistent_store.store_credential(credential_source), Err(Ctap2StatusCode::CTAP2_ERR_KEY_STORE_FULL) ); assert_eq!( persistent_store.count_credentials(), MAX_SUPPORTED_RESIDENTIAL_KEYS ); } #[test] #[allow(clippy::assertions_on_constants)] fn test_overwrite() { let mut rng = ThreadRng256 {}; let mut persistent_store = PersistentStore::new(&mut rng); assert_eq!(persistent_store.count_credentials(), 0); // These should have different IDs. let credential_source0 = create_credential_source(&mut rng, "example.com", vec![0x00]); let credential_source1 = create_credential_source(&mut rng, "example.com", vec![0x00]); let expected_credential = credential_source1.clone(); assert!(persistent_store .store_credential(credential_source0) .is_ok()); assert!(persistent_store .store_credential(credential_source1) .is_ok()); assert_eq!(persistent_store.count_credentials(), 1); assert_eq!( &persistent_store.filter_credential("example.com"), &[expected_credential] ); // To make this test work for bigger storages, implement better int -> Vec conversion. assert!(MAX_SUPPORTED_RESIDENTIAL_KEYS < 256); for i in 0..MAX_SUPPORTED_RESIDENTIAL_KEYS { let credential_source = create_credential_source(&mut rng, "example.com", vec![i as u8]); assert!(persistent_store.store_credential(credential_source).is_ok()); assert_eq!(persistent_store.count_credentials(), i + 1); } let credential_source = create_credential_source( &mut rng, "example.com", vec![MAX_SUPPORTED_RESIDENTIAL_KEYS as u8], ); assert_eq!( persistent_store.store_credential(credential_source), Err(Ctap2StatusCode::CTAP2_ERR_KEY_STORE_FULL) ); assert_eq!( persistent_store.count_credentials(), MAX_SUPPORTED_RESIDENTIAL_KEYS ); } #[test] fn test_filter() { let mut rng = ThreadRng256 {}; let mut persistent_store = PersistentStore::new(&mut rng); assert_eq!(persistent_store.count_credentials(), 0); let credential_source0 = create_credential_source(&mut rng, "example.com", vec![0x00]); let credential_source1 = create_credential_source(&mut rng, "example.com", vec![0x01]); let credential_source2 = create_credential_source(&mut rng, "another.example.com", vec![0x02]); let id0 = credential_source0.credential_id.clone(); let id1 = credential_source1.credential_id.clone(); assert!(persistent_store .store_credential(credential_source0) .is_ok()); assert!(persistent_store .store_credential(credential_source1) .is_ok()); assert!(persistent_store .store_credential(credential_source2) .is_ok()); let filtered_credentials = persistent_store.filter_credential("example.com"); assert_eq!(filtered_credentials.len(), 2); assert!( (filtered_credentials[0].credential_id == id0 && filtered_credentials[1].credential_id == id1) || (filtered_credentials[1].credential_id == id0 && filtered_credentials[0].credential_id == id1) ); } #[test] fn test_find() { let mut rng = ThreadRng256 {}; let mut persistent_store = PersistentStore::new(&mut rng); assert_eq!(persistent_store.count_credentials(), 0); let credential_source0 = create_credential_source(&mut rng, "example.com", vec![0x00]); let credential_source1 = create_credential_source(&mut rng, "example.com", vec![0x01]); let id0 = credential_source0.credential_id.clone(); let key0 = credential_source0.private_key.clone(); assert!(persistent_store .store_credential(credential_source0) .is_ok()); assert!(persistent_store .store_credential(credential_source1) .is_ok()); let no_credential = persistent_store.find_credential("another.example.com", &id0); assert_eq!(no_credential, None); let found_credential = persistent_store.find_credential("example.com", &id0); let expected_credential = PublicKeyCredentialSource { key_type: PublicKeyCredentialType::PublicKey, credential_id: id0, private_key: key0, rp_id: String::from("example.com"), user_handle: vec![0x00], other_ui: None, cred_random: None, }; assert_eq!(found_credential, Some(expected_credential)); } #[test] fn test_master_keys() { let mut rng = ThreadRng256 {}; let mut persistent_store = PersistentStore::new(&mut rng); // Master keys stay the same between resets. let master_keys_1 = persistent_store.master_keys(); let master_keys_2 = persistent_store.master_keys(); assert_eq!(master_keys_2.encryption, master_keys_1.encryption); assert_eq!(master_keys_2.hmac, master_keys_1.hmac); // Master keys change after reset. This test may fail if the random generator produces the // same keys. let master_encryption_key = master_keys_1.encryption.to_vec(); let master_hmac_key = master_keys_1.hmac.to_vec(); persistent_store.reset(&mut rng); let master_keys_3 = persistent_store.master_keys(); assert!(master_keys_3.encryption as &[u8] != &master_encryption_key[..]); assert!(master_keys_3.hmac as &[u8] != &master_hmac_key[..]); } #[test] fn test_pin_hash() { use crate::ctap::PIN_AUTH_LENGTH; let mut rng = ThreadRng256 {}; let mut persistent_store = PersistentStore::new(&mut rng); // Pin hash is initially not set. assert!(persistent_store.pin_hash().is_none()); // Setting the pin hash sets the pin hash. let random_data = rng.gen_uniform_u8x32(); assert_eq!(random_data.len(), 2 * PIN_AUTH_LENGTH); let pin_hash_1 = array_ref!(random_data, 0, PIN_AUTH_LENGTH); let pin_hash_2 = array_ref!(random_data, PIN_AUTH_LENGTH, PIN_AUTH_LENGTH); persistent_store.set_pin_hash(&pin_hash_1); assert_eq!(persistent_store.pin_hash(), Some(pin_hash_1)); assert_eq!(persistent_store.pin_hash(), Some(pin_hash_1)); persistent_store.set_pin_hash(&pin_hash_2); assert_eq!(persistent_store.pin_hash(), Some(pin_hash_2)); assert_eq!(persistent_store.pin_hash(), Some(pin_hash_2)); // Resetting the storage resets the pin hash. persistent_store.reset(&mut rng); assert!(persistent_store.pin_hash().is_none()); } #[test] fn test_pin_retries() { let mut rng = ThreadRng256 {}; let mut persistent_store = PersistentStore::new(&mut rng); // The pin retries is initially at the maximum. assert_eq!(persistent_store.pin_retries(), MAX_PIN_RETRIES); // Decrementing the pin retries decrements the pin retries. for pin_retries in (0..MAX_PIN_RETRIES).rev() { persistent_store.decr_pin_retries(); assert_eq!(persistent_store.pin_retries(), pin_retries); } // Decrementing the pin retries after zero does not modify the pin retries. persistent_store.decr_pin_retries(); assert_eq!(persistent_store.pin_retries(), 0); // Resetting the pin retries resets the pin retries. persistent_store.reset_pin_retries(); assert_eq!(persistent_store.pin_retries(), MAX_PIN_RETRIES); } }