
Exercise sheet 5

Computational Metaphysics

Benzmüller, Steen, Wisniewski Summer 2016

The exercises will be discussed in the tutorial session (wednesday 2pm).

Please solve all the following excercises using the Isabelle system. Add allyour solutions to
the same .thy file, create a.pdf file and upload both using the KVV system. The .thy file
(andthus the theory) should benamed using the format Lastname1Lastname2Ex05.thy as in
MüllerMeierEx05.thy.If you are using a temporary account, please also state the account
name somewhere in yoursolution. You may use all proof tactics except for smt and
metis for solving this exercise sheet!

Exercise 1: Unary Boolean Operators.

In classical logic the number of Boolean truth values is limited to two, consisting of True
and False. In reverse, a function f cannot take many different forms. In this exercise we
want to prove the following theorem.

theorem ex1 :
fixes f :: bool ⇒ bool
shows f (f (f n)) = f n

Hint: To prove this theorem, a case (nested) distinction over n, f n and/or f (f n) might
be appropriate.

Exercise 2: Leibniz Equality.

In higher-order logic (HOL), we do not need to include equality as a primitive of the
language (as opposed to FOL). Instead, we can define a notion of equality. A popular
notion of equality is given by Leibniz’ characterization of equals: Two objects are equal if
and only if they share all properties. This can be expressed in HOL as ∀P . P a ←→ P b
where a and b are two arbitrary objects.

We define Leibniz equality as follows:

abbreviation leibnizEq :: ′a ⇒ ′a ⇒ bool (infixl =L 42 ) where
a =L b ≡ ∀P . P a −→ P b

Show that the above definition of op =L using only the implication op −→ is indeed enough
to characterize Leibniz equality in HOL. To that end, show:

lemma a =L b =⇒ ∀P . P a ←→ P b

Show that if two objects are leibniz-equal, then they are equal (in the standard sense).

lemma a =L b =⇒ a = b

Show that if two objects are equal, then they are leibniz-equal.

lemma a = b =⇒ a =L b

Hence, we can indeed use Leibniz equality as substitute for primitive equality. Nevertheless,
we do not really want that. We will discuss reasons for that in the tutorial session.

1/2



Exercise 3: To Mock a Mockingbird.

This puzzle was taken from Raymond Smullyans book ”To Mock a Mockingbird”. It is
the first puzzle of chapter 9 which introduces us to a magical forest full of talking birds.

typedecl bird

If you meet any bird A in this forest, you might call out the name of a bird B to A. Then
bird A will answer with the name of a bird A · B.”

consts call :: bird ⇒ bird ⇒ bird (infixr · 51 )

Among the many fantastic birds in the forest some birds are called mockingbirds. When
you call out the name of any bird x to them, they will answer with the same answer as x
would answer to itself.

definition mockingbird where mockingbird M ≡ ∀ x . M · x = x · x

Some birds are said to compose with other birds:

definition composes-with where composes-with C A B ≡ ∀ x . A · (B · x ) = C · x

The puzzle

Now as you call out names to birds, it might happen that some bird will answer right back
with the name you just said. Such a bird is said to be fond of this bird. More formally:

definition is-fond where is-fond A B ≡ A · B = B

Furthermore, assume that the forest satisfies two conditions: First, for any two birds, there
is a bird they compose with. Second, among the birds in the forest there is a mockingbird.

axiomatization where
C1 : ∃ C . composes-with C A B and
C2 : ∃ M . mockingbird M

One rumor has it that every bird is fond of at least one bird.

theorem first-rumor : ∀ x . ∃ y . is-fond x y

Another rumor has it that there is at least one bird that is not fond of any bird.

theorem second-rumor : ∃ x . ∀ y . ¬ (is-fond x y)

One of the rumors is true, which one? (give a proof)

To solve this puzzle you might have to work with the definitions and equalities. The
following example shows how to do this.

lemma
assumes a1 : mockingbird M
assumes a2 : A · (M · x ) = B
shows A · (x · x ) = B

proof −
from a1 have ∀ x . M · x = x · x unfolding mockingbird-def .
then have mock : M · x = x · x by (rule allE )
from mock a2 show ?thesis by (rule subst)

qed

2/2


