Mapping of ND proof templates to Isabelle formalization

Alexander Steen
April 25, 2016

1 ND rules and their Isabelle names

<table>
<thead>
<tr>
<th>Rule</th>
<th>Isabelle Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{A \quad B}{A \land B}) conjI</td>
<td>\textit{conjI}</td>
</tr>
<tr>
<td>(\frac{A}{A})</td>
<td>\textit{conjunct1}</td>
</tr>
<tr>
<td>(\frac{A}{B})</td>
<td>\textit{conjunct2}</td>
</tr>
<tr>
<td>(\frac{A}{A \lor B}) disjI1</td>
<td>\textit{disjI1}</td>
</tr>
<tr>
<td>(\frac{B}{A \lor B}) disjI2</td>
<td>\textit{disjI2}</td>
</tr>
<tr>
<td>(\frac{A \land B}{C}) disjE</td>
<td>\textit{disjE}</td>
</tr>
<tr>
<td>(\frac{A \rightarrow B}{A}) impI</td>
<td>\textit{impI}</td>
</tr>
<tr>
<td>(\frac{A \rightarrow B}{A}) mp</td>
<td>\textit{mp}</td>
</tr>
<tr>
<td>(\frac{A}{\neg A}) notI</td>
<td>\textit{notI}</td>
</tr>
<tr>
<td>(\frac{\neg A}{A}) contr</td>
<td>\textit{contr}</td>
</tr>
<tr>
<td>(\frac{\neg \neg A}{A}) notnotD</td>
<td>\textit{notnotD}</td>
</tr>
<tr>
<td>(\frac{\neg A \lor A}{A}) excluded_middle</td>
<td>\textit{excluded_middle}</td>
</tr>
</tbody>
</table>

In Isabelle syntax

cnjI \(\frac{P \Rightarrow Q}{P \land Q} \)

conjunct1 \(\frac{P \land Q}{P} \)

conjunct2 \(\frac{P \land Q}{Q} \)

disjI1 \(\frac{P \Rightarrow P \lor Q}{Q} \)

disjI2 \(\frac{Q \Rightarrow P \lor Q}{P} \)

disjE \(\frac{P \lor Q \Rightarrow (P \Rightarrow R) \Rightarrow (Q \Rightarrow R) \Rightarrow R}{R} \)

imp1 \(\frac{P \Rightarrow Q \Rightarrow P \Rightarrow Q}{Q} \)

mp \(\frac{P \Rightarrow Q \Rightarrow P}{Q} \)

notI \(\frac{P \Rightarrow \text{False}}{\neg P} \)

notE \(\frac{\neg P \Rightarrow Q}{P \Rightarrow Q} \)
ccontr: \(\neg P \implies False \implies P \)

notnotD: \(\neg \neg P \implies P \)

excluded_middle: \(\neg P \vee P \)

2 General hints and keywords

2.1 General

thm: Output a fact. Can be added anywhere and does not influence anything around it. Handy for checking which facts are currently known to Isabelle.

\begin{verbatim}
 thm notI this
\end{verbatim}

Outputs the fact notI (negation introduction) and the fact that is referred to by this. Multiple facts are separated by blanks.

\{,\} The curly braces open a new block, i.e. a sub-proof.

- The minus sign denotes the identity rule. Can be used at various places:
 (1) Iterate facts (maybe with a new label)
 \begin{verbatim}
 lemma
 assumes "P"
 shows "..."
 proof -
 ...
 from assms have "P" by -
 moreover have ...
 ...
 qed
 \end{verbatim}
 (2) top-level introduction rule of proof
 \begin{verbatim}
 lemma
 ...
 proof -
 ...
 qed
 vs.
 lemma
 ...
 proof (rule disjI1)
 ...
 qed
 \end{verbatim}

note: Gives labels to blocks (and more?)

\begin{verbatim}
 { assume "P"
 from ... have "Q" by ...
 } note a = this
\end{verbatim}
gives the fact $P \implies Q$ the label a.

2.2 Within proofs

have Add new fact to the collection of known facts:

\[
\text{from } a \ b \ c \ \text{have } "P" \ \text{by } ...
\]

from Refer to a (list of) fact(s) that is used a source for the current fact construction

\[
\text{from } \ldots \ \text{have } a: \ P \ \text{by } ...
\]
\[
\text{from } a \ \text{have } \ldots \ \text{by } ...
\]

is equivalent to

\[
\text{from } \ldots \ \text{have } P \ \text{by } ...
\]
\[
\text{from } \text{this} \ \text{have } \ldots \ \text{by } ...
\]

with facts is short for from facts this, i.e.

\[
\text{from } \ldots \ \text{have } a: \ P \ \text{by } ...
\]
\[
\text{from } \text{somefact} \ a \ \text{have } \ldots \ \text{by } ...
\]

is equivalent to

\[
\text{from } \ldots \ \text{have } P \ \text{by } ...
\]
\[
\text{with } \text{somefact} \ \text{have } \ldots \ \text{by } ...
\]

then Short for from this. The above listing can be simplified to

\[
\text{from } \ldots \ \text{have } P \ \text{by } ...
\]
\[
\text{then } \text{have } \ldots \ \text{by } ...
\]

hence Short for then have. The above listing can be simplified to

\[
\text{from } \ldots \ \text{have } P \ \text{by } ...
\]
\[
\text{hence } \ldots \ \text{by } ...
\]

moreover, ultimately Start collecting facts for having a fact from all these collected facts without explicit naming, e.g.

\[
\text{from } \ldots \ \text{have } "P" \ \text{by (rule conjunct1)}
\]
\[
\text{moreover from } \ldots \ \text{have } "Q" \ \text{by (rule conjunct1)}
\]
\[
\text{ultimately have } "P \land Q" \ \text{by (rule conjI)}
\]

show Used to state that we can proof a goal (by application of some rules):

\[
\text{from } a \ b \ c \ \text{show } "P" \ \text{by } ...
\]

thus Directly refer to this for a show-command:
from ... have a: P by ...
from a show ... by ...

is equivalent to
from ... have P by ...
thus ... by ...

Example proof using some of the above keywords for $\vdash A \lor \neg A$

\textbf{theorem}

shows "$A \lor \neg A$"

\textbf{proof} -

\{
 assume a: "$\neg (A \lor \neg A)$"
\{
 assume "A"
 then have "$A \lor \neg A$" by (rule disjI1)
 with a have "False" by (rule notE)
\}
 hence "$\neg A$" by (rule notI)
 hence "$A \lor \neg A$" by (rule disjI2)
 with a have "False" by (rule notE)
\}
 hence "$\neg (A \lor \neg A)$" by (rule notI)
 thus "$A \lor \neg A$" by (rule notnotD)
qed

\section{ND proof templates}

For use within proofs to create new facts (with \textbf{have}):

\textbf{conjI} Rule: $\frac{A \quad B}{A \land B}$ \textit{conjI}

from ... have "A" by ...
moreover from ... have "B" by ...
ultimately have "A \land B" by (rule conjI)

\textbf{conjunct1} Rule: $\frac{A \land B}{A}$ \textit{conjunct1}

from ... have "A \land B" by ...
hence "A" by (rule conjunct1)

\textbf{conjunct2} Rule: $\frac{A \land B}{B}$ \textit{conjunct2}

from ... have "A \land B" by ...
hence "B" by (rule conjunct2)

\textbf{disjI1} Rule: $\frac{A}{A \lor B}$ \textit{disjI1}
from ... have "A" by ...
 hence "A ∨ B" by (rule disjI1)

\text{disjI2 Rule: } \frac{B}{A ∨ B} \quad \text{disjI2}

from ... have "B" by ...
 hence "A ∨ B" by (rule disjI2)

\text{disjE Rule: } \frac{[A] \quad [B]}{A ∨ B \quad \neg A \quad \neg B \quad \neg A ∨ \neg B} \quad \text{disjE}

from ... have "A ∨ B" by ...
moreover {
 assume "A"
 ...
 from ... have "C" by ...
}
moreover {
 assume "B"
 ...
 from ... have "C" by ...
}
ultimately have "C" by (rule disjE)

\text{implI Rule: } \frac{[A] \quad : \quad : \quad [B]}{A \rightarrow B \quad \text{implI}}

{
 assume "A"
 ...
 from ... have "B" by ...
}
hence "A → B" by (rule implI)

\text{mp Rule: } \frac{A → B \quad A}{B} \quad \text{mp}

from ... have "A → B" by ...
moreover from ... have "A" by ...
ultimately have "B" by (rule mp)

\text{notI Rule: } \frac{[A]}{\neg A \quad \text{notI}}

{
 assume "A"
...
from ... have "False" by ...
}
hence "¬A" by (rule notI)

\[\text{notE Rule: } \frac{\neg A}{B} \quad \text{notE} \]

from ... have "¬A" by ...
moreover from ... have "A" by ...
ultimately have "B" by (rule notE)

\[[\neg A] \]

\[\text{ccontr Rule: } \frac{}{\bot} \quad \text{ccontr} \]

\{
assume "¬A"
...
from ... have "False" by ...
\}
hence "A" by (rule ccontr)

\[\text{notnotD Rule: } \frac{\neg\neg A}{A} \quad \text{notnotD} \]

from ... have "¬¬A" by ...
hence "A" by (rule notnotD)

\[\text{excluded middle Rule: } \frac{\neg A \lor A}{A} \quad \text{excluded middle} \]

have "A ∨ ¬A" by (rule excluded_middle)