Commit 1190401c authored by akbib's avatar akbib Committed by akbib
Browse files

Inherit from new abstract base class + cleanup and renaming.

[[Imported from SVN: r12666]]
parent 76ee7b69
// -*- tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set ts=8 sw=4 et sts=4:
#include <dune/fufem/quadraturerules/quadraturerulecache.hh>
#include <dune/fufem/symmetrictensor.hh>
#include <dune/fufem/functions/virtualgridfunction.hh>
#include <dune/fufem/functions/basisgridfunction.hh>
#include <dune/fufem/assemblers/localassemblers/geononlinstvenantfunctionalassembler.hh>
#include <dune/fufem/assemblers/localassemblers/geononlinlinearizedstvenantassembler.hh>
#include <dune/elasticity/materials/material.hh>
#include <dune/elasticity/common/elasticityhelpers.hh>
/* \brief Class representing a hyperelastic geometrically exact St.Venant Kirchhoff material.
* \tparam Basis Global basis that is used for the spatial discretization.
* (This is not nice but I need a LocalFiniteElement for the local Hessian assembler :-( )
template <class Basis>
class GeomExactStVenantMaterial
class GeomExactStVenantMaterial : public Material<Basis>
typedef Material<Basis> Base;
typedef typename Basis::GridView::Grid GridType;
typedef typename Basis::LocalFiniteElement Lfe;
typedef typename Base::GlobalBasis GlobalBasis;
typedef typename Base::Lfe Lfe;
typedef typename Base::LocalLinearization LocalLinearization;
typedef typename Base::LocalHessian LocalHessian;
typedef typename Base::VectorType VectorType;
typedef typename Base::GridFunction GridFunction;
typedef typename Base::ReturnType ReturnType;
typedef GeomNonlinElasticityFunctionalAssembler<GridType,Lfe> LocalLinearization;
typedef GeomNonlinLinearizedStVenantAssembler<GridType, Lfe, Lfe> LocalHessian;
typedef Basis GlobalBasis;
using Base::dim;
typedef typename GridType::ctype ctype;
static const int dim = GridType::dimension;
static const int dimworld = GridType::dimensionworld;
typedef GeomNonlinElasticityFunctionalAssembler<GridType,Lfe> GeomLinearization;
typedef GeomNonlinLinearizedStVenantAssembler<GridType, Lfe, Lfe> GeomHessian;
typedef typename GridType::template Codim<0>::Geometry::LocalCoordinate LocalCoordinate;
typedef typename GridType::template Codim<0>::LeafIterator ElementIterator;
......@@ -41,51 +46,31 @@ public:
GeomExactStVenantMaterial(const Basis& basis, ctype E, ctype nu) :
GeomExactStVenantMaterial(const Basis& basis, ReturnType E, ReturnType nu) :
void getMaterialParameters(ctype& E, ctype& nu)
E = E_;
nu = nu_;
localLinearization_ = Dune::shared_ptr<GeomLinearization>(new GeomLinearization(E,nu));
localHessian_ = Dune::shared_ptr<GeomHessian>(new GeomHessian(E,nu));
void setMaterialParameters(ctype E, ctype nu)
E_ = E;
nu_ = nu;
void setup(ctype E, ctype nu, const Basis& basis)
void setup(ReturnType E, ReturnType nu, const Basis& basis)
E_ = E;
nu_ = nu;
if (localLinearization_)
if (localHessian_)
localLinearization_ = Dune::shared_ptr<LocalLinearization>(new LocalLinearization(E,nu));
localHessian_ = Dune::shared_ptr<LocalHessian>(new LocalHessian(E,nu));
basis_ = &basis;
localLinearization_ = Dune::shared_ptr<GeomLinearization>(new GeomLinearization(E,nu));
localHessian_ = Dune::shared_ptr<GeomHessian>(new GeomHessian(E,nu));
this->basis_ = &basis;
//! Evaluate the strain energy
template <class CoeffType>
ctype energy(const CoeffType& coeff)
ReturnType energy(const GridFunction& displace)
// make grid function
BasisGridFunction<Basis,CoeffType> configuration(*basis_,coeff);
ctype energy=0;
const GridType& grid = configuration.grid();
const GridType& grid = this->basis_->getGridView().grid();
ElementIterator eIt = grid.template leafbegin<0>();
ElementIterator eItEnd = grid.template leafend<0>();
......@@ -93,7 +78,7 @@ public:
for (;eIt != eItEnd; ++eIt) {
// get quadrature rule
QuadratureRuleKey quad1(basis_->getLocalFiniteElement(*eIt));
QuadratureRuleKey quad1(this->basis_->getLocalFiniteElement(*eIt));
QuadratureRuleKey quadKey = quad1.derivative().square().square();
const Dune::template QuadratureRule<ctype, dim>& quad = QuadratureRuleCache<ctype, dim>::rule(quadKey);
......@@ -108,23 +93,22 @@ public:
const ctype integrationElement = eIt->geometry().integrationElement(quadPos);
// evaluate displacement gradient at the quadrature point
typename BasisGridFunction<Basis,CoeffType>::DerivativeType localConfGrad;
typename GridFunction::DerivativeType localDispGrad;
if (configuration.isDefinedOn(*eIt))
configuration.evaluateDerivativeLocal(*eIt, quadPos, localConfGrad);
if (displace->isDefinedOn(*eIt))
displace->evaluateDerivativeLocal(*eIt, quadPos, localDispGrad);
// Compute the nonlinear strain tensor from the deformation gradient
SymmetricTensor<dim> strain;
SymmetricTensor<dim,ReturnType> strain;
// and the stress
SymmetricTensor<dim> stress = hookeTimesStrain(strain);
SymmetricTensor<dim,ReturnType> stress = hookeTimesStrain(strain);
ctype z = quad[pt].weight()*integrationElement;
energy += (stress*strain)*z;
......@@ -132,67 +116,44 @@ public:
//! Return the local assembler of the first derivative of the strain energy
LocalLinearization& firstDerivative() {return *localLinearization_;}
LocalLinearization& firstDerivative(const GridFunction& displace)
return *localLinearization_;
//! Return the local assembler of the second derivative of the strain energy
LocalHessian& secondDerivative() {return *localHessian_;}
//! Return the global basis
const Basis& basis() {return *basis_;}
LocalHessian& secondDerivative(const GridFunction& displace)
return *localHessian_;
//! First derivative of the strain energy
Dune::shared_ptr<LocalLinearization> localLinearization_;
Dune::shared_ptr<GeomLinearization> localLinearization_;
//! Second derivative of the strain energy
Dune::shared_ptr<LocalHessian> localHessian_;
//! Global basis used for the spatial discretization
const Basis* basis_;
Dune::shared_ptr<GeomHessian> localHessian_;
//! Elasticity modulus
ctype E_;
ReturnType E_;
//! Poisson ratio
ctype nu_;
ReturnType nu_;
//! Compute nonlinear strain tensor from the deformation gradient.
void computeStrain(const Dune::FieldMatrix<ctype, dim, dim>& grad, SymmetricTensor<dim>& strain) const {
strain = 0;
for (int i=0; i<dim ; ++i) {
strain(i,i) +=grad[i][i];
for (int k=0;k<dim;++k)
strain(i,i) += 0.5*grad[k][i]*grad[k][i];
for (int j=i+1; j<dim; ++j) {
strain(i,j) += 0.5*(grad[i][j] + grad[j][i]);
for (int k=0;k<dim;++k)
strain(i,j) += 0.5*grad[k][i]*grad[k][j];
//! Compute linear elastic stress from the strain
SymmetricTensor<dim> hookeTimesStrain(const SymmetricTensor<dim>& strain) const {
SymmetricTensor<dim,ReturnType> hookeTimesStrain(const SymmetricTensor<dim,ReturnType>& strain) const {
SymmetricTensor<dim> stress = strain;
SymmetricTensor<dim,ReturnType> stress = strain;
stress *= E_/(1+nu_);
// Compute the trace of the strain
ctype trace = 0;
for (int i=0; i<dim; i++)
trace += strain(i,i);
ctype f = E_*nu_ / ((1+nu_)*(1-2*nu_)) * trace;
ReturnType f = E_*nu_ / ((1+nu_)*(1-2*nu_)) * strain.trace();
for (int i=0; i<dim; i++)
stress(i,i) += f;
return stress;
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment