add methods to compute the linearization of the determinante of a deformation gradient

[[Imported from SVN: r11286]]
parent 2260d903
 ... ... @@ -124,6 +124,38 @@ namespace Dune { * (Delta<(p+2)%3,(q-2)%3>::delta+u[(p+2)%3][(q-2)%3]); } /** \brief Compute linearization of the determinant of a deformation gradient * * \param u The displacement gradient(!) at which the determinant is evaluated */ void linearizedDefDet(const Dune::FieldMatrix& u, Dune::FieldMatrix& linDet) { linDet = 0; for (int i=0; i<2; i++) for (int j=(i+1)%3; j<3; j++) { int k=(j+1)%3 + (j+1)/3; linDet[i][j] = u[j][k]*u[k][i] - u[j][i]*(1+u[k][k]); linDet[j][i] = u[k][j]*u[i][k] - u[i][j]*(1+u[k][k]); } // the diagonal parts for (int i=0; i<3; i++) linDet[i][i] = (u[(i+1)%3][(i+1)%3]+1)*(u[(i+2)%3][(i+2)%3]+1)-u[(i+1)%3][(i+2)%3]*u[(i+2)%3][(i+1)%3] } /** \brief Compute linearization of the determinant of a deformation gradient * * \param u The displacement gradient(!) at which the determinant is evaluated */ void linearizedDefDet(const Dune::FieldMatrix& u, Dune::FieldMatrix& linDet) { linDet = 0; for (int i=0; i<2; i++) { linDet[i][i] = 1+u[(i+1)%2][(i+1)%2]; linDet[i][(i+1)%2] = -u[(i+1)%2][i]; } } // \parder {det I + u}{ u_pq } template double det_du_tmpl(const Dune::FieldMatrix& u) { ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!