Commit a057b8c3 authored by akbib's avatar akbib Committed by akbib@FU-BERLIN.DE
Browse files

Material class for Neo-Hookean materials

[[Imported from SVN: r11295]]
parent c0eca190
#include <dune/fufem/quadraturerules/quadraturerulecache.hh>
#include <dune/fufem/symmetrictensor.hh>
#include <dune/fufem/functions/virtualgridfunction.hh>
#include <dune/fufem/functions/basisgridfunction.hh>
#include <dune/elasticity/assemblers/neohookefunctionalassembler.hh>
#include <dune/elasticity/assemblers/neohookeoperatorassembler.hh>
/** \brief Class representing a hyperelastic Neo-hookian material.
* \tparam Basis Global basis that is used for the spatial discretization.
* (This is not nice but I need a LocalFiniteElement for the local Hessian assembler :-( )
template <class Basis>
class NeoHookeMaterial
typedef typename Basis::GridView::Grid GridType;
typedef typename Basis::LocalFiniteElement Lfe;
typedef NeoHookeFunctionalAssembler<GridType> LocalLinearization;
typedef NeoHookeOperatorAssembler<GridType, Lfe, Lfe> LocalHessian;
typedef Basis GlobalBasis;
typedef typename GridType::ctype ctype;
static const int dim = GridType::dimension;
static const int dimworld = GridType::dimensionworld;
typedef typename GridType::template Codim<0>::Geometry::LocalCoordinate LocalCoordinate;
typedef typename GridType::template Codim<0>::LeafIterator ElementIterator;
NeoHookeMaterial() :
NeoHookeMaterial(const Basis& basis, ctype E, ctype nu) :
lambda_ = E*nu / ((1+nu)*(1-2*nu));
mu_ = E / (2*(1+nu));
localLinearization_ = Dune::shared_ptr<LocalLinearization>(new LocalLinearization(lambda_,mu_));
localHessian_ = Dune::shared_ptr<LocalHessian>(new LocalHessian(lambda_,mu_));
void setup(ctype E, ctype nu, const Basis& basis)
lambda_ = E*nu / ((1+nu)*(1-2*nu));
mu_ = E / (2*(1+nu));
if (localLinearization_)
if (localHessian_)
localLinearization_ = Dune::shared_ptr<LocalLinearization>(new LocalLinearization(lambda_,mu_));
localHessian_ = Dune::shared_ptr<LocalHessian>(new LocalHessian(lambda_,mu_));
basis_ = &basis;
//! Evaluate the strain energy
template <class CoeffType>
ctype energy(const CoeffType& coeff)
// make grid function
BasisGridFunction<Basis,CoeffType> configuration(*basis_,coeff);
ctype energy=0;
const GridType& grid = configuration.grid();
ElementIterator eIt = grid.template leafbegin<0>();
ElementIterator eItEnd = grid.template leafend<0>();
for (;eIt != eItEnd; ++eIt) {
// TODO Get proper quadrature rule
// get quadrature rule
const int order = (eIt->type().isSimplex()) ? 4 : 4*dim;
const Dune::template QuadratureRule<ctype, dim>& quad = QuadratureRuleCache<ctype, dim>::rule(order);
// loop over quadrature points
for (size_t pt=0; pt < quad.size(); ++pt) {
// get quadrature point
const LocalCoordinate& quadPos = quad[pt].position();
// get integration factor
const ctype integrationElement = eIt->geometry().integrationElement(quadPos);
// evaluate displacement gradient at the quadrature point
typename BasisGridFunction<Basis,CoeffType>::DerivativeType localConfGrad;
if (configuration.isDefinedOn(*eIt))
configuration.evaluateDerivativeLocal(*eIt, quadPos, localConfGrad);
SymmetricTensor<dim> strain;
// the trace
ctype trE(0);
for (int i=0; i<dim; i++)
trE += strain(i,i);
// make deformation gradient out of the discplacement
for (int i=0;i<dim;i++)
localConfGrad[i][i] += 1;
// evaluate the derminante of the deformation gradient
const ctype J = localConfGrad.determinant();
ctype z = quad[pt].weight()*integrationElement;
#ifdef LAURSEN
energy += z*(0.25*lambda_*(J*J-1)-(lambda_*0.5+mu_)*std::log(J)+mu_*trE);
energy += z*(0.5*lambda_*(J-1)*(J-1)-2*mu_*std::log(J)+mu_*trE);
return 0.5*energy;
//! Return the local assembler of the first derivative of the strain energy
LocalLinearization& firstDerivative() {return *localLinearization_;}
//! Return the local assembler of the second derivative of the strain energy
LocalHessian& secondDerivative() {return *localHessian_;}
//! Return the global basis
const Basis& basis() {return *basis_;}
//! First derivative of the strain energy
Dune::shared_ptr<LocalLinearization> localLinearization_;
//! Second derivative of the strain energy
Dune::shared_ptr<LocalHessian> localHessian_;
//! Global basis used for the spatial discretization
const Basis* basis_;
//! Lame constant
ctype lambda_;
//! Lame constant
ctype mu_;
//! Compute nonlinear strain tensor from the deformation gradient.
void computeStrain(const Dune::FieldMatrix<ctype, dim, dim>& grad, SymmetricTensor<dim>& strain) const {
strain = 0;
for (int i=0; i<dim ; ++i) {
strain(i,i) +=grad[i][i];
for (int k=0;k<dim;++k)
strain(i,i) += 0.5*grad[k][i]*grad[k][i];
for (int j=i+1; j<dim; ++j) {
strain(i,j) += 0.5*(grad[i][j] + grad[j][i]);
for (int k=0;k<dim;++k)
strain(i,j) += 0.5*grad[k][i]*grad[k][j];
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment