Commit b8fb1fe2 authored by akbib's avatar akbib Committed by akbib@FU-BERLIN.DE
Browse files

local assembler for the linearization of neo-hookean energy. Basically a...

local assembler for the linearization of neo-hookean energy. Basically a prettier version of yet existing code

[[Imported from SVN: r11289]]
parent 7c012575
#include <dune/common/fvector.hh>
#include <dune/istl/bvector.hh>
#include <dune/fufem/quadraturerules/quadraturerulecache.hh>
#include "dune/fufem/assemblers/localfunctionalassembler.hh"
#include <dune/fufem/symmetrictensor.hh>
#include <dune/fufem/functions/virtualgridfunction.hh>
#include <dune/elasticity/common/elasticityhelper.hh>
/** \brief Local assembler for the linearization of a nonlinear Neo-Hookean energy at a displacement u
* Laursen:
* \f[
* W(u)= \frac{\lambda}4(J^2-1)-(\frac{\lambda}2+\mu)log(J)+\mu tr(E(u))
* \f]
* Fischer/Wriggers:
* \f[
* W(u)= \frac{\lambda}2(J-1)^2-2\mu)log(J)+\mu tr(E(u))
* \f]
* The linearization of this energy at \f$ u\f$ as a functional applied to a test function \f$ v\f$] reads
* Laursen:
* \f[
* l_u(v) := (\frac{\lambda}2 J - \frac{\frac{\lambda}2 + \mu}{J})\frac{\partial J}{\partial u}v +
\mu\frac{\partial tr(E(u))}{\partial u} v
* \f]
* where
* - \f$E\f$: the nonlinear strain tensor
* - \f$tr \f$: the trace operator
* - \f$J\f$ the determinant of the deformation gradient
* - \f$\lambda\f$,\f$\mu\f$ material parameters
template <class GridType>
class NeoHookeFunctionalAssembler :
public LocalFunctionalAssembler<GridType, Dune::FieldVector<typename GridType::ctype ,GridType::dimension> >
static const int dim = GridType::dimension;
typedef typename GridType::ctype ctype;
typedef typename Dune::FieldVector<ctype,GridType::dimension> T;
typedef typename LocalFunctionalAssembler<GridType,T>::ElementPointer ElementPointer;
typedef typename LocalFunctionalAssembler<GridType,T>::LocalVector LocalVector;
typedef VirtualGridFunction<GridType, Dune::FieldVector<ctype,GridType::dimension> > GridFunction;
//! Create assembler from material parameters and a grid
NeoHookeFunctionalAssembler(ctype lambda, ctype mu, const Dune::shared_ptr<GridFunction> displacement) :
//! Create assembler from material parameters
NeoHookeFunctionalAssembler(ctype lambda, ctype mu) :
template <class TrialLocalFE>
void assemble(const ElementPointer& element, LocalVector& localVector, const TrialLocalFE& tFE) {
typedef typename Dune::FieldVector<ctype,dim> FVdim;
typedef typename Dune::FieldMatrix<ctype,dim,dim> FMdimdim;
typedef typename TrialLocalFE::Traits::LocalBasisType::Traits::JacobianType JacobianType;
typedef typename GridType::template Codim<0>::Geometry::LocalCoordinate LocalCoordinate;
int rows = tFE.localBasis().size();
localVector = 0.0;
// get quadrature rule
const int order = (element->type().isSimplex())
? 4*(tFE.localBasis().order())
: 4*(tFE.localBasis().order()*dim);
// get quadrature rule
const Dune::template QuadratureRule<ctype, dim>& quad = QuadratureRuleCache<ctype, dim>::rule(element->type(), order, IsRefinedLocalFiniteElement<TrialLocalFE>::value(tFE) );
// store gradients of shape functions and base functions
std::vector<JacobianType> referenceGradients(tFE.localBasis().size());
std::vector<FVdim> gradients(tFE.localBasis().size());
// store geometry mapping of the entity
const typename ElementPointer::Entity::Geometry geometry = element->geometry();
// loop over quadrature points
for (size_t pt=0; pt < quad.size(); ++pt) {
// get quadrature point
const LocalCoordinate& quadPos = quad[pt].position();
// get transposed inverse of Jacobian of transformation
const FMdimdim& invJacobian = geometry.jacobianInverseTransposed(quadPos);
// get integration factor
const ctype integrationElement = geometry.integrationElement(quadPos);
// get gradients of shape functions
tFE.localBasis().evaluateJacobian(quadPos, referenceGradients);
// compute gradients of base functions
for (size_t i=0; i<gradients.size(); ++i) {
// transform gradients
gradients[i] = 0.0;
invJacobian.umv(referenceGradients[i][0], gradients[i]);
// evaluate the displacement gradients of the configuration at the quadrature point
typename GridFunction::DerivativeType localConfGrad;
if (configuration_->isDefinedOn(*element))
configuration_->evaluateDerivativeLocal(*element, quadPos, localConfGrad);
// evaluate the derminante of the deformation gradient
const ctype J = localConfGrad.determinant();
// compute linearization of the determinante of the deformation gradient
FMdimdim linDefDet;
/* Compute the nonlinear strain tensor from the displacement gradient*/
SymmetricTensor<dim> strain;
// make deformation gradient out of the discplacement
for (int i=0;i<dim;i++)
localConfGrad[i][i] += 1;
// collect terms
FMdimdim fu(0);
#ifdef LAURSEN
// Laursen
// Fischer
// the linearization of the trace is just deformation gradient
ctype z = quad[pt].weight()*integrationElement;
// add vector entries
for(int row=0; row<rows; row++)
/** \brief Set new configuration. In Newton iterations this needs to be assembled more than one time.*/
void setConfiguration(Dune::shared_ptr<GridFunction> newConfig) {
configuration_ = newConfig;
/** \brief Lame constant */
ctype lambda_;
/** \brief Lame constant */
ctype mu_;
/** \brief The configuration at which the functional is evaluated.*/
Dune::shared_ptr<GridFunction> configuration_;
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment