From 9a60c190e1c00afdff939a832ec42c31c75f77d2 Mon Sep 17 00:00:00 2001
From: manueh51 <manueh51@mi.fu-berlin.de>
Date: Tue, 12 Oct 2021 11:25:13 +0000
Subject: [PATCH] Delete Assignment02_nb.ipynb

---
 Assignment02_nb.ipynb | 288 ------------------------------------------
 1 file changed, 288 deletions(-)
 delete mode 100644 Assignment02_nb.ipynb

diff --git a/Assignment02_nb.ipynb b/Assignment02_nb.ipynb
deleted file mode 100644
index ee125b3..0000000
--- a/Assignment02_nb.ipynb
+++ /dev/null
@@ -1,288 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Assignment Sheet 2"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "This notebook is part of the 2nd assignment. We will train a Decision Tree classifier using the sklearn library on the Iris dataset.\n",
-    "\n",
-    "Your task is to complete the missing code, where marked with a **TODO**. "
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Imports"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import seaborn as sns\n",
-    "import pandas as pd\n",
-    "import matplotlib.pyplot as plt\n",
-    "import graphviz\n",
-    "\n",
-    "from sklearn import datasets, tree\n",
-    "from sklearn.model_selection import train_test_split\n",
-    "from sklearn.metrics import classification_report\n",
-    "from os import system\n",
-    "from IPython.display import Image\n",
-    "\n",
-    "%matplotlib inline"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Load dataset"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "tags": []
-   },
-   "outputs": [],
-   "source": [
-    "# For further info https://archive.ics.uci.edu/ml/datasets/iris\n",
-    "iris = datasets.load_iris()\n",
-    "X = iris.data  \n",
-    "y = iris.target"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Exploratory data analysis"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "#### Quick look into the data structure"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "print(X.shape)\n",
-    "print(y.shape)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "print(X[:5,:])"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "# Using pandas\n",
-    "data = pd.concat([pd.DataFrame(X),pd.DataFrame(y)], axis=1)\n",
-    "data.columns=['a','b','c','d','target']\n",
-    "data.head(5)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "#### Exemplary plots"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "plt.figure(figsize=(8,6))\n",
-    "sns.scatterplot(x=X[:,0], y=X[:,1], hue=y)\n",
-    "plt.xlabel('Sepal length')\n",
-    "plt.ylabel('Sepal width')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "# Univariate hist_plot 'sepal_length'\n",
-    "class0_index = [i for i, j in enumerate(y) if j==0]\n",
-    "class1_index = [i for i, j in enumerate(y) if j==1]\n",
-    "class2_index = [i for i, j in enumerate(y) if j==2]\n",
-    "\n",
-    "sns.histplot(data=X, x=X[:,0], hue=y, element='step')\n",
-    "plt.xlabel('Sepal length')\n",
-    "plt.legend(('class1', 'class2','class3'))"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "# TODO: Barplot over 'sepal-width'"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "# TODO: Boxplot of all features"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Classification using decision trees "
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "#### Data preparation"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "tags": []
-   },
-   "outputs": [],
-   "source": [
-    "# Split data\n",
-    "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)\n",
-    "X_train.shape"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "#### Train DT classifier using sklearn; Visualization; Evaluation"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "# TODO: Train a DT classifier "
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "# Visualize: Export to .png image file\n",
-    "tree.export_graphviz(clf, out_file='tree.dot') \n",
-    "system(\"dot -Tpng tree.dot -o tree1.png\")\n",
-    "Image(\"tree1.png\")"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "# TODO: Evaluation the classifier's performance"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "#### Train a second DT classifier using the Entropy instead of the Gini-Index (default)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "# TODO: Train the second classifier"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "# Visualize #2\n",
-    "tree.export_graphviz(clf2, out_file='tree2.dot') \n",
-    "system(\"dot -Tpng tree2.dot -o tree2.png\")\n",
-    "Image(\"tree2.png\")"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "# TODO: Evaluation"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3 (ipykernel)",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.9.7"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
-- 
GitLab