diff --git a/src/explore.ipynb b/src/explore.ipynb index 81e7c84065115ba1c4725a4123cdf94643e76803..b05c7c4039d7602ac2651a96d5fa077e8ea9e707 100644 --- a/src/explore.ipynb +++ b/src/explore.ipynb @@ -16,7 +16,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -40,7 +40,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -56,7 +56,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -72,7 +72,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -9224,6 +9224,1173 @@ "Ui,89.178.195.212 is something new: oxycothyn paragraphs instead of viagra links.. And RichardEi lässt grüßen" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Number of hits public/hidden filters" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>LogMonth</th>\n", + " <th>FilterID</th>\n", + " <th>Freq</th>\n", + " <th>af_id</th>\n", + " <th>af_hidden</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>2019-07-01</td>\n", + " <td>102</td>\n", + " <td>5</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>2019-06-01</td>\n", + " <td>102</td>\n", + " <td>19</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>2019-05-01</td>\n", + " <td>102</td>\n", + " <td>34</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>2018-11-01</td>\n", + " <td>102</td>\n", + " <td>315</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>2018-10-01</td>\n", + " <td>102</td>\n", + " <td>416</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>5</th>\n", + " <td>2018-09-01</td>\n", + " <td>102</td>\n", + " <td>610</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>6</th>\n", + " <td>2018-08-01</td>\n", + " <td>102</td>\n", + " <td>1255</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>7</th>\n", + " <td>2018-07-01</td>\n", + " <td>102</td>\n", + " <td>1133</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8</th>\n", + " <td>2018-06-01</td>\n", + " <td>102</td>\n", + " <td>78</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>9</th>\n", + " <td>2018-05-01</td>\n", + " <td>102</td>\n", + " <td>157</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>10</th>\n", + " <td>2018-04-01</td>\n", + " <td>102</td>\n", + " <td>317</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>11</th>\n", + " <td>2018-03-01</td>\n", + " <td>102</td>\n", + " <td>132</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>12</th>\n", + " <td>2018-02-01</td>\n", + " <td>102</td>\n", + " <td>259</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>13</th>\n", + " <td>2018-01-01</td>\n", + " <td>102</td>\n", + " <td>190</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>14</th>\n", + " <td>2017-12-01</td>\n", + " <td>102</td>\n", + " <td>190</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15</th>\n", + " <td>2017-11-01</td>\n", + " <td>102</td>\n", + " <td>183</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>16</th>\n", + " <td>2017-10-01</td>\n", + " <td>102</td>\n", + " <td>159</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>17</th>\n", + " <td>2017-09-01</td>\n", + " <td>102</td>\n", + " <td>239</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>18</th>\n", + " <td>2017-08-01</td>\n", + " <td>102</td>\n", + " <td>145</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>19</th>\n", + " <td>2017-07-01</td>\n", + " <td>102</td>\n", + " <td>249</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>20</th>\n", + " <td>2017-06-01</td>\n", + " <td>102</td>\n", + " <td>368</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>21</th>\n", + " <td>2017-05-01</td>\n", + " <td>102</td>\n", + " <td>232</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>22</th>\n", + " <td>2017-04-01</td>\n", + " <td>102</td>\n", + " <td>158</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>23</th>\n", + " <td>2017-03-01</td>\n", + " <td>102</td>\n", + " <td>101</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>24</th>\n", + " <td>2017-02-01</td>\n", + " <td>102</td>\n", + " <td>53</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>25</th>\n", + " <td>2017-01-01</td>\n", + " <td>102</td>\n", + " <td>130</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>26</th>\n", + " <td>2016-12-01</td>\n", + " <td>102</td>\n", + " <td>107</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>27</th>\n", + " <td>2016-11-01</td>\n", + " <td>102</td>\n", + " <td>214</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>28</th>\n", + " <td>2016-10-01</td>\n", + " <td>102</td>\n", + " <td>134</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>29</th>\n", + " <td>2016-09-01</td>\n", + " <td>102</td>\n", + " <td>138</td>\n", + " <td>102</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15307</th>\n", + " <td>2009-04-01</td>\n", + " <td>38</td>\n", + " <td>6</td>\n", + " <td>38</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15308</th>\n", + " <td>2009-04-01</td>\n", + " <td>44</td>\n", + " <td>85</td>\n", + " <td>44</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15309</th>\n", + " <td>2009-03-01</td>\n", + " <td>44</td>\n", + " <td>36</td>\n", + " <td>44</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15310</th>\n", + " <td>2009-03-01</td>\n", + " <td>108</td>\n", + " <td>7</td>\n", + " <td>108</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15311</th>\n", + " <td>2009-03-01</td>\n", + " <td>120</td>\n", + " <td>1</td>\n", + " <td>120</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15312</th>\n", + " <td>2009-03-01</td>\n", + " <td>121</td>\n", + " <td>1</td>\n", + " <td>121</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15313</th>\n", + " <td>2009-03-01</td>\n", + " <td>14</td>\n", + " <td>63</td>\n", + " <td>14</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15314</th>\n", + " <td>2009-03-01</td>\n", + " <td>15</td>\n", + " <td>15</td>\n", + " <td>15</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15315</th>\n", + " <td>2009-03-01</td>\n", + " <td>20</td>\n", + " <td>5</td>\n", + " <td>20</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15316</th>\n", + " <td>2009-03-01</td>\n", + " <td>22</td>\n", + " <td>8</td>\n", + " <td>22</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15317</th>\n", + " <td>2009-03-01</td>\n", + " <td>25</td>\n", + " <td>28</td>\n", + " <td>25</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15318</th>\n", + " <td>2009-03-01</td>\n", + " <td>26</td>\n", + " <td>548</td>\n", + " <td>26</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15319</th>\n", + " <td>2009-03-01</td>\n", + " <td>36</td>\n", + " <td>10</td>\n", + " <td>36</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15320</th>\n", + " <td>2009-03-01</td>\n", + " <td>37</td>\n", + " <td>14</td>\n", + " <td>37</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15321</th>\n", + " <td>2009-03-01</td>\n", + " <td>40</td>\n", + " <td>4</td>\n", + " <td>40</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15322</th>\n", + " <td>2009-03-01</td>\n", + " <td>45</td>\n", + " <td>26</td>\n", + " <td>45</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15323</th>\n", + " <td>2009-03-01</td>\n", + " <td>48</td>\n", + " <td>43</td>\n", + " <td>48</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15324</th>\n", + " <td>2009-03-01</td>\n", + " <td>49</td>\n", + " <td>5</td>\n", + " <td>49</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15325</th>\n", + " <td>2009-03-01</td>\n", + " <td>53</td>\n", + " <td>2595</td>\n", + " <td>53</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15326</th>\n", + " <td>2009-03-01</td>\n", + " <td>55</td>\n", + " <td>17</td>\n", + " <td>55</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15327</th>\n", + " <td>2009-03-01</td>\n", + " <td>57</td>\n", + " <td>6</td>\n", + " <td>57</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15328</th>\n", + " <td>2009-03-01</td>\n", + " <td>60</td>\n", + " <td>19</td>\n", + " <td>60</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15329</th>\n", + " <td>2009-03-01</td>\n", + " <td>69</td>\n", + " <td>5</td>\n", + " <td>69</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15330</th>\n", + " <td>2009-03-01</td>\n", + " <td>70</td>\n", + " <td>6</td>\n", + " <td>70</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15331</th>\n", + " <td>2009-03-01</td>\n", + " <td>71</td>\n", + " <td>86</td>\n", + " <td>71</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15332</th>\n", + " <td>2009-03-01</td>\n", + " <td>73</td>\n", + " <td>2</td>\n", + " <td>73</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15333</th>\n", + " <td>2009-03-01</td>\n", + " <td>74</td>\n", + " <td>9</td>\n", + " <td>74</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15334</th>\n", + " <td>2009-03-01</td>\n", + " <td>78</td>\n", + " <td>98</td>\n", + " <td>78</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15335</th>\n", + " <td>2009-03-01</td>\n", + " <td>95</td>\n", + " <td>21</td>\n", + " <td>95</td>\n", + " <td>1</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15336</th>\n", + " <td>2009-03-01</td>\n", + " <td>99</td>\n", + " <td>686</td>\n", + " <td>99</td>\n", + " <td>0</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>15337 rows × 5 columns</p>\n", + "</div>" + ], + "text/plain": [ + " LogMonth FilterID Freq af_id af_hidden\n", + "0 2019-07-01 102 5 102 1\n", + "1 2019-06-01 102 19 102 1\n", + "2 2019-05-01 102 34 102 1\n", + "3 2018-11-01 102 315 102 1\n", + "4 2018-10-01 102 416 102 1\n", + "5 2018-09-01 102 610 102 1\n", + "6 2018-08-01 102 1255 102 1\n", + "7 2018-07-01 102 1133 102 1\n", + "8 2018-06-01 102 78 102 1\n", + "9 2018-05-01 102 157 102 1\n", + "10 2018-04-01 102 317 102 1\n", + "11 2018-03-01 102 132 102 1\n", + "12 2018-02-01 102 259 102 1\n", + "13 2018-01-01 102 190 102 1\n", + "14 2017-12-01 102 190 102 1\n", + "15 2017-11-01 102 183 102 1\n", + "16 2017-10-01 102 159 102 1\n", + "17 2017-09-01 102 239 102 1\n", + "18 2017-08-01 102 145 102 1\n", + "19 2017-07-01 102 249 102 1\n", + "20 2017-06-01 102 368 102 1\n", + "21 2017-05-01 102 232 102 1\n", + "22 2017-04-01 102 158 102 1\n", + "23 2017-03-01 102 101 102 1\n", + "24 2017-02-01 102 53 102 1\n", + "25 2017-01-01 102 130 102 1\n", + "26 2016-12-01 102 107 102 1\n", + "27 2016-11-01 102 214 102 1\n", + "28 2016-10-01 102 134 102 1\n", + "29 2016-09-01 102 138 102 1\n", + "... ... ... ... ... ...\n", + "15307 2009-04-01 38 6 38 1\n", + "15308 2009-04-01 44 85 44 1\n", + "15309 2009-03-01 44 36 44 1\n", + "15310 2009-03-01 108 7 108 0\n", + "15311 2009-03-01 120 1 120 1\n", + "15312 2009-03-01 121 1 121 1\n", + "15313 2009-03-01 14 63 14 0\n", + "15314 2009-03-01 15 15 15 0\n", + "15315 2009-03-01 20 5 20 0\n", + "15316 2009-03-01 22 8 22 1\n", + "15317 2009-03-01 25 28 25 1\n", + "15318 2009-03-01 26 548 26 0\n", + "15319 2009-03-01 36 10 36 1\n", + "15320 2009-03-01 37 14 37 0\n", + "15321 2009-03-01 40 4 40 0\n", + "15322 2009-03-01 45 26 45 1\n", + "15323 2009-03-01 48 43 48 0\n", + "15324 2009-03-01 49 5 49 1\n", + "15325 2009-03-01 53 2595 53 0\n", + "15326 2009-03-01 55 17 55 1\n", + "15327 2009-03-01 57 6 57 0\n", + "15328 2009-03-01 60 19 60 0\n", + "15329 2009-03-01 69 5 69 1\n", + "15330 2009-03-01 70 6 70 1\n", + "15331 2009-03-01 71 86 71 1\n", + "15332 2009-03-01 73 2 73 0\n", + "15333 2009-03-01 74 9 74 0\n", + "15334 2009-03-01 78 98 78 0\n", + "15335 2009-03-01 95 21 95 1\n", + "15336 2009-03-01 99 686 99 0\n", + "\n", + "[15337 rows x 5 columns]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Which filters were triggered how often over the years\n", + "df_hits_month = pd.read_csv(\"quarry-34015-abuse-filters-hits-per-filter-per-month-en-wiki-run390706.csv\", sep=',')\n", + "df_hits_month['LogMonth'] = pd.to_datetime(df_hits_month['LogMonth'], format=\"%Y%m\")\n", + "df_hits_month_privacy = df_hits_month.merge(df_2nd[['af_id','af_hidden']], how='inner', left_on='FilterID', right_on='af_id')\n", + "df_hits_month_privacy" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th></th>\n", + " <th>FilterID</th>\n", + " <th>Freq</th>\n", + " <th>af_id</th>\n", + " </tr>\n", + " <tr>\n", + " <th>LogMonth</th>\n", + " <th>af_hidden</th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2009-03-01</th>\n", + " <th>0</th>\n", + " <td>3487</td>\n", + " <td>96339</td>\n", + " <td>3487</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>2169</td>\n", + " <td>2669</td>\n", + " <td>2169</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2009-04-01</th>\n", + " <th>0</th>\n", + " <td>5070</td>\n", + " <td>176691</td>\n", + " <td>5070</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>2977</td>\n", + " <td>2461</td>\n", + " <td>2977</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2009-05-01</th>\n", + " <th>0</th>\n", + " <td>5886</td>\n", + " <td>209959</td>\n", + " <td>5886</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>3478</td>\n", + " <td>1920</td>\n", + " <td>3478</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2009-06-01</th>\n", + " <th>0</th>\n", + " <td>7279</td>\n", + " <td>177095</td>\n", + " <td>7279</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>4436</td>\n", + " <td>2081</td>\n", + " <td>4436</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2009-07-01</th>\n", + " <th>0</th>\n", + " <td>7466</td>\n", + " <td>158324</td>\n", + " <td>7466</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>4196</td>\n", + " <td>2669</td>\n", + " <td>4196</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2009-08-01</th>\n", + " <th>0</th>\n", + " <td>7419</td>\n", + " <td>157403</td>\n", + " <td>7419</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>5800</td>\n", + " <td>4878</td>\n", + " <td>5800</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2009-09-01</th>\n", + " <th>0</th>\n", + " <td>6794</td>\n", + " <td>208432</td>\n", + " <td>6794</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>5910</td>\n", + " <td>4776</td>\n", + " <td>5910</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2009-10-01</th>\n", + " <th>0</th>\n", + " <td>6014</td>\n", + " <td>220321</td>\n", + " <td>6014</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>5027</td>\n", + " <td>6544</td>\n", + " <td>5027</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2009-11-01</th>\n", + " <th>0</th>\n", + " <td>5742</td>\n", + " <td>199369</td>\n", + " <td>5742</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>6192</td>\n", + " <td>10858</td>\n", + " <td>6192</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2009-12-01</th>\n", + " <th>0</th>\n", + " <td>5598</td>\n", + " <td>156255</td>\n", + " <td>5598</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>4766</td>\n", + " <td>10251</td>\n", + " <td>4766</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2010-01-01</th>\n", + " <th>0</th>\n", + " <td>6204</td>\n", + " <td>186653</td>\n", + " <td>6204</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>6511</td>\n", + " <td>6723</td>\n", + " <td>6511</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2010-02-01</th>\n", + " <th>0</th>\n", + " <td>6503</td>\n", + " <td>199966</td>\n", + " <td>6503</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>6678</td>\n", + " <td>6414</td>\n", + " <td>6678</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2010-03-01</th>\n", + " <th>0</th>\n", + " <td>6433</td>\n", + " <td>209903</td>\n", + " <td>6433</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>7712</td>\n", + " <td>7189</td>\n", + " <td>7712</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2010-04-01</th>\n", + " <th>0</th>\n", + " <td>7401</td>\n", + " <td>188766</td>\n", + " <td>7401</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>7872</td>\n", + " <td>8615</td>\n", + " <td>7872</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2010-05-01</th>\n", + " <th>0</th>\n", + " <td>7726</td>\n", + " <td>196234</td>\n", + " <td>7726</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>8743</td>\n", + " <td>10588</td>\n", + " <td>8743</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2018-05-01</th>\n", + " <th>0</th>\n", + " <td>51416</td>\n", + " <td>186248</td>\n", + " <td>51416</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>41007</td>\n", + " <td>51987</td>\n", + " <td>41007</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2018-06-01</th>\n", + " <th>0</th>\n", + " <td>51765</td>\n", + " <td>157402</td>\n", + " <td>51765</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>47212</td>\n", + " <td>51972</td>\n", + " <td>47212</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2018-07-01</th>\n", + " <th>0</th>\n", + " <td>53132</td>\n", + " <td>143923</td>\n", + " <td>53132</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>49291</td>\n", + " <td>61554</td>\n", + " <td>49291</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2018-08-01</th>\n", + " <th>0</th>\n", + " <td>52569</td>\n", + " <td>153982</td>\n", + " <td>52569</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>43879</td>\n", + " <td>62061</td>\n", + " <td>43879</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2018-09-01</th>\n", + " <th>0</th>\n", + " <td>55579</td>\n", + " <td>172578</td>\n", + " <td>55579</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>45955</td>\n", + " <td>57776</td>\n", + " <td>45955</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2018-10-01</th>\n", + " <th>0</th>\n", + " <td>56194</td>\n", + " <td>196132</td>\n", + " <td>56194</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>46545</td>\n", + " <td>60303</td>\n", + " <td>46545</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2018-11-01</th>\n", + " <th>0</th>\n", + " <td>58127</td>\n", + " <td>194226</td>\n", + " <td>58127</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>57083</td>\n", + " <td>58984</td>\n", + " <td>57083</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2018-12-01</th>\n", + " <th>0</th>\n", + " <td>56137</td>\n", + " <td>171182</td>\n", + " <td>56137</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>54188</td>\n", + " <td>55100</td>\n", + " <td>54188</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2019-01-01</th>\n", + " <th>0</th>\n", + " <td>54668</td>\n", + " <td>197696</td>\n", + " <td>54668</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>54488</td>\n", + " <td>52316</td>\n", + " <td>54488</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2019-02-01</th>\n", + " <th>0</th>\n", + " <td>52730</td>\n", + " <td>184748</td>\n", + " <td>52730</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>53769</td>\n", + " <td>48914</td>\n", + " <td>53769</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2019-03-01</th>\n", + " <th>0</th>\n", + " <td>52789</td>\n", + " <td>177082</td>\n", + " <td>52789</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>49484</td>\n", + " <td>59640</td>\n", + " <td>49484</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2019-04-01</th>\n", + " <th>0</th>\n", + " <td>48230</td>\n", + " <td>163403</td>\n", + " <td>48230</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>48820</td>\n", + " <td>67497</td>\n", + " <td>48820</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2019-05-01</th>\n", + " <th>0</th>\n", + " <td>49504</td>\n", + " <td>173525</td>\n", + " <td>49504</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>44078</td>\n", + " <td>63551</td>\n", + " <td>44078</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2019-06-01</th>\n", + " <th>0</th>\n", + " <td>51019</td>\n", + " <td>135202</td>\n", + " <td>51019</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>39008</td>\n", + " <td>55806</td>\n", + " <td>39008</td>\n", + " </tr>\n", + " <tr>\n", + " <th rowspan=\"2\" valign=\"top\">2019-07-01</th>\n", + " <th>0</th>\n", + " <td>48464</td>\n", + " <td>64271</td>\n", + " <td>48464</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>38033</td>\n", + " <td>30246</td>\n", + " <td>38033</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>250 rows × 3 columns</p>\n", + "</div>" + ], + "text/plain": [ + " FilterID Freq af_id\n", + "LogMonth af_hidden \n", + "2009-03-01 0 3487 96339 3487\n", + " 1 2169 2669 2169\n", + "2009-04-01 0 5070 176691 5070\n", + " 1 2977 2461 2977\n", + "2009-05-01 0 5886 209959 5886\n", + " 1 3478 1920 3478\n", + "2009-06-01 0 7279 177095 7279\n", + " 1 4436 2081 4436\n", + "2009-07-01 0 7466 158324 7466\n", + " 1 4196 2669 4196\n", + "2009-08-01 0 7419 157403 7419\n", + " 1 5800 4878 5800\n", + "2009-09-01 0 6794 208432 6794\n", + " 1 5910 4776 5910\n", + "2009-10-01 0 6014 220321 6014\n", + " 1 5027 6544 5027\n", + "2009-11-01 0 5742 199369 5742\n", + " 1 6192 10858 6192\n", + "2009-12-01 0 5598 156255 5598\n", + " 1 4766 10251 4766\n", + "2010-01-01 0 6204 186653 6204\n", + " 1 6511 6723 6511\n", + "2010-02-01 0 6503 199966 6503\n", + " 1 6678 6414 6678\n", + "2010-03-01 0 6433 209903 6433\n", + " 1 7712 7189 7712\n", + "2010-04-01 0 7401 188766 7401\n", + " 1 7872 8615 7872\n", + "2010-05-01 0 7726 196234 7726\n", + " 1 8743 10588 8743\n", + "... ... ... ...\n", + "2018-05-01 0 51416 186248 51416\n", + " 1 41007 51987 41007\n", + "2018-06-01 0 51765 157402 51765\n", + " 1 47212 51972 47212\n", + "2018-07-01 0 53132 143923 53132\n", + " 1 49291 61554 49291\n", + "2018-08-01 0 52569 153982 52569\n", + " 1 43879 62061 43879\n", + "2018-09-01 0 55579 172578 55579\n", + " 1 45955 57776 45955\n", + "2018-10-01 0 56194 196132 56194\n", + " 1 46545 60303 46545\n", + "2018-11-01 0 58127 194226 58127\n", + " 1 57083 58984 57083\n", + "2018-12-01 0 56137 171182 56137\n", + " 1 54188 55100 54188\n", + "2019-01-01 0 54668 197696 54668\n", + " 1 54488 52316 54488\n", + "2019-02-01 0 52730 184748 52730\n", + " 1 53769 48914 53769\n", + "2019-03-01 0 52789 177082 52789\n", + " 1 49484 59640 49484\n", + "2019-04-01 0 48230 163403 48230\n", + " 1 48820 67497 48820\n", + "2019-05-01 0 49504 173525 49504\n", + " 1 44078 63551 44078\n", + "2019-06-01 0 51019 135202 51019\n", + " 1 39008 55806 39008\n", + "2019-07-01 0 48464 64271 48464\n", + " 1 38033 30246 38033\n", + "\n", + "[250 rows x 3 columns]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_hits_month_privacy_agg = df_hits_month_privacy.groupby(['LogMonth', 'af_hidden']).sum()\n", + "df_hits_month_privacy_agg" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<matplotlib.axes._subplots.AxesSubplot at 0x7fcc3436bf60>" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4MAAAGtCAYAAACsrqGVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd8W/d5L/7PF3uSBECAe1N7S5Ytj8jyiO3YiUfiDDfXjuPMJml6e5t10/Y2TZvfTVs3/bUZjp3YTu04dmMnXon3thVtaw9KIsU9MEgQi9jf+wdwIFIEQIwDgASe9+ullyTg4JxDiQTOc57n+zyMcw5CCCGEEEIIIZVFUuoTIIQQQgghhBBSfBQMEkIIIYQQQkgFomCQEEIIIYQQQioQBYOEEEIIIYQQUoEoGCSEEEIIIYSQCkTBICGEEEIIIYRUIAoGCSGEEEIIIaQCUTBICCGEEEIIIRWIgkFCCCGEEEIIqUCyUp+A2Gpra3l7e3upT4MQQgghhBBCSuLAgQN2zrl5oe3KLhhsb2/H/v37S30ahBBCCCGEEFISjLGBTLajMlFCCCGEEEIIqUAUDBJCCCGEEEJIBaJgkBBCCCGEEEIqUNmtGSSEEEIIIYQQAAiFQhgeHobf7y/1qRSESqVCc3Mz5HJ5Tq+nYJAQQgghhBBSloaHh6HX69He3g7GWKlPR1ScczgcDgwPD6OjoyOnfVCZKCGEEEIIIaQs+f1+mEymsgsEAYAxBpPJlFfWk4JBQgghhBBCSNkqx0BQkO/XRsEgIYQQQgghhFQgCgYJIYQQQgghpAJRMEgIIYQQQgipaE8++SRWrVqFq666Kunzv/rVr/C1r30t6XM33ngjnE7nvMe/973v4d577533eH9/P9auXZvfCYuEuokSQgghhBBCKtqDDz6IX/ziF7jiiiuyfu0LL7xQgDMqDsoMEkIIIYQQQirGrbfeii1btmDNmjV44IEH8P3vfx/vvfcePve5z+Gb3/xmyteNjo7ihhtuwLJly/Ctb30r8Xh7ezvsdjsA4Ac/+AGWL1+OK664Aj09PYltDhw4gA0bNmDDhg346U9/mng8Eongm9/8JrZu3Yr169fj/vvvBwC89dZb2LFjB26//XasXLkSn/70p8E5F/ufgjKDhBBCCCGEkMrx0EMPwWg0YmZmBlu3bsXbb7+NN954A/feey8uuuiilK87dOgQDh48CKVSiRUrVuAv/uIv0NLSknj+wIEDeOKJJ3Do0CGEw2Fs3rwZW7ZsAQB89rOfxU9+8hNs3759TsD54IMPorq6Gvv27UMgEMDll1+O6667DgBw8OBBHD9+HI2Njbj88suxc+fOnDKX6VBmkBBCCCGEEFIx/vM//xMbNmzAtm3bMDQ0hDNnzmT0umuuuQbV1dVQqVRYvXo1BgYG5jz/7rvv4rbbboNGo0FVVRVuvvlmAIDT6YTT6cT27dsBAHfeeWfiNa+88goeeeQRbNy4EZdccgkcDkfifC6++GI0NzdDIpFg48aN6O/vF+Grn4syg4QQQgghBcY5hycQhl4lL/WpEFLR3nrrLbz22mvYtWsXNBoNduzYkfHQdqVSmfizVCpFOBzO+3w45/jxj3+M66+/ft55FuJ4F6LMICGEEEJIAQXCEXzzqSPY9P1Xcc7uLfXpEFLRpqenYTAYoNFocOrUKezevVu0fW/fvh3PPPMMZmZm4Ha78fzzzwMAampqUFNTg/feew8A8NhjjyVec/311+O+++5DKBQCAJw+fRpeb/HeJygzSAghhBBSIFaXH1/69QEcHIy1nT855kJHrbbEZ0VI5brhhhvw85//HKtWrcKKFSuwbds20fa9efNmfPKTn8SGDRtgsViwdevWxHMPP/ww7rnnHjDGEmsCAeDzn/88+vv7sXnzZnDOYTab8cwzz4h2TgthhehKU0oXXXQR379/f6lPgxBCCCEV7tCQE196dD/c/jC+95E1+NbvjuC7N67EF7d3lfrUCKkYJ0+exKpVq0p9GgWV7GtkjB3gnKfuhhNHZaKEEEIIISL73YFhfOL+XZBLJfjdn1+GT2xtQZVKhqHJmVKfGiGEJFCZKCGEEEJIlh7dPYB/e6UHDdVqtBjUaDFq0GJQo9Wkwc6zDjz43jlc2mnCTz+9GUatAgDQYtRgaMpX4jMnhKTz8ssv49vf/vacxzo6OvD000+X6IwKi4JBQgghhJAs7T03iUiUo6FahXN2L945Y4M/FE08f/dl7fibm1ZBLj1fhNVi0OCM1V2K0yWEZOj666+f19mznFEwSAghhBCSJavLj1X1VXjo7liDCM45bJ4AhiZnIGHAplbDvNe0GNV4s8cKzjkYY8U+ZUIImYeCQUIIIYSQLFndAaxurEr8nTEGi14Fi16V8jUtRg0C4Shs7gAsVam3I4SQYqEGMoQQQgghWbK6/LDolQtvOEuLQQMAtG6QELJoUDBICCGEEJIFTyAMbzCCuiyzey1GNQBQR1FCyBwvvfQSVqxYge7ubvzwhz8s6rEpGCSEEEIIyYLV5QeArDODzUJmcJIyg4SQmEgkgq9+9at48cUXceLECTz++OM4ceJE0Y5PwSAhhBBCSBas7gAApF0fmIxKLoVZr6QyUUJIwt69e9Hd3Y3Ozk4oFAp86lOfwrPPPlu041MDGUIIIYSQLAjBYF1VdplBAGg2qKlMlJBF6B+eP44Toy5R97m6sQp//5E1abcZGRlBS0tL4u/Nzc3Ys2ePqOeRDmUGCSGEEEKycL5MNPuOoC0GGjxPCFk8FswMMsZaADwCoA4AB/AA5/w/GGPfA/AFALb4pt/lnL8Qf83/BvA5ABEAX+ecvxx//AYA/wFACuCXnPMfxh/vAPAEABOAAwDu5JwHGWPK+LG3AHAA+CTnvF+Er5sQQgghJCdWdwAKmQRV6uwLrFqMavzx6BjCkShkUronT8hisVAGr1CampowNDSU+Pvw8DCampqKdvxM3oXCAP6ac74awDYAX2WMrY4/9++c843xX0IguBrApwCsAXADgJ8xxqSMMSmAnwL4EIDVAO6YtZ9/ju+rG8AUYoEk4r9PxR//9/h2hBBCCCElY3X5UVelzGlwfItBg0iUY2zaX4AzI4QsNVu3bsWZM2dw7tw5BINBPPHEE7j55puLdvwFg0HO+Rjn/P34n90ATgJIF67eAuAJznmAc34OwFkAF8d/neWc93HOg4hlAm9hsXfSqwE8FX/9fwG4dda+/iv+56cAXMNyeeclhBBCCBHJhCuQU4koEBs8D9CsQUJIjEwmw09+8hNcf/31WLVqFT7xiU9gzZriZSmzqm9gjLUD2ARgD4DLAXyNMXYXgP2IZQ+nEAsUd8962TDOB49DFzx+CWKloU7OeTjJ9k3CazjnYcbYdHx7+wXn9UUAXwSA1tbWbL4kQgghhJCsWN1+LK/T5/RaYfD88OQM0CXmWRFClqobb7wRN954Y0mOnXGxOmNMB+B3AP4n59wF4D7E3sY2AhgD8G8FOcMMcM4f4JxfxDm/yGw2l+o0CCGEEFIBrO5A1gPnBQ01KkgYZQYJIYtDRsEgY0yOWCD4GOf89wDAOZ/gnEc451EAv0CsDBQARgC0zHp5c/yxVI87ANQwxmQXPD5nX/Hnq+PbE0IIIYQU3UwwArc/DHOWA+cFcqkEDdVqGjxPCFkUFgwG42v0HgRwknP+o1mPN8za7DYAx+J/fg7ApxhjyniX0GUA9gLYB2AZY6yDMaZArMnMc5xzDuBNALfHX/8ZAM/O2tdn4n++HcAb8e0JIYQQQorO6hbGSuQWDAKxjqJDUzRrkBBSepmsGbwcwJ0AjjLGDsUf+y5i3UA3IjZuoh/AlwCAc36cMfZbACcQ60T6Vc55BAAYY18D8DJioyUe4pwfj+/v2wCeYIz9E4CDiAWfiP/+KGPsLIBJxAJIQgghhJCSOD9wPrcyUSC2bvDt07aFNySEkAJbMBjknL8HIFkHzxfSvOYHAH6Q5PEXkr2Oc96H82Wmsx/3A/j4QudICCGEEFIME8LA+ap8MoMaWN0B+EMRqORSsU6NEEKyRtNOCSGEEEIyZHXFMoO5jpYAYmWiADBMpaKEkBKjYJAQQgghJENWdwByKYNBI895H8J4CeooSgi55557YLFYsHbt2pIcn4JBQgghhJAMWV1+WPQqxPrr5aY5MWuQgkFCKt3dd9+Nl156qWTHp2CQEEIIIRXvt/uH8Kez9gW3s7oDOY+VEFj0SihkEioTJYRg+/btMBqNJTt+Jt1ECSGEEELKltsfwt8+cwyXdBhxWXdt2m2tbj86arV5HU8iYWiuUVOZKCGLyYvfAcaPirvP+nXAh34o7j5FRplBQgghhFS0109aEQxH0WfzLrjthCuQV/MYQbNRg6FJygwSQkqLMoOEEEIIKSvhSBT/57nj+MIHOjPK4v3hyBgAYMQ5g5lgBGpF8nEP/lAE0zOhvAbOC1oMahwZdua9H0KISBZ5Bq9QKDNICCGEkLLS7/DiN3sG8ZM3zi64rcsfwjunbWg2xMY99Nk9Kbe1iTBwXtBi1MDpC8HtD+W9L0IIyRUFg4QQQggpK1O+WID1hyOjmPalD7ZePzmBYCSKr+zoBoC0paJWd2zgvDmPgfOCxHgJKhUlpKLdcccduPTSS9HT04Pm5mY8+OCDRT0+BYOEEEIIKStT3iAAIBCO4umDw2m3/eORMTRWq/DRzU1gDOi1pc4Mnh84L0IwGB88T01kCKlsjz/+OMbGxhAKhTA8PIzPfe5zRT0+BYOEEEIIKSvOeDawrkqJx/cOgXOedLvpmRDeOW3HjesaoJJL0WxQozdtZlDEMtFEZpCCQUJI6VAwSAghhJCyMuWLZQa/8IFO9Ey48f5g8kYtr52IlYjetL4BANBl1qEvTWZwwuWHTMJg1CjyPscajRw6pYxmDRJCSoqCQUIIIYSUlSlfCDIJw6cuboVWIcXjeweTbvfHo2NoqlFjY0sNACEY9CIaTZ5JtLoDqNUpIZGwvM+RMYZmg5oyg4QUQarqgHKQ79dGwSAhhBBCyorTF0SNRgGdUoZbNjXFGsnMzG0kM+0L4d0zNty4rh6MxYK7TrMWM6EIxlz+pPu1ugOoE6F5jKDFqKE1g4QUmEqlgsPhKMuAkHMOh8MBlSr30nWaM0gIIYSQsjLlC8KgkQMA/uziVvxmzyCePTSCuy5tT2zzyolxhCIcN61vTDzWZdYBAPpsHjTVqOft1+ryozm+1k8MLQYN3jtjB+c8EZASQsTV3NyM4eFh2Gy2Up9KQahUKjQ3N+f8egoGCSGEEFJWpnwhGOLr+tY2VWNdUzV+s2cQd25rSwRdQonohubqxOs6zbEB9b1WDz6wzDxvv1Z3AJvbDKKdZ7NBjZlQBJPeIEw68TKOhJDz5HI5Ojo6Sn0aixaViRJCCCGkrMTKROWJv99xcStOjbtxcMiZeP69M3Z8eH3DnIycWaeEXiVL2lE0GI5i0htEnT7/TqKCFmO8oyg1kSGElAgFg4QQQggpK7MzgwBw88bGWCOZPbFGMq+cmEA4yhNdRAWMsVgTGfv8jqI2T3zGoKhrBuOzBqmJDCGkRCgYJIQQQkjZ4JzHMoPa85lBnVKGmzc24fkjo3D5Q/jjkTG0GNVY11Q97/WdZi16rfMzg9Z4UxkxBs4LErMGqYkMIaREKBgkhBBCSNnwBiMIRfi8WYB/dnEr/KEofrWzHzvP2nHTusakTVu6zDqMu/zwBMJzHhdz4LxAq5TBqFVgaJLKRAkhpUHBICGEEELKxpQ3NnDecEEwuK65GmubqvAfr59BOMrx4QtKRAVCR9FzF6wbLERmEABaDGoMU2aQEFIiFAwSQgghpGw4fbF5grMbyAjuuLgVkShHq1GDNY1VSV/fJXQUtc1dN2h1ByBhEL3rZ7NRQ2sGCSElQ8EgIYQQQsrGlC+eGdQq5j1384ZGGDRyfGxzc8q5fq0mDaQShr4Lg0FXALU6JaQScecBthg0GHHOIBItv4HYhJDFj+YMEkIIIaRsJILBJJlBvUqOd751FTSK1Jc/SpkULQb1vPESE26/qJ1EBS1GNUIRjgmXH41JBt0TQkghUWaQEEIIIWXjfJno/MwgEAsIF8rudZl188tEXQFYRJwxKBA6ig5SqSghpAQoGCSEEEJI2RAygzXq+ZnBTHVZdDhn984p3bS6A6grQGZwZYMeSpkE3/7dEZyecIu+f0IISYeCQUIIIYSUDacvBL1KBpk090uczlotAuEoRp2xkQ/hSBQObwDmAmQGLXoVfvOFbfAFI7jtpzvxyvFx0Y9BCCGpUDBICCGEkLIx5QvOGyuRrS5LbLzE2XipqN0TBOfij5UQbGkz4LmvXY4uiw5ffPQAfvLGGXBODWUIIYVHwSAhhBBCysaUL5S0eUw2Omtj4yX64k1krO7YjEExB85fqKFajd9+6VLcurER975yGl/7zUH4guGFX0gIIXmgYJAQQgghZcPpC6ZsHpMpo1aBGo080URmwhUAULjMoEAll+LfP7kR//tDK/HCsTHcft+uRCBKCCGFQMEgIYQQQspGrEw0v8wgYyzWUdQaCwaFgKwQoyWSHftLV3bhobu34sSYC0/uHy74MQkhlYuCQUIIIYSUDac3lHdmEIiVivbZ42WirgAYA2p1hQ8GBVetsECvksHmDhTtmISQykPBICGEEELKQigShTsQzruBDBBrImNzB+Dyh2B1+2HSKiDPo0NpLoxaRWJUBiGEFAIFg2SOv3/2GH765tlSnwYhhBCSNWHgvEGbX5koEBs8D8SayFhdhRkrsRCDRoFJLwWDhJDCoWCQJAxP+fDI7gH8dv9QqU+FEEIIyZpTGDgvRpmoOdZRtNfqKdjA+YVQZpAQUmgUDJKEJ/cPg3NgwOGD3UNrFAghhBTG7j4Hfv+++I1RpoTMYJ4NZACg1aiBTMLQa/NgwuUveCfRZAwaBaa8oaIflxBSOSgYJACASJTjqQPDMMc/7A4OOkt8RoQQQsrVA+/04RtPHsaxkWlR9ytk0cRYMyiXStBq0uCM1QO7JwBLCcpEjVo5lYkSQgqKgkECAHjvrB0jzhl8+4aVkEkYDg5OlfqUCCGElCmbO4AoB/72mWOIRrlo+z1fJpp/ZhCIrRvc3z+JKEdJykQNWgVmQhHMBCNFPzYhpDJQMEgAAP+9bxBGrQIf2dCAVQ1VeJ+CQUIIIQVicwdg1itxaMgp6jr182Wi+WcGgVgwKOyzFA1kjPGvg9YNEkIKhYJBAocngFdPTOC2TU1QyqTY3FqDI8PTCEeipT41QgghZSYa5bB7Arh9SzMu7jDin186hSmRSiGnfEEopBJoFFJR9ic0kQFKlxkEQKWihJCCoWCQ4OmDIwhFOD65tQUAsKnVAF8wgp4Jd4nPjBBCSLlxzoQQjnJY9Er84y1r4fKH8S8vnxJn394QajRyMMZE2Z8wXgIALFWlWDNImUFCSGFRMFjhOOd4Yt8QNrXWYHmdHgCwudUAgJrIEEIIEZ/V7QcAWPQqrKjX457L2/HEviFR1qpP+YKilYgCQNeszKBZV5puogBlBgkhhUPBYIV7f9CJs1YPPhXPCgJAi1ENk1ZB6wYJIYSIzuaOjS4Sulf/5bXLYdEr8XfPHkMkz2YyTl9ItOYxQGxeoUmrgFGrgEJW/EumRGaQgkFCSIFQMFjh/nvfILQKKT68vjHxGGMMm1oNOESZQUIIISK7MBjUKWX425tW49iIC4/tGchr32JnBgGgy6JDXQlKRAGgWi0HY8Ckr3JmDe7vn8SrJyZKfRqEVAwKBiuYJxDGH46M4cPrG6FVyuY8t6m1Bn12L92NJIQQIqoLg0EA+PD6BlzRXYt/fbkn8XwupnwhGLTiZQYB4P98eDX+6da1ou4zU1IJQ41aXjGfxZEox1/99hD+5umjpT6VRe+1ExNweHL/WSFEQMFgBfvD4VH4ghF88uKWec8J6wYPDVF2kBBCiHhs7gDUcim0szp+MsbwD7esgT8Uwf998WRO++Wcw+kLokbkzODapmpsaTOIus9sGLQKTFZIA5nXT05gaHIGVncA0zOVkw3N1rQvhM8/sh8/fuNsqU+FlAEKBhehaJTDGwgX/DhP7BvCMosOm1pq5j23oaUaEoairhvMd60IIYSQxc/mic0YvLDjZ5dZh09f0oZnDo7AH8p+yLonEEY4ymEQcc3gYmDUKOCskGDwoZ3nIHxbnLV6Snsyi1i/wwsAePu0rcRnQsoBBYOL0GN7B3HFP7+BQDj7D8NM9Yy7cWjIiU9ubUnaglujkGFlffGGzw86fNjwD6/g9ZO0ToAQQsqZMHA+mU2tNYhyYMDhy3q/zvi6OrEzg6Vm0Cow6S3/LNmJURd2903ijotbAQC9FAymJASD5+xeDMT/TEiuKBhchA4POTHlC2F4aqZgx/jvfUOQSxk+urk55Tab22pweGi6KBm7B97thScQprtcZWTC5ce7Z+j/kxAyl80dgCVFMCjM9euzZR8ICLP4xG4gU2pGjaIi1gw+vPMc1HIpvnHdCihkEpyx0qzjVGbfLKHrJpIvCgYXocH4D3kh7/Y8f2QU166qS7StTmZTiwGeQLjgb8h2TwBP7h8GQLMNy8mD753DXQ/txdh04W5qEEKWHmuazGBHbWyuX29OwWAse1ZuZaLCmkHOy3cphd0TwLOHR/GxLU0wahXorNVSmWga/Q4vGqpVaDNp8FYPBYMkPxQMLkJC+r/fnn2ZTCYC4Qhs7gBWN1Sl3W5zW3GGz/9qZz+CkShuXFePk2MuzAQLVx5LimfUOQPOgecOjZb6VAghi0QgHMH0TCjlAHetUoaGahV6bdnfDBXW1ZVbmahRK0cwHIWvjD8bf7NnEMFwFHdf1gEAWFanxxkKBlMacPjQZtJgx3Iz/tRrz2mNLSECCgYXGV8wDGu8rXahMoMOT+wDszbFnVlBu0kDg0aO9wcKt27QEwjjkV39uH51PT62uRnhKMex0emCHY8Uj9UV+z5++uBIic+EELJY2OOfP6kyg0CsVDSnMlGvUCZaXplBIbidLHGp6FmrG9948jDWf+9lnBh1ibbfYDiKR3cP4MrlZnRbYmXC3WYdRpwz8AUL30xvKRpweNFu0mLHCgv8oSj2npss9SmRJYyCwUVmcPJ8NrA/hwX0mbDH59LUprgzKxCGzx8s4HiJx/cMwuUP48s7urAx3tX0YBE7mJLCmXD7oZBKcGrcjZNj4l04EEKWrmQzBi/UZdai1+bNuixSKBOtVpdXMGiMB4NTJeooenBwCl98ZD+u/dE7eP7wKFz+MPb1ixd8/PHoKGzuAO65oiPx2LI6HTgH+nLIEJc7TyAMuyeINpMW2zpNUMgkVCpK8kLB4CIjLApuNWoKlhkUPoxrdQuX0mxqqcFZqwfTPvE7mQXDUTz43jls6zRiY0sNTDol2kwaWjdYBjjnmHD58ZENjZBJGGUHCSEAMgsGO806eALhrIfPO31BVKlkkEnL69LGoC1NZvCd0zbc8cBu3PazP2HPuUl8/Zpl+NN3roZeJRNtPR/nHA/v7EeXWYvty2oTjwsZQlo3OJ9wbdhu0kCtkOKSDiPeOm0t8VmRpay83jHLgPBDvn15LYanZhCKREU/RqaZQeD8usFDw+IHaM8cGsG4y48/39GdeGxTSw0Fg2XA5Q/DH4piVYMeO1ZY8OyhEZojSQjJMDMYDwSyLBWd8oUSgVM5ERq9FTMz+McjY7jrob3os3vwtzetws7vXI3/9cHlMOmU6DLrRAvSDgxM4cjwND57ececMVftJi2kErZkO4pOuPw4UKAlNkLSoM0Ua7a0Y4UFfTYvhiYLU01Gyh8Fg4tMv8OHGo0c65trEI5yjDrF78SYyZoNwfrmajAG0dcNRqMc97/di9UNVXPuBm5qNWDc5acOlEuc1eUHAFiqVPjo5iZMuALY1eso8VkRQkpNCAZN2jTBoEXoKJpddcyUL1h2zWOA82WixZw1+OjufrSZNHjnW1fh8x/ohE4pSzzXbdFlHain8vDOflSpZPjo5qY5jytkErSZNEs2M/jDF0/hrgf3FOQmqNBksNWkAQDsWGEGALxFIyZIjigYXGQGHT60mbRoj9/xKcS6QZs7AL1SBpVcuuC2epUcK+r0oq8bfO3kBHptXnzpys45dwM3tcbWDb4/QNnBpWwi3jymTq/E1Sst0Ktk+P3B4RKfFSGk1GweP4xaBRSy1Jcf9VUqaBTSrJvIOH2hsmseAwB6lQxSCSvarMEBhxe7+ybx8S3NUMrmXyd0W3SwuQOYnskvOB1xzuCl4+O445JWaBSyec8vs+iWZEdRzjl2nrXDG4zM6QMhlgG7D7U6ZSJA76zVosWoxts9VCpKcrNgMMgYa2GMvckYO8EYO84Y+8v440bG2KuMsTPx3w3xxxlj7D8ZY2cZY0cYY5tn7esz8e3PMMY+M+vxLYyxo/HX/CeLRwepjlHO+h1etBk1aI/f8SnEukG7J7BgJ9HZNrXW4ODgFKIi3eHinOO+t3vRYlTjpnUNc55bWV8FpUxCTWSWuPF4ZrCuSgWVXIqb1jXgpWPj1BmOkApndQVSjpUQMMbQGW8ik40pX7DsBs4DgETCYNDIMVmkMtGnDgyDMeBjW5qTPt8dL+PNdBbkMwdH8H9fPIl/fukU7n25Bz96pQf//upp/M3TRwEAd13anvw4Fh0GHD4Ew+IvlymkXps30RW+Z1z85mn9Dm/iGhGI/bzsWG7Bn3odCIRpxATJXiaZwTCAv+acrwawDcBXGWOrAXwHwOuc82UAXo//HQA+BGBZ/NcXAdwHxAI7AH8P4BIAFwP4+1nB3X0AvjDrdTfEH091jLIUDEcx6pxBu0kDs14JtVxakFmDNncgo+Yxgk2tBrj9YfTZxblDt/fcJA4OOvHFD3TOW+ivkEmwrqm6oB1MSeFNJMpEYxd9t21qgi8YwasnJkp5WoSQErN5Ug+cn63LrENvllkhpy+EmjLMDAKAQaMoSmYwEuV46sAwti8zo6FanXSbriyauwTCEXzjycP45bvn8Mt3+3Df27348Ztn8R+vn8FbPTZ8bHMTmmqSH2eZRY9IlCfKIpeKXX3nl0ScGhd/zeNAvIJstiuXm+ELRrDvHN1IJ9mkr7cQAAAgAElEQVSbn5e/AOd8DMBY/M9uxthJAE0AbgGwI77ZfwF4C8C3448/wmM9oXczxmoYYw3xbV/lnE8CAGPsVQA3MMbeAlDFOd8df/wRALcCeDHNMcrS8JQPUQ60mrRgjKHNVJiOonZPAMvr9Blvv3lW6Wa3JfPXpfLzt3th0irw8Ytakj6/qbUG/7VrAMFwNG0pEVm8rC4/9CpZovRna7sRTTVq/P79EdyysWmBVxNCypXNHUB7u3bB7TprdXju8ChmghGoFQsvaQiGo/AEwmWZGQRiHUWL0U1051k7xqb9+NubVqfcpsWghkIqyShYPz3uQTjK8dM/24yb1p+vBOKcI8oBqYSlfO3sjqLZXLOU2q5eOxqrVVDKpegRORicCUYw7vLPyQwCwGXdJiikErzVY8UVs/owEJKJrK60GWPtADYB2AOgLh4oAsA4gLr4n5sADM162XD8sXSPDyd5HGmOUZaEDlHCD3m7SVuQO2J2TzCjO7OCzlodqlQyvC9C6ebpCTfe7LHh7svaU65Z3NRqQDAcpdl0S9iEK4D6KlXi7xIJw62bGvHuGVvW7eIJIeWBcw6bO8PMoEULzoFz9sw+A50z5TlwXmDUKIrSTfS3+4dQo5Hj2tWWlNvIpBJ01GozKhM9PjoNAFjTWDXnccZY2kAQiGWHGQPOTCyddYPRKMfuvkls6zJhRZ1e9MygsAaxrXbuDRWNQoaLO4x4m5rIkBxkHAwyxnQAfgfgf3LO51ylx7OABe0bn+4YjLEvMsb2M8b222xL9wdByAIK6f+2Wg2GJmdE7UYVCEcwPRPKaKyEQCJh2NBSg8PD03kf//fvj0AqYfizS1pTbiM0kaF1g0vXhNuPulnBIADctqkZUQ48d3i0RGdFCCkldyCMQDi64JpBIHYTEsh8XZozPgu3HLuJAkJmsLDdRJ2+IF45PoFbNzYlbRwzW5dFm1GZ6PFRF3RKGVqNmgW3vZBaIUVTjVq0zqXFcNrqxqQ3iEs7TVjZoEe/w4uZoHjr+PpnzRi80I4VZpyxejBSgC70pLxlFAwyxuSIBYKPcc5/H394Il7+ifjvQhujEQCz6/+a44+le7w5yePpjjEH5/wBzvlFnPOLzGZzJl/SotTv8EGjkCbW87WbtAhGoqKOWXDEx0pkEwwCQEetFiNT+a1f5Jzj+cOjuKK7FqY0x2+oVqO+SrVo1w36QxF888nDGCxAp9dyYXUFEusFBd0WHdY3V+Np6ipKSEXKZMagoKNWC8aAvgybyAjr6cq1TNSolWPKF0TsvnhhPHtoFMFIFJ9IsYRjtm6zDoOTPvhD6QOd46PTWN1QBckCWcBUlll0ODOxdGYN/ulsbL3gpV0mrKzXg3OIOisxkTQwzi+1ToyYoK6iJEuZdBNlAB4EcJJz/qNZTz0HQOgI+hkAz856/K54V9FtAKbjpZ4vA7iOMWaIN465DsDL8edcjLFt8WPddcG+kh2jLA1OxhYFC6MW2hIdRcULOs4PnM/uA7OuSgWXP5xXN8j3B6cw4pzBzRsaF9w21sF0cQaDBwedePLAMP7/106X+lQWpWiUw5okMwgAt25swrER15L6cCeEiEMIBi0ZBINCVijTzOBUIjNYnmWiBo0CkSiHy1+4jsy/3T+EtU1VWH1BSWcyXRYdojz99UkkynFyzJ3R/lLptujQZ/cWZF5fIezqc6DVqEGzQYMV9bGv+9SYeJ93/Q4fDBo5qpN8n3eZdWiqUeOtnqVbIbeQh947h+/Gu9AS8WSSGbwcwJ0ArmaMHYr/uhHADwF8kDF2BsC18b8DwAsA+gCcBfALAF8BgHjjmH8EsC/+6/tCM5n4Nr+Mv6YXseYxSHOMsnRhu+COWm3icbEkgsEs1gwCSKz/Gp/253zs5w6NQimT4Lo1Cy/93NRag8FJX+J8FxPh4uS5w6MYpXKMeaZ8QYQiHHVJvsdu3tgIqYTh6YMjSV5JCCln2WQGAaDTrMuiTDSeGdSWa2Yw9nUVqqPosZFpHB914eNbFs4KAnObu6Ryzu7FTCgyb71gNpZZ9AiGoxgqwLw+sUWiHHv6HLi00wQAaDVqoJJLRF03OODwzuskKmCM4coVZvzprH3JjePI1LOHRvCbPYMYzrNSjcy1YDDIOX+Pc8445+s55xvjv17gnDs459dwzpdxzq8VAjse81XOeRfnfB3nfP+sfT3EOe+O/3p41uP7Oedr46/5Wnx9IFIdoxxFohzDkzNonRUM1ulVUMok4mYG3bEPkkzWbMzWUB0PBl25BYPhSBR/PDoWH0C+8J3bTa2xqSOHUmQHI1GOe361Dz9/uzen88lHn80LhVQCjthdKjJXYuB8ksxgrU6J7ctq8eyhUdHmVhJClgZrlsFgl1mLPps3o/cKITNYrg1khCC3ULMGnzowDIVUgls2Lly5A8TWdDKWPhg83zymOufzymaMRamdGHXB5Q/jsu5YMCiVMKyo06NnQrxmeAMOX9L1goIdy83wBiPY3794LpdDkSj+/NcH8P+9cDKvDvnRKMfpifM344l4qG//IjE2PYNgJIr2WXd8JJLYeIn+DLupZcLmye7DWFBXnV9mcHffJOyeYEYlogCwtrEaMgnDwaHkTWQe2zOAN05ZsavXkfT5Quqze9Bt0eHmDY14fO8gpn2FXdS/1Ey4hRmD84NBAPjQ2gaMOGdwbonNjiKE5MfmDkAuZahWZxawdZl1mAlFMroJ6fQFoZBJoE7RpXqpM2oKlxn0hyJ4+uAIrltTl3EDnkyau5wYdUEhlWBZnS7ncxMykGfSBIP+UATvLIIumrv67ACQyAwCwIp6vWjjJQLhCEadM2hNkRkEgMu6ayGXMrx6cvHM9D015saLx8bxwDt9uPJf38JdD+3FK8fHEY5kl70cnPRhJhSBhAHPHBwp6PrZSkPB4CIhZP/aLui41WbSipoZtLkD0CllKcc6pJIoE80xM/jc4RHolDJctTJ1u+rZ1AopVjVUJV03aHX58a8v9QBAUeYuXajP5kWnWYsvbu+ENxjBr/cMFP0cFjNr/Hukrir5DYcuS+yDjBrwEFJZbO4AzDplYl38QjrNsfeKTJrITPmCMGjkGe97qRHKRAvxmffayQlMz4QyahwzW7dFl3bW4PFRF5bX6yCX5n6pWa2Ww6JXps0M/viNM7jrob0l76K5q9eBTrN2zo3QFfVVsHuCooxUGp6aQZQn7yQq0ClluGFtA367b6gk10fJHB2JZYif/PKl+Ktrl6Nn3IUvPnoA2//lTfz49TPwBDJbB9sT7zXw0c3NOD3hwUkR12JWOgoGF4lEMHjB7Jh2kwYDk5mVyWTC7glk3TwGALRKGfQqGSZyyAwGwhG8eGwc162pyyoI3dRag8NDznkLx7//hxMIRKK4qM1Q9Dc7fyiC4SkfOs06rGqowpXLzXh4Z/+CHdUqiVAmmir7LKx3yKdchBCy9Ng8mc0YFHSbMx8vMeULlW0nUeB8mWghZg3+dv8wGqtVuLw7u2HlXWYd+uyepNcnnHMcH53GmobcS0QFy+p0OJuiI2cgHMETe2MjrIdLuK4wFIli77lJXNZlmvP4yno9AIiSHbxw/FgqX7+6G75QBA+805f3McVwbHQaepUMF7UZ8JfXLsPOb1+Nn/+PLeg06/Bvr57Gj17JrBmf8G/4P69dBpmE4dlD1HtALBQMLhIDDi8UMgkaLiitazNp4Q9FE2st8hULBrMrERU0VKswlkMw+HaPDW5/OOMSUcGm1hp4g5E5bZnfPm3DH46M4as7urGptQZ2T6CopQIDDh+iPLaWBQC+dGUn7J4ANUSZZdzlh1GrSDmnyqRVQKuQop8yg4RUlEwHzgvMeiX0SllGwaDTFyzbTqIAoFVIoZBKRJ81OOqcwbtnbLh9S/OCQ+Av1G3RwR+KJs3IjU37MeULYU1T7s1jEscx63DW6kn6Wf/i0XE44jeFc61cEsPRkWl4gxFc2jk3oBaCwVPj+a8b7LfHPjPTZQYBYFmdHh9Z34hHdvXDsQia8B0fmcbaxupE1l4mleCGtfX49ecvwbZOIw4MZLa+sWfcnejUeuVyM549NLpkuswudhQMLhIDDh9aDOp5s3iENYRidRS1e4JZrxcU1FWpMJHDm+1zh0dh1Cqyvuu4qSXWREYoFfWHIvi7Z46hs1aLL+/ohFGrRCAchU/Ega4L6YtflAgDkS/tNGF9czV+8U4fvSnFWV3+tK3jGWNoM2kxuAS6wxFCxJNtMMgYQ2e8icxCyj0zyBiDQSsXfc3gC0fHwDlwe4ZdRGdL11H0xGgs+Mmnk2jiOHV6eIORpDejH9nVj6YaNQDkdLNaLEL/gm2dxjmPm3RK1OqUomUG9UpZomQ4na9f042ZUAQPvFva7GAoEsXJcTfWNSfPEK9rqsbJcXdG3U97JtxYEQ+ub93UhHGXH3vOFb9vRDmiYHCRiI2VmJ/6F2YNitVEptiZQW8gjNdOTuDGdfVZrxtoM2lg0MhxcDDWROYnb5zF4KQP/3TbWihlUph0hVtDkUpf/P9BWMvCGMOXtnehz+7FqycWz4LtUppwBZJ2Ep2tzaQRdWQKIWRxi0Q5Jr0BmPXp3xsu1JXheIlYZrB8g0EgNmtQ7G6i/Q4vajTyOZ3MM5WujPf4qAuMASvrxckMAvODzmMj03h/0Il7ruiAXiXDWAnXDO7qdWBlvR6mJNdXK+v1ooyX6Hf40FaryWhdbLdFj5s3NOKRPw2UdETXmQkPguFoypsC65prEAxHcXqB2cOBcATn7N5EpvXaVXXQKqR4hqqyREHB4CLAOcfgpC/pm3FjjRpyKROlpC4YjsLpC+UcDNZXqWDzBBDKogPUaycn4A9FcfOGpqyPxxjDplYDDg46cdbqxv3v9OKjm5pwWVcsw2iK3x1zFDEY7LV5UF+lglYpSzx2w9p6tBo1+PnbvdTdCsCEy5+yeYygzaTF8OQMZVMJqRAObwBRnn0n6y6LDmPTfnjTNJngnMPpC5XtWAmBUasQPTM46vSjoVqd02sNWgWMWkXSzODx0Wl01GrnfFbmSuhGemFH0Ud3DUAtl+L2Lc05L2MRQyAcwf6BSWzrNCV9fkW9Hqcn3Hl/3qWbMZjM169ZhkC4tGsHj8XHi6xtSp0ZBGKBfTpnrR5EohzL62LBoFohxQ1rG/Di0XHq2SACCgYXAZsnAF8wkjQzKJUwtBg1ojTbcHiFgfO53T2tr1aDc2TVFeu5Q6NoqFbhojZDTsfc1FKDM1YPvvHkEWgUMnz3plWJ5853VyveXa/eeCfR2aQShi9s78ShISf29ScfhVEpwpEo7J5AovtsKm0mDYKRKMamS9v9jRBSHFahsVSWNyM7403VzqWpjnEHwghHeVmXiQKx4EvszOCocwZNNdlla2cT1vNd6PioK6/5grOZtArUaORzjjPtC+HZwyO4dVMjqtVyNFSrSxYMHhp0wh+K4tKu5MHgyno9AuFoXtdxoUgUw1MzC64XnK3LrMMtG5vwyK5+UbqZ5uL4yDS0Cik6UgSxbUYN9CpZouNoKkLmUMgMAsCtmxrhDoTxximreCdcoSgYXAQSnURT/JC3m7SiZAaFgfM5ZwarY6/LdJG20xfEO2ds+MiGxnlrITOVGD4/5MR3PrRyzrmbtLE/2z3FyQxyztFn88wLBgHg41uaYdIqcP/bvUU5l8XK4Q0iylPPGBQI3+s0XoKQypDrjFth6Hi6UlFnvKlKOTeQAWKzBsXODI5N554ZBGL/Pxf+3zh9QYw4Z7C6If8SUSBWJbTMMrej6JMHhuAPRXHntnYAuTe4E8OuPgcYA7Z1pAoGY/8O+awbHHXOIBzlWWUGAeAvru5GMBwt2bXJ0ZFprGmsTnkNKJEwrG2sXjAYPDXuhkIqQfusjvuXddXCrFdSqagIKBhcBM4HgynunJhimcF8SxDtOX4YC+qrYh8YmQ6ef/HYOEIRnnUX0dnWt1RDwoAtbQZ88oIZSMYirxm0e4Jw+8PoMs8foKuSS/GZy9rx+inrgrXv5WwiMWNwoWBQaIxEwSAhlUDITKRrLpVMm0kDCUPaeXbCuIVKyAw6Z0Kildd7A2FMz4TQWJN7MNht0WHKF5rTtVLM5jGzj3Mm3lE0GuV4dPcALmozYHX8GA3Vatg9gYwakYhtV68DaxqrUJ3iZsSyOh0kDDiZRzAofFYmqyBLp9Osw62bmvDrPQOwuosbLEeiHCfGXAt2lF3XXI1TY+mbyPSMu9Fp1s7pPSGVMNy8oRFv9ljhLMDIlUpCweAiMODwQiphiY5YF2o3aeELRhJ3VnMlfBhnW6YjqK+OD57PMBh87tAoOmu1eX0gVKnkePDurfjZpzfPu7OkVUihkEmKFgwmOokmCQYB4M5tbWAs1p2tUgkzBhdaM9hQpYJCJsHAJDWRIaQSCJ8/2VamKGVStBg16E1TJpoIBrXlnhmUg3Ngekac8RJCmX5jHmWiwpil2SWcxwsSDOrh9IXg8Abx9hkbBhw+3HlpW+L5hvj1SS4dz/PhD0VwcNCJS1OsFwRiN4vbTVr0pBkv4Q2E8eiu/pQB0WC8xDSbMlHB169ehlCE4/63i7t2sM/mgT8UTawLTGVdUzWCkfRNZE6Pu+eUiApu29SEUITjhaPjeZ9vJaNgcBEYcPjQWBO7OE5GKKkbyDOLIgSTuZaJGjRyKGSSjMpEJ1x+7D7nwEc2NGbU+Sqdq1ZYkmaaGGOo1SrgKFKZaKKTaG3yO3MGrQJ1ehWGJit3HVymmUGJhKHFoMaAnTKDhFQCmzsAvVIGtSL5/NF0usy6tJlBp08oEy3/zCAgXjXMqDP2fp1PmWhivIRtdjA4jfoqVdLOmnkfx+rBo7sGUKtT4kNrGxLPCzeri10qemBgCsFINNHYLpWVDfq0ZaI/f7sXf/fscfx690DS5/sdPqjl0pwqu9prtbhtUxN+vXsA1iIGy0LpZ6rmMQIhWExVKjo9E8LotB8rknSmXdNYhS6zFs/QAPq8UDC4CAykGCshSMwazHO8hN0TgFYhzenDGIgFX/VVqowyg2+esoJz4MPrGxbcNh9GnaJoDWR6rR4oZZKUGVwAaDKoMeKs3ADH6vJDws53ek2n3aTFAM0aJKQi2DwBmBeoGEily6zFObsX0RTlkUJm0FjmwaDQNG1KpJK4UWf+mcHGajXUcil6reevT2LNY8TLCgLAsngw+OYpK97sseKOi1vm3EAXvoZiNyXb1euAVMKwtcOYdrsVdVUYmPTBF5zfFdftD+FXf+oHAPzsrbNJt4l1Es1srEQyf3F1N8JRjvuL2Fn02IgLKrkk5Q10QZspfRMZIWO4on5+VRZjDLdtasLec5MYnqLriVxRMLgI9Dt8KZvHALEAQypheWcG7Z4ganNcLyior84sGDxj9UAllyRdXycmo1ZZvDJRuxcdtdq0zXCaDWoMT1VyZjA2x1KWwUzJVpHWwhJCFj+bO5DzEoVOsw6BcBQjKebITflCYAyoUpd3maiwJlK0zOC0H4wtXMmRjkTC0GnWJjKDM8EIem0e0YPBhmoVtAopHt7ZDwlj+LNLWuc8X19d/MHznHO8dnICG1tqoFtghMaKej04B05PzM9wP7p7AG5/GN+/ZQ3sniAe3tk/b5uFrhMX0mbSYvuyWrx7xpbzPrJ1bHQaqxqqFrweYIxhXVM1jg4nDwaFjGqyzCAA3LIxNrrsucOjeZxtZaNgsMScviCmZ0JoM6a+cyKXStBsUOc9pNuex4exoL5KlVGZaJ/Ng45aXc5dRDNl0iqK1k20z+ZZMLhtqlFjfNqPcBazGMvJuMuf8YVFm1EDXzBStP+/xerbTx3B43sHS30ahBSU3R3IuXlZV5rh5kDsc7RaLYe0wJ83pZbIDIpWJjoDi145pylHLrot58t4T427EOXAapHGSggYY+i26BCMRPHBVXXzSlt1Shn0SlnGPQ3EcGzEhVPjbty6aeE5ysJ6twvXDc4EI3jw3XO4crkZd13ajqtXWnD/271z1oVGohyDDl/WzWMutLxej3N2b1GuT6JRjhOjrgXXCwrWNVWjZzx5E5mecTf0Shkaq5NfW7QYNbiozYDfvz+SsnqApEfBYIktNFZC0GbSirJmMNf1goKG6lgwuFA2p88+fx5fIRi1iqJkBgPhCIamZhb8mpoNGoSjHBMlmulTapkMnBe0xUtHBiu4iQznHE8fGsHDO8+V+lQIKShrHsGg8L7bZ0v+XjHlC5V9J1FgVmZQpDLRsemZvDqJCrrNOow4Z+ANhAvSPEYgjBm5a1bjmNkaalSJ0tdiePLAEBQyCW5ev3DH9FajBmq5FKcuWDf43/sG4fAG8dWrugEAf33dcrj8Yfzy3fPlnOMuP4KRaNZjJS7UbdYhFOEYLMLyjH6HF55AGGszvCmwrjl1E5mecTeW1+vTlsj+j21tOGv14Kn3h3M+50pGwWCJCWum2heoqW43adCfZ0md3RPIeeC8oK5KhWA4iilf6m5mgXAEQ5M+dC3wNYnBpFNgJhTBTDBS0OMMOnyIRPmCwWCTIfbBOlKhpaJWd2DBGYOCNmPsBkh/BTeRcXiDCIajOD3hwRCtnyRlyhcMwxMI5xwMmrQKVKvlaTOD5T5jEADUCinUcqlomcExpx+NeTSPEQjNXc7ZvTg+6kK1Wo5mQ/77vdDHNjfj05e0phzuXl+tzngOcr78oQiePTSK69fUpxwpMZtEwrC8fm4TmWA4ivvf6cPF7UZcHF9zuKaxGjetb8BD751LjOsYsOfeSXS22U14Cu2YcFNggbESAiGDeOSCUlHOOXom3FiRpJPobDdvaMRFbQb88MVTNGYiBxQMlpjwQ95qXDgz6PaH0wZh6YQiUTh9IVEyg0D6RdqDDh+iPPUIBjEJjUocBW4i02sTOomm/5qED8BKXMgcCEcw6Q2iTp9ZMNhsiM0Pq+QmMrPvYr/ZYy3hmRBSOHZ37OIs12UKjDF0mbUpg8EpX7AiMoOAUA2T/2gJzjlGnDN5NY8RdM0KMk6MTmN1Q1XeXcSTuby7Fj+4bV3KfTcWcfD8aycnMD0Twse3NGf8mpV1epwadydu6j99cBhj03589eruOdv91bXLMROK4L63YoPihRmDbXneYE/W+bVQjo9MQyGVYHld+iBO0GrUoCpJE5kJVwDTM6GkYyVmk0gY/vHWtZieCeHeV3pyPu9KRcFgiQ1M+lBfpYJKnr7Dp3BHKNd1g8L4hXyDwboMZvkkAqeilInGvp5Cl4r22YUZgwtkBmsqNzMozBHLtExUIZOgsUaNgRy/p4+PTmPHv765pNfbCa3dFVIJXj9JwSApTzZP7Ps818wgELu5mLJM1BuqiMwgEJulKEY30SlfCIFwNK+xEoJ2kxZSCcOpcTdOjbsLUiKaifpqVdEGzz+5fxgN1Spc3p1+pMRsK+r1mPQGYfMEEIly3PdWL9Y1VWP7srn76Lbo8NHNzXhk9wDGp/0YcHihkEnQkEejHwDQq+Sor1IVJTN4dGQaKxv0Ga9HZYxhXXM1jo445zx+Kr7GMpOgclVDFe66tA2P7RnEkWHngtuT8ygYLLEBhxetGaT+hVrxXC+cEwPn8+wm2pDBLB8hcOooQpmoMZEZLHAwaPPColdCr0p/waGSS1GrU1ZkR9HEwPkUi7yTac9xLeyuXgc+df9u9Dt8eOi9c0u2I6mQYb9xXT129TmSthQnZKkTPn8sGVYNJNNl1sHqDuDNU/NvmjgrKDNo0IizTl6MsRIChUyCNqMGr5wYRyAczbg0UGwN1SpwXvjB8+PTfrx7xoaPbW7OqmnRygahiYwbfzw6hn6HD1+9qitppvMvr1kGzjl+/MYZ9Du8aDVqRGnIN7vZT6FwznFsZBprsmwitDbeRCYQPr/sR1hDuFBmUPBXH1yOWp0Sf/fMMWomkwUKBkus3+HLqA68xagGY7mvr7LnOXBeYNYpIWHARLpgMMPASQyJMtECd6Tss3kyznQ2G9QYrsBZg8Iw20zLRIHz4yWy8dKxcXzm4b2wVCnxlR1dOGP1zFuUv1SMOmeglEnwsS3NCIaj2HnWUepTIkR0YtyMvHljIzrNWnz2V/vwlccOJLpGBsNReIMRGCokM2jUKkTJDJ4PBsVZ2zc7c5ttECAWIctZ6HWDv3t/GFEOfCyLElEAWBkfjXByzIWfvXkW3RYdrltdn3TbFqMGn9raiv/eN4T3B515rxcUdFt06LUVdqTT8NQMXP5wxp1EBeubahCKcJwePx+snhp3o65KiZoMb/ZUqeT4mxtX4fDwNJ7YN5TV8SsZBYMl5AuGYXMHMuoQpZRJ0Vide0mdLR4M5jtaQiaVoFanTPtmGxsrUfisIBBrIAOgoIPnOefotXkzXgPZZFBXZJmocDc20zJRIFb+POULzWmjnc4TewfxlccOYHVDFZ768mX4/Ac6IZMwPHtoac4XGp32o7FGjUs6TNAqpHgjSdYjX5zznN83CBGDzR2AhJ2v5MhFU40aL/7lB/CN65bj9ZNWXPNvb+HB984l1otnerG41ImVGRSqe8QoEwXOr0dTyhYeMl4oQuVSITuKcs7x1IFhbG03ZH2dY9QqYNYr8V9/GsCpcTe+sqMrbbbva1d3QyphGV8nZqLLooMnEC5owHwsvu5vbZYZ4kQTmVmloj3j7pTzBVO5ZWMjLukw4l9ePlW0OdRLHQWDJZTpWAlBe60msZA4W4nMYJ7dRIHYG276MtHMA6d86ZQyKKSSgpaJTnpjsyAXmjEoaDaoMer0V1yJwoQ7ALmUZVWu1Rqfrzm4wPc15xw/eeMMvvP7o/jAMjN+84VLYNAqYNQq8IFltXj+8OiS/Pcec86goVoFhUyCDywz481TVtHv2L50bBxX3fsWdSslJWN1B2DSKfOeA6iUSfG1q5fh1b+6Els7jPjHP5zA7fftAoCKKRM1ahVw+8MI5TkrbnR6BgqpJFFdky8hGFyZwZDxQqmPB4OFnCMg9TEAACAASURBVDV4YGAK5+xefHxLS06vX1mvx4hzBs0GNW7ekH4kRV2VCndf1g4g8+vEhXSbC99R9OjINGQSlnHzGEGLUY1qtTwRTEaiHGesHqyoy+56krFYMxmPP4x/eelUVq+tVBQMlpAQDGY6SDQ2azC3O/x2dxBahRQahSyn189WV6VKWZM/6Q3C6QuhqwjNY4DYD71Rq8BkActE++zZNcRprlEjGIkmsrGVYsLlh0WvympdQ3tt7ANuIM2sQc45vv+HE7j3ldO4dWMjfvmZi+Z8H9+8sREjzhm8PziV+8mXyKjTn7gzf/UqC8ZdfpwYcy3wquwcGnIiymNt3wkpBZs7kHdVymytJg0evnsr7vv0ZkTiN4HyXQ+/VBiEwfN5loqOOv1oqMnu/TodIRgsVfMYINYgRa+UFbSj6FMHhqGWS3Hj+oacXi+sffvylV0ZBc1fvrILN66rx5XLzTkd70LFGC9xbNSFZXX6BRsjXogxhnVN1YmOov0OL4LhaNaZQSDWcOaeKzrwxL6hJXltUGwUDJaQENhl0kAGmFVSl8N4CZsngFqRPizTZQb7bJl13RRToQfPC19T1wJjJQTNhtj/Z6WNl7C6ArBkUSIKnB+pkq6JzNGRaTy8sx93bmvDjz6xcV53sg+urodKLllypaLhSBRWtx9N8QYOO1bEPuzfELmraE98AX66cTCEFJLNk/vA+VQYY/jQuga89tdX4hd3XYSt7QZR979YGeMZ0Kk8x0sIVQliWWbRoa5Kie3LxAlaclVfrSrYe50vGMYfjozhxnUN0Clzu7H+4fWN+MiGRtye4XpDg1aBn316i2hlorW62MzOMwUKBjnnOD4yjXU5NhGa3URGmMmYafOYC339mmWoq4o1k4kswcqhYqJgsIQGJ30waOSoyrDRyjJL7Afi+Nj0AlvOZ3cH8m4eI6irVsHtD8MbmN/5sC/DeXxiMukUBS0T7bXF2jo3ZThE9/yswcq6+J5w+bNqHgMAGoUMFr0ybcb7tRMTkDDgf31wedK72DqlDNeuqsMfj47lXTpVTBPuAKIcaIg3cLDoVdjQXI03RJ43KHygCmMsCCk2m1v8YFCgU8rwwdV1BZlrtxgZtLHrhXxvgI7F1yuLRauUYc93r8UNa5M3RCmW+mpVwcpEXzo2Dk8gjI9flF3jmNk2tNTgx3dsyjprJhbGGLotuoJlBsem/XB4g1ibZfMYwfrmaoQiHD3jbvSMuyFh57OZ2dIpZfjW9StxfNSFPeeoOVs6FAyWkNMXgimLAG1LuwESBuzpm8z6WHZPALU6cdYGCHcTky1A7rV7IJeyREBUDEatoqBD5/tsHnTE5yhloqlCg8Fxlz+r5jGCNlP6tbCvnrTiojZjojwqmVs2NmHSG8R7Z+1ZH79UhCYHs+/OX7XSgkNDTjhEKjGe9oUSWXzKDJJSiEY57AXIDFYqowhlopEox7jLj0aRmscsJo3VaowWKBh8cv8wWo0aXNJhLMj+i6XbXLjxEsJ6v1w7yiaayAxPo2fcjXaTNq/A+UPr6qGWS/HHI2M576MSUDBYQi5/KKtSgyqVHKsbq3K6wxELBkXKDMYHnyYbL9Fn86LNpC3qAnKTVlnYNYM2b1ZlrxqFDEatoqKCQV8wDLc/DEsOQ3FbjdqUDWSGp3w4OebCtastafexfXktqlQyPL+ESkWFYLBp1t35a1bWgXPgrR6bKMc4bY1lBRlLPxuUkEKZngkhFOGwUDAoCqFMNJ/MoNXtRyTK0SDCjMHFplCD54cmfdjV58DtW5qXfBa626KDwxvEVAEqqo6NuiBhwOqG3MpEmw1q1GhiTWR6JtxYkWOJqECjkOGaVRa8dGwc4SVUOVRsFAyWkNsfhl6VXd35JR0mHBx0wh+KLLxxXCgSxZQvJNqdWaHhRbKLyz6bp+htpU06BbzBSFb/JpkKRaIYnPRlvQayqUaNkQK2t15srMLA+RyCwXaTBuMuf9L/v9fj6+euXVWXdh9KmRQ3rmvAy8fHMRMU//ugEBKt3WcFg2saq2DRK0UbMSHMX9zQXFNR349k8UiMNaJgUBQ1iTWDuV/ICyXjYpaJLhaNNbHB81a3uDe/njowDMayny24GCWayNjEzw4eG5lGt0UHtSK3bJ7QRGZf/yT6Hd6sO5Im8+H1jXB4g9jVR6WiqVAwWEJufyjj9YKCSzqMCISjODzkXHjjOGEgu1iZwfqq5GWi4UTgVLz1gsD5splCNJEZnPQhHOVZr4FsNqgzaiDzveeO469/ezjX01s0cpkxKBAaKA0mGX3w2skJdJq1GX1P3byxEd5gBK+fmsj6HEph1DkDvUo2pzpAImG4aoUF75y2ibL+sWfcBb1Shs2tBow5/QUdNExIMomB8yJ2E61kCpkEeqUMk3mUiSYGzpdhmWh9mpvVueKc45lDI7isyzSnkmOpKmRH0WMj01ibY4moYG1TNXptXnCee/OY2XasMEOryKxU1OUP4bMP78WJUXG7ei92FAyWkCeQfWbw4g4jGAP2nMt83WBixqBIH8ZqhRTVavm8RdpDUzMIRXhRO4kChQ0Ghbr6riwXMDfVxAbPp7v45pzj+cOj+N37w3hjiQQwqUy488kMxr5fLuwo6vaHsLvPsWBWUHBJhwl1Vcol01V01Jl8zc7VqyxwB8LY15/92uAL9Yy7sbxej8YaFWZCEUzP5NeBkJBsCRkaygyKx6BV5JUZFNYPl2OZqLAGW8xgsNfmwYDDhxvW5jZOYrFpqlFDJZeIHgxaXX5Y3YGcm8cI1s96fb5logCgkkvxwdV1eOn4+II3WR/bPYg3e2x494w4SzWWCgoGS8jtD2fdnrhGo8DK+uzWDZ4v0xFvKG99lWpeZjAxgqHIwaAwNNdegLl+2c4YFDQb1AiEo7CnWcs4Gu+6xRjwvedOFKTMtVisQmYwy26iwPlhuhd2FH3ntB2hCM84GJRKGD68vhFv99hyGr9SbGPTM2hMcjF2RXctFFIJ3syzVJTzWEe2FfX6xN1s6ihKii2RGaRgUDQGrQKTebzHjTr90CtlWVcmLQWJBnciNswSlitcvTL92vWlQiJh6KwVv6Po+4OxirX1zflnBgFAKZOINlLjpvWNcPpC2JmmyVwgHMHDO88BQMUtq6BgsETCkSh8wQj0ObwZX9JhxIGBqYwXSNvd4mYGgeTtm4Wh1sUcKwEg0ZG1EJnBPpsHtTpl1h+awqzBdG8oR4djb5zfuG4FBid9/4+9Ow+TrC7vBf49te9V3VW978tsPSvMMMzGJgooEDSiAUURUYhiNOYmN5s3qDc+yc1N1CTXoKIGNAoqRgTEQfZtmGFmYLaevXumu6v37tq79qpz/zh1qqunq7q2c2o59X6ehweorq4+DDPd9Z73/b1fPPzacOEXWmbTniA0ShlM2vyzlyw6Lvfo0s7gC6emUadT4vJOS86vdduWVoRjcewdrPzNYROuwJLzgjy9WoEre+vxYpHF4JQnCE8wirXNxuTXoY2ipNRmvSFolLKCc9nIcvU6ZZFnBgOS7AoCXPC8Qa0Q9MbXS6dnsDblppoUiBEvsX94HhqlDJvac/+ZnU57nRZ1OiVWNRly3uKezdWrbTBqFHhmhVHR3xyZwIw3BLVChvEaWgAIUDFYNr5ERl++Y6IAsKO3HsFIHMfHczs3OCvwmCiQvjM4NLuAOp1yxQgAMYg5JprvJlHeYrxE5nODx+xuKGQM7t3Tgw9sbMZ3XjlftUH1054QmkyagrescfESi53BaCyOl8/M4Lo1jXltpt3YZkaPTV/xo6KBcAxOfwStGUKf37O2EcOzC7g4lzl/MRt+ecyaJmPy60zU2N1OUn58xmC1b2CsJHV6VVE/74TOGKw0QmYNuv0RHBpx4vp10ugK8vobDRh3BeAPL8+LLtSBCw5s7aqDSlFcacEwDB64rh+f2tUj0JVxS+ZuGGjGc4NTCEWXT2HF4ywefm0Y61pM2NNvo84gKQ1vsPBicHuPFQCwP8e8wTlvGDqVHHoB78zy65tT56+HZ30lXx4DACaNAko5I0rw/NCsr6CxV74YXOnu0vFxN9Y0G6FRyvG3Nw+AAYP//czJFV/36aMT+OpTgxW3CKSQwPlUXVb9kgUyh0eccPkjeO9AbiOiPIZh8AebW/HW8HxyqU0l4jt0md6Q8eNIxWwV5cPm1zQbYTOooZQzouVvEZLJrC+ExiK+N5Dl6nWqonIGJ1yB5FZwKWoxawSbgnj13CxicVYyI6I8fonM8GzhNxxTufxhnJ7yYEfi/WmxPnNVL24XeHPrLZta4A1G8ca55aOir5ydwbkZH+67ugftdVrqDJLSKKYYrNersLrJkPMSGSEzBnnNZn598+I5veG5hZLHSgBcAVCnUwmeNehcCMPpj6CvgALXpFHCpFFkzBpkWRbHx93J2fo2ixZfeE8/nhucxqtnlx9cjsdZ/NPe0/iTx97FI/su4sy0N+9rEtOMN4TGAjaJ8rrqdbA7A8mbCy+cmoZKLsPVqxvyfq0/2NIKluUK50rFjzBlekPWZdWjr0Ff1CH2s1NeNJnUsOhUkMkYNJk0mKyxu52kvCZcAbwz4kJ/GW4SSlmdXgV/gXFKwUgM8wvhjFMJUsAVg8Lc+HopcVxhS0edIK9XKVYJvFH0wAUHWBbY0SdMMSiG3f02mLXKtKOi33t1GK1mDW7Z1Iq2Oi28oSg8wcrfPSAUKgbLxJv4TVbImUGA25x4+KIjp/XzXDEo7Ohm8yWHtL3BCGa9obJ0BgGuQBa6Mzg8x32TLHQ7anudLuPYp90ZgMsfwca2xdn6z1zVgx6bHl99anDJGIMvFMX9/3UY//HKEG7exG0zS3dnq1xYluU6gwVsEuV1WXWIxdnkGOMLp2awo89a0DmjvgYDNreb8fODYxXXQeVNJDuDmX/N1raYcHG+8LHh01NerGleDP5ttWipM0hK6h9+dxpxlsUX3tNf7kuRlDo+a7CA7iA/PinlMdEWsxazl0wuFSIWZ/HK2Vlct6ZRsLNrlaLLqodcxuDcjDA3lg8MO6BWyIpeHiMmlUKGG9c34fmT00tupBwdc+HABQc+vacHSrkMbZbEzoca6g5SMVgmxXQGAeDK3noshGM4Me7O+lxROoN81qCb6wzyowaljpXgWQ0qzC8Iu0304hz3Rry7wG1WbXWZg+eP2bn/b6nfONUKOR68dQAX5hbwwze4jVZjDj9uf2gfXjw1ja/eOoD/d+dl6G3Qr7gRq9R8oSj84VhBGYM8fmPYxXk/hmZ9uDC3gPcWcUbjEzu7cW7GhzfPV2bI7GSiM9i8wt15flQlHs+/oI3G4jg/61uS0dQq4OgUIdkcGJ7H00cn8MfX9KGjXlfuy5GUej13E7mQc4P8DTepLpABuM4gy6LoowLvjnLHFd4jsfOCAFcYdVl1gnUG9w/PY2tXHdSKwsLmS+WWTa3whaJLJrC+/9owjBoF7tjeCSC3Yz5SQ8VgmSwukCmsM7i9px5AbnmD/AF+IS1m+XB/WPguWqljJXhWvVrwBTJjTj8YZvEbQ7644Pn0WYPHxl1QyWVY3bQ0Q+faNY24YaAJ//7ieTx1dAIf/M6bGHcF8Mg92/Gp3T1gGAZ7+m04cMGR8zZZsS0GzhfXGQSA0fkFvHCSy1y8PsdIiXRu3dwCm0GFR/ZdKPg1xDTpDsBmUK/4g7O9TodwLJ5cAJWPi/MLCEfjS35/tVi0mHIHCyouCclHNBbHg08Nos2ixR9f01fuy5GcZGdwIf8xNn46QIqB87zFyaXiisEXT89ALmNw1ar8jytUg/4GYTaKuv0RnJryYEdv5Y6I8nb1WVGnWxwVHZ3343cnJvHxK7uSk0j81thaWiJDxWCZ8GOiha7bbjRq0Nugx4HhlTsfkVgcTn9E8M6gWauEWiFLFgLDswuQyxh01penGKzXC39mcMwRQJNRU/CdrjaLFv5wDK40eVDH7W6sazGm3br1v24ZQJxl8cXH3oVZq8STD+xecnZuV58N/nAMR+25bZMV27SHK1aKWRLRaFRDo5Th4rwfL5yaxkCLqag13mqFHB/b3okXT88syy+sBOOu9BmDqdpz2EibyZkp7gf8pZ3BSIwVJY+TkFSPvT2K01NefOXmddCqKrtTUI2SG7QLGBPlzw2vNJVQ7VqTUTrFFYMvn57BFd11MGull8cIcEtkRub9RY/Tvn0xcV6wCopBhVyGmza04MVT0wiEY/jhG8OQyxjcs7s7+RybQcXFS1AxSMTmKXJMFOD+4B266ERshTv9fLfMJnBnkGGYJYe0h2cX0FGnLXqlcKGsehW8oWjalcGFGnP60VFfeEHCZw1eukQmHueWx/DBqpfqqNfha3+wHh/c0opff373sgU2O3utkDGVc25wsTNY+O8xhmHQVa/HkTEXDo84ixoR5d21owtyhsGj+0aKfi2hTbqDWe/MdySLwfx/IJ2Z8kDGLG6MAxaX1dC5QSIm50IY//z7s9jVZ8VNG5rLfTmSxMc3FZI1OOEOwGZQQaOUbpHefMnkUiHsTj9OT3lx/drCJ1QqXX+jAdE4W/QN0/3D81ArZNjcUbnnBVPduqkF/nAM//2uHb84ZMcHt7QtmWxiGAZtltraKErFYJl4g1Go5LKiviFf2VMPbyiKkxOejM+ZTWz7bBB4gQzAjQXyhcBQmWIlePWGwsdmMrE7/OioK/ysC9/ZGXct7eyMOPzwBqMrHrS+Y3snvn3HZTDrlt+RNOuU2NhuqZhzg8nOYBFjogA3Knp4xIk4i7wjJdJpNGlw86YW/PLQWHIsuxKwLIvJHEKf+UPshRSDp6e86Lbpl3x/4b8ebRQlYvqX58/AF4riwVvXU7agSCzaYs4MSjtjEACMagX0KnlRncGXE7E+UjwvyOsXaKPo/uF5XN5Z+ecFedt76mEzqPD1p08iEInhvqt7lz2nrU4Lew39rKRisEx8oUhRXUFgsSV/4ELmUVExAud5LWYueD4eZ3FxvjyxEjxr4k6pUEtkwtE4Jj1BtBex+KA9Q2fnWGK8M3WTaL729Fvx7pgrOW6cyYQrgD/8jzdFHZWc9gRhUCsKHnnm8ecGm0xqbGgV5g7jp3Z1wxuK4leH7YK8nhA8gSgWwrGsnUGtSg6bQVXYmOi0F2suOY/Kj91SZ5CIZXDCjZ8dGMUndnRhTbMx+yeQgijkMpi1yoKKwUl3IHnmX6oYhkGLRZtc1FWIF0/PoNuqK+v7GrHxU0fFFIPuQAQnJ6vjvCBPIZfh/RtaEIrG8Z61jVjVtPx7VauZOoOkBLzBKAxFFoNNJg26rboVw+fn+M6gwGOiANBk1mDaHcK4K4BgJF7WzqA1UezOC3RucMIVAMsCnUUUg2atEgb18qzBE+NuqBUyrGoq/Ndrd78NsTiLt7MsEPrJ/hG8M+rCayKOlE57gkVlDPL4jaLXr2uCTKA13pd11mFLhwWP7rtYMYtT+FiJXLb5tdXp8u4M+sNRjDr8y96Mm7VKaJXy5DZBQoTEsiy++tQgLDoVvvy+1eW+HMlrtWgxVsCNoglXUNKB87wWswaTBW4T9Yej2Dc0j+vWNkq6u61XK9Bq1hRVDB5M5Ate2Vsv4JWJ78Nb26FSyPDAdekXXLXVaTHnCxWU5VmNqBgsE28wWnRnEODyBg9edGR8ozuXKI7E6Aw2mzQIx+I4POIEAPSU8Q5a8kC9QBtFRx3cD9mOAjeJAotz58s7g24MtJqglBf+x+/yzjpolDK8scKoaDgaxy8PjQEAzokYUj/uCiTPRxaDL15uWi/sOaN7dndjeG4BrxYR4C6kyWTGYPbfW/xG2nycm/aBZZcujwH4u+UUL0HE8dTRCRy86MT/vHGNZBduVJL+RgOGZvN7E+8JRuALRYtazlUtWsyaZA5yvvadn0c4Gpf0eUFeX6MB5/P8fZRq//A8VAoZtnQUPulUDls6LBj82o3Y2pW+iE1O0tTIzVMqBsvEG4zAqC7+B+aVvfVwB7i1vunM+ULQKuXQFznClw4/arJviCtIyhUrAaSOiQpTDPJ3XIvNx+LezC/evY3HWZwYd2NThuUxudIo5biiu37Fc4MvnJrGnC8MjVKGsyIWg3ZnIDkSW4xtXXX43ZeuWrI5VQjv39CCRqMaj7x5MeNznAthjBYR8J6PcVfuq90LyRo8M8X9v04NnOe1mrWYKGJ0ipB0WJbFP+09g41tZnxkW0e5L6cm9DXoYXcG8upc8GOTUs4Y5DWbtZjxFhY8/+LpGehV8mSEl5T1NxowNLNQ8OTMgQsOXN5pqcqFRCvdkE9mDVIxSMQkWGeQPzeYYVR0zheCzSj88hhgMVfuzfPzMKgVooyi5sqkUUIuY+AQ6MzgmCMApZwpKjsPWB48Pzy3gIVwLOMm0Xzs7rfh7LQPMxlGYX52YBRtFi1u3dSKs9PCBMteaiEUhWMhLEgxyDAM1rUsL2CKpVLIcNeOLrx6dnbZOAzLsvj1u3Zc9y+v4CPf2yf4105n0hWAQsbk9OelkKzB01NeaJSytCPOLRQ8T0Qw7gpg3BXAR7e1Qy7QiDdZWV+DASzLbfLOVTJwvkbGRFkWmPHm956AZVm8fHoGV69uKNt29FLqbzQgEIkljy/kwx2IYHDCjSt7que8YK6SWYM1cm5Q+r/TK5QQZwYB7jdse5024xKZWW9IlBFRYPEHyrgrgN4GfVln62UyBnU6lWBjomNOP9os2qLf2LTXaeENRuEOcItejo9zy2M2tRc/UrGn3wYA2De0/P/9xbkFvHF+Dn90RQfWtpjgWAiLki/HF7pCjImK6WNXdkIll+HHb11MPjbpDuDTjxzEl39+FOFoHNOe0pwPmHQH0WTS5PR7q5CswbPTXqxqNKZ9/VZL4XfLCcnk6JgbALC5ykbFqhm/CTKfUVH+DX+tjIkCyHtU9OSkB1OeIK5bK90toqn6i1gic+iiA/EqyRfMV7NZAxlDY6JEZN5gBCaNMOcqruyx4u0L6c8NzvlCaBCpGLQZVODfb1bCxi2rXiXYAhm7w1/0iCiwWCTxd5eO2d3QKuWCjNQOtJhg0SnTnht87OAo5DIGf3RFB1YnFtWIMSrKFylCdAbFZDOocevmVjxx2A63P4KfHRjFDd98DW8Nz+PvbhnA3968DoBwY8YrySVwnldI1uDpKW/GTY6tFu5u+RRtFCUCOmp3QSWXYW2a0WQijh6bHgyT35v4iTymEqpdMlc1z7H4l05xkRLXramRYrCIeIkDFxxQKWS4rFN6N4GUchmaTZqaiZegYrAMWJaFLyTMmCjAnRt0+iP4x72n8cLJ6WT2H8AtkBE6cJ6nkMvQaOTe1JZzkyjPalAJeGZQmKUo/B1Yvmg6bndjfasJiiKWx/BkMga7+2x48/wcWHbxRkA4GscTh+y4fm0jmkwarE6sTT47JUYxyHcGK7sYBLhFMv5wDDf962v4m18fx4Y2M57706vx6T09yd/Hc3mOFBWCW+2e269XvlmD874Q5nyhZctjePzXLSZ/i5BLHRlzYaDVVBNjdZVCo5Sjo06XV2dw0pX7VEK1a052BvP7Xvfi6Rls7rDURMEMcJvY63TKgorB/cPz2NJRnecFc9FWVzvxEsJvFSFZ+cMxxFkIVgxet6YRAy0m/OD1YXz/tWEAXJTEhlYTnP6waGOiABcvMeUJoreMy2N49XoVBifSL9LJB38OrqO++AKnPeUQcizOYnDCgzu2C7dgYXe/Db89PonhuYVkZtDvT05hfiGMO6/sBAA0GtUwa5U4W2SwbDp2ZwBqhUy07rOQNrSZsbPXiuPjbnzjQxtw5xWdyQgL/ge/GKO0qeJxFlPuIFo35vZ7K9+swTOJ7u/qNLlJAJIdSTo3SIQSjcVx3O7GH11Bi2NKra9Bn19n0J37VEK1M2nyD56f8QZx1O7Cl99bW9Eo/Y2GvItBTzCCE+NufOE9q0S6qvJrs2hxKLEtX+qoGCwDbzAKADAIsE0U4N7IPvulq+APR3FywoPj424cH3fjxLgbChmD9a3ije60mDQ4CqDXVgGdQb0K8wK8mU9uEhWgM1ivV0GjlMHuDGBo1odAJIZN7cIEqgPA7n5uVv/N83PJYpBfHHP1Km4rJ8MwWN1kECVewu70o61OWzVZTA/fvQ2xOLts9b3NwC1ZErsYnPOFEImxeb0hyydrkN8kmq0zSBtFiVDOJ76vbe4Q7vsayU1/owH7huYRi7M5dfsmXMGqiwAoFMMwaM5zYdbzJ6fBssAN66UfKZFqoMWEXxyywx+OQqfKrSw4fNGZOC8o3Y2rbXVaPHNsMuc/X9WMisEy8Aa5ZSJCdQZ5OpUC27rrsa178Q9nPM4KFuCdTrNZA4Ypb8Ygr16vhicYRSQWLyrDb8zB/fAQ4swgwzBor9PB7vTjmJ1bsrBRgE2ivM56HdrrtHjj3Bw+ubMbF+YWsG9oHn9+w+ol37xWNRnxzNEJsCwraOFmF2ictlQMGSJW+O75rMhjohOJu9T5bPNrr9PiZI4d7zNTXtTplBlHnPRqBUwaBXUGiWCO8ctjBFiKRfLT12BAKBrHuDOATuvK34fznUqQglaLNq/O4HOD0+i26rAmw2SFVN20oQWPvjWCl07P4JZNrTl9zv7heajkMlzeWSfy1ZVPq0WLaJzFtCeYUy5wNaMB/zLwJDqDQheD6YhZCALA3bu68c2PboZWVf6Z8fpEd8dZ5LnBMQEC51O1Wbh4ieN2F/QqOXoE7KIyDIM9/Ta8NTyPaCyOx94ehULG4KOXZH2taTLCE4zmvWY7G6EyBstNo5TDqFZgTqAFRJlMuvjA+dw7g/lkDfLLY1Yq+Fst2prZkEbEd8TuglGjQLe1/DcEa00+G0XnF8IIx+I1MyYKAM2m3DuD7kAE+87P4cb1zVUz6SKU7T31aDCq8fTRiZw/R+rnBYGUeIka+HlJxWAZ+EKlKwbF1mPT40OXtZf7MgAANj0/6lfcG/pRhx961W3EhAAAIABJREFUlRz1emHyGbng+QCOjbuxvs0s+LjB7n4bvMEo3hl14YnDdrx3XRMaL8lHXCXCRlEhMwYrgc2ozivPrxD8D5VcAud5uWYNxuMszk17s97V5opBGhMlwjg65sLmdovoNx7Jcn15xALUUsYgr8WsyTlK5+XTM4jGWdywvrkEV1ZZ5DIGN29swctnZuFJTK6txBuM4Pi4W9IjokDKzocaWCJDxWAZLI6JCnNmkHD44q3YrEG7k4uVEOruYHudDi5/BIPjHmwScESUt6uPOzf4tacH4UhZHJMquVFUwPD5askYzJXNoBJ9m+ikOwiNUgaLLvc/+7lmDY67AlgIx7Amy3p/Cp4nQglGYjg95aXzgmVSp1ehXq/KqTPI/5mvpc5gi0ULls1t/P+5wSk0GtW4rEbOVF7q1s2tCEfjeH5wOutz9w9LN18wVSt1BomYvCUcE60l1sSY6PxCcW/oxxzCnoNrS7yZD8fi2Cjg8hie1aDGQIsJgxMedNRrcVUijD6VzaCGVa8SNF6iWjIGc2UzqEVfIDPpDqDVkt/CnVyzBk8n/t9myhjktVq0cPojCIRjOV8DIekMTrgRi7N0XrCM+hsMORWD/DRAPlMJ1Y4Pns/WOQ1GYnjlzCxuWN9Usx3uyzstaLNo8fSx7KOiP37rIhqNamztlu55QYDbw1GvV+WV81utqBgsA+oMiqNezy3NKKYzyLIsxpx+QWIleKnF0iaR3jTxW0XvSIlLuNSqJgPOzghZDCY6gxI5WM0Vg+KeGRx3BfN+M5Zr1uCpSW7JzOqmlc+k8m+QqDtIinU0sTymVjZUVqK+xtziJSZcAWiV8rymEqrd9p561OmUeHTfxRWf99rZWQQiMdxYgyOiPIZhcMvmFrxxbm7FvQsnxt14/dwcPr2nB2qFdM8L8vidD1KXtRhkGOZHDMPMMAxzIuWxrzIMM84wzJHEXx9I+dhfMwxznmGYMwzD3Jjy+E2Jx84zDPNXKY/3MAxzIPH4zxmGUSUeVyf+/Xzi491C/UeXmy8YBcMAOgkfvC0Hi1YJGVNcMehYCMMfjgkSK8HjiyWjRoEuATaUpnPbljZs6bCsmPW1usmIc9O+JQH1xbA7A1ApZKLmWJaSzaCGOxBBOJr9fEmhJl2BZDGWq1yzBt8ddWJVoyHrTSZ+9IXODZJiHbW70GLWLDujTEqnr8EApz+S9efeqSkPum36mlqOolMpcM/uHrx4eiZ5syyd5wanYdIoJD/2mM2tm1oRjbPYOziV8Tnff20YBrUCH0tzHEWK2mpk4VouncFHANyU5vFvsSy7JfHXswDAMMwAgDsArE98zn8wDCNnGEYO4DsA3g9gAMCdiecCwP9JvFY/ACeAexOP3wvAmXj8W4nnSYInGIVBrajZcQSxyGQM6nQqzBdRDI45hYuV4NkMaqgUMmxoNYv2/3xDmxlPPrB7xcJsdZMRvlA0GW9QLLvTj3aLVjK/j/k4hmLHjDMJR7klMC0FdFKzZQ3G4yzeGXXltOab70xOUGeQFIlfHkPKp68x+xKZYCSGQxed2FmDxc7dO7uhV8nx0CtDaT8eicXx4ulpXL+uqahIKilY32pCr02fcavomMOP3x6fxMeu7ISpRibb2hLbvIW6iV6psv7OZ1n2NQCOHF/vNgCPsywbYln2AoDzALYn/jrPsuwwy7JhAI8DuI3hblG9B8ATic9/FMAHU17r0cQ/PwHgekYit7S8wWjN/EEqNauhuOD5ZKyEgGOiMhmDj1/ZiTu2Z+7alcLiEhlhRkXtzkDyPKQUJIPnveKMik57gmBZoK2ABQ78RtpMhucW4A5EsLUrezHYZOaK3knqDJIiuPxhXJz3YxMtjymr/obs8RLvjDoRisaTxwlqiVmnxF07uvDMsQlcnFtY9vG3Lzjg8kdqekSUx42KtuKt4XnMeJb/fPjhGxcgY4B7dneX/uLKpM2iRSASg9OffctqNSvmNsgXGIY5lhgj5d+BtAEYS3mOPfFYpsetAFwsy0YveXzJayU+7k48fxmGYe5jGOYQwzCHZmdni/hPKg1vMELLY0RSr1cVNSY65uQzBoUd53zw1vW4bUtb9ieKiD9Ldk7AYlAqm0QBLloCAGZ94hRJxax2z5Y1+M6IEwBweQ7FoFohh82gpjODpChH7YnzgtQZLKs2ixZqhWzFzuC+8/OQyxhs75F2FEAm9+7pgUIuw/deG172secGp6BRynDN6oYyXFnluXVTC1gWePb45JLHnQth/PzgGG7b0lZT8STJjaISXyJTaDH4EIA+AFsATAL4F8GuqAAsy36fZdltLMtua2io/D/QvhA3JkqEZ9WrixsTdQRQr1dBL8H/PxadCg1GNc5MFR8vIbWMQQBoSIzYitUZnEyM5xay2j1b1uDhEScsOiV6bbkFf7daNIKNC5PadHTMBYYBNoiwIZnkTiZj0Jtlo+i+oTlsajfX7NK6RpMGH9najl8dtmMq5ftePM7i94PTuHpVA7Qq2uEAAKuajFjbbMTTx5YWgz/ZP4JAJIb7ru4t05WVRzJr0LXymf1qV1AxyLLsNMuyMZZl4wAeBjcGCgDjAFJn4doTj2V6fB6AhWEYxSWPL3mtxMfNiedXPW8wSp1BkRTbGbQ7/clV/lK0psmIcwJsFF3MGJTOrxV/3lKs4PnxIjuDQOaswcOjTlzeWZfz+c0Ws6YmDsUT8Ryzu9DXYKAjDxWgvzFzMegNRnDU7k7m0daq+6/uQ4xl8YPXF7uDx8bdmPIEaUT0ErdubsXhEWfy500wEsOj+y7iPWsbk8dNakWbJbdop2pXUDHIMExLyr9+CAC/afQpAHckNoH2AFgF4G0ABwGsSmwOVYFbMvMUy53IfBnA7YnPvxvAb1Je6+7EP98O4CVWIic4uTFR+gEqhnq9Ci5/BNFYYRshxxx+tIu08bMSrGoy4Ny0L+O4Ya4WMwal82ulVcmhV8lFyxqcdAdg1ioL6jqvlDXo8odxfsaX03lBXqtFi0mX9A/FE3GwLIsjY25aHlMh+hr0sDsDCEaWZ4cevOhALM5id9/y/Nla0mnV4dZNLfjZ26PJ6IS9J6agkDG4fl1jma+ustyyiXuL/9tEd/CJw3bML4Rxf411BQHAolNCp5JLPl4il2iJxwC8BWANwzB2hmHuBfBPDMMcZxjmGIDrAHwZAFiWHQTwCwAnAewF8ECigxgF8AUAzwE4BeAXiecCwF8C+DOGYc6DOxP4w8TjPwRgTTz+ZwCScRTVjjqD4uGXgBRy2DcWZzHuCgh+XrCSrG4yIhCJFX2Xi/98qXVRbUbxsgYnXcG8YyV4K2UNvjvmAgBc1pn7G/NWsxYL4Rg8wWj2JxNyiQl3EHO+ELbQ8piK0N9oAMsCw7PLF6S8eX4eKoUsp/PEUve5a/vhD8fwyL6LYFkWvx+cwo5eKyw6VbkvraJ0WfXY3G7G08cmEIuzePj1YWzpsNTkmVOGYbisQYl3BrNWJCzL3pnm4R+meYx//jcAfCPN488CeDbN48NYHDNNfTwI4CPZrq8aeUNRGKgYFAUfPD+/EEpGBeRqyhNEJMaiU8KdwdSNop3Wwv87pZYxyLMZ1Jjzijcm2lZArASwctbgOyNOyGVMXl2aFsti8LxZS1MKJD9HEzcgNlPYfEXoS2wUPT/rw0CracnH9g3NY1tXHTSUa4w1zUa8b6AJj+y7iGvXNGB4bqGmNmPm49bNrfj7357Cd18dwsi8H39109qayqhM1VYn/eD52g5VKYNQNIZwNE7nLERSr+fu8DkK6O6IEStRaVYlNoqeLfLcoNQyBnkNBrWIY6LBZBFWiExZg4dHnFjXYsxr/JQ/t5hvvMTvB6fSrmcnteXomAsquQxrm03Zn0xE12PTg2GAoUs2is77Qjg16an584KpPn9tH9yBCL70+BEAwPsG6LxgOjcnRkX/+fdn0G3V4YYaPlfZZqFikAjMmxjLojFRcVgTY6KFbBRNFoMSHhM1aZRoMWtwdqrYYlBaGYM8m1ElSjG4EIrCHYgUtZI7XdZgNBbHkTEXtuYQNp+K32iaT/C8OxDB5376Dn7wxvL17KS2HLW7sK7VBJWC3kJUAo1Sjo46Hc5fskRm/zAXEb2rv7bPC6a6rLMOu/qsGHX4cVmnBc0Fju5LXYtZi+3d9WBZ4LNX90IusRu/+Wir08Llj2AhJN1jFfSdvMSoGBRXsjNYSDHoDIBhFnNlpGp1kxFnp4uLl5BaxiDPZlDD6Y8gUuACokyE2L6aLmvw9JQX/nAs7/NAjUYN5DImr42ib5ybQyzOYsYjTueUVIdYnMVxuxtbKFKiovQ16Jd1Bt8cmoNBrcCmNvp/leqB6/oBADfVcLcrF/fs7sbWrjp8+PL2cl9KWfHHO6TcHaRisMR8iWLQoKYxUTHU6VRgmMI6g3aHHy0mjeTvdq9uMuD8rA+xAjeKSjFjkMefgZwXeImMENtX02UNvjPKhc3ns0kUAOQyBs0mTV5joi+fmQEA0cZoVxKMxPC9V4fgk/Cd2WoxNOvDQjhG5wUrTH+jARfmFpZ8X39raB5X9tRDIZf2z7R87e634aefuRJ37+ou96VUtPdvbMGvPrer5s+bLmYNUjFIBOINclsuqTMoDrmMQZ1OBcdC/m9Yx5zSjpXgrWoyIhyNY2S+sLNfUswY5PHFoNAFjxDbV9NlDb4z4kSjUV3QYpoWsybnMdF4nMWrZ2cBQLRtqyt549wc/uF3p/HgbwazP5mI6ggtj6lIfQ0GhKLx5NbDCVcAF+YWaEQ0g939tpovckhu+GkxKW8UpWKwxDw0Jiq6er2qoM7OmEPasRK8NcmNooWNikoxY5DXYOTGjIUOnhdi+2q6rMHDo05s7aoraMtbi0WLSXduncGTkx7MekOwGcQ5U5nNaOI876/esWPviamSf32y6OiYC0aNAj1WfbkvhaTob+SWg/Hh8/uG5gGAlscQUqRGowYKGUOdQSIcvjNI20TFU0gxGIrGMO0NSnqTKI9/03BuurAlMlLNGARSOoMCx0sIsX310qzBGU8QY45A3iOivFazBpPu4JIziJm8khgRvW1LG/zhGPzh0o5rjjn90Knk2NBmwt/8+jhmvPltQSXCOWp3YXO7RXKbhKtdMl4icW5w3/k5WPWq5M0/Qkhh5DIGLRYNdQaJcPgzL4Y81sCT/PQ3GnBq0oNoHktAxp0BsKy0N4ny9GoF2uu0ODtTaGdQmhmDQOqYqNBnBovfvnpp1iB/XrDQMOkWswbhaDyn87WvnJnFxjYz1jZzbyznvKUdFeW79t/66Bb4QlH89a+Og2ULO/MqZU++O46/+80JQV8zHmdxfsaLnx8cxV/88ihOTXqxiZbHVJw6vQpWvQpDsz6wLIt9Q/PY0Welop0QAUg9XoKKwRLjt4lS6Lx4dvVZ4Q1FMTjhyflzxvhuVw2cGQQSG0ULjJeQasYgwBXKWqVc8FHIcYG2r6ZmDR4ecUKlkGF9a2FZb/w5iMks5wZd/jDeGXXi2jUNsBm5YnnWV9rOnN3pR0e9FquajPjLm9bixdMz+PnBsZJeQzX473fH8eO3RpKh8IWKxuJ4+LVhfPqRg7j875/He7/5Gv7yV8fxwqlpXLemER/Z1iHQFRMh9TUYcH7Gh+G5BUx5gtjdR+cFCRFCm0Un6c4gVSQl5g1GoFXKoaTtXqLZ0cudkdg3NJ/zkoPRGgicT7W6yYjXz80iEovn/XtxXKIZg7wGo7DB8/5wFPMCbV9tr9PiZOImx+ERJza2maFWFLYEoTcxVrZ/eB6b2jP/OXn93BziLHDtmkaoE5t2Z0vYGWRZFmMOf/LP9T27uvHiqWl8/ZmT2NlnRRedXUviowX+880L+PYdlxX8OgcuOPCNZ09xYdMDTdjWVY+t3XXotekLOp9KSqOvUY+9J6bovCAhAmur02LaG0Q4Gpfkxnnp/RdVOG8wSstjRGYzqLG22Yh9Q3M5f47d4YdKLkOTsTYCaFc3GRCJsQVtFJVqxiBP6CUp/N1EoYrBcWcAwUgMJ8Y9BZ8XBLhx6h299fjRGxcRjmYeqX75zAwsOiW2dFhE27a6Eqc/goVwLNm1l8kY/N+PbIacYfA/fnG04IgUqQmEYxh3BaBXyfHMsUlM5bgcKJ3j424AwJMP7MY/3b4ZH72iA30NBioEK1xfgwFOfwTPHJ1Am0WLLqt0v08TUkrtFi1YFkV9X61kVAyWmDcUpRHREtjZZ8XBi44V3+SmGnP60V4nzdHHdFYnlgqcmcrv3KCQXa5KZTOoBT0TZxe0GOSyBl8+PYNwLI7LOwsvBgHg/mv6MOUJ4qmjE2k/Ho+zeO3sLK5e1QC5jIHVwG1bLWUxOMZ37VN+/dosWnzttvU4NOLE914bKtm1VLLhOe7P8hfeswoxlsVP9l8s+LUGJzxos2hh0akEujpSCn2J5WAHLjiws89KxTshAuGnoewuf5ZnVicqBkuM6wzSJlGx7eqzIRiJJzOxshlzBGoiY5DX32iAUaPAc4P5rekXsstVqWxGtaDREkJGcfC/7r85whVvl3cVl/V27eoGrG024vuvDaXdKjo44cGcL4xr1zQAAJRyGep0ytIWg05+hHvpr9+HLmvDBzY241vPn8XZAjfj5sIdiOD8jHivL5ShWa7Lf93aBrxvXRN+dmAUgXCsoNcaHHcXfBaVlE9/YvQbAHb304goIUJpk3jWIBWDJeYNRmCizqDotvfUQ8YAb57PbVR0zOmXZFRCJhqlHB/d1oFnj09i2pP72MNil0u6hbPNoIbTH85rG+1K7M4AVHIZGgTYvsr/Hn3pzAw663VoLHKsmWEY3H9NL85O+/DK2ZllH385ESlx9eqG5GNCd06zGXOkX+7EMAy+ftsGRGIsnhMpe5BlWdz/k0O4/btv5RTBUU5DMz4wDNBt1ePePT1w+iN48sh43q/jC0VxYX4BG9poY2i1abNooVFyb+t20fIYQgTTYuF+1k64aEyUCIDODJaGWavExjYz3kocpF+JNxiByx+pmU2ivE/u7EKMZfHTA6M5fw7f5ZJy4dxgUIFlAUcOkQu54GMlhBhB5rMGw9F4UecFU92yqRWtZg2+++rwso+9cmYGm9vNS2JEbAZhF+xkM+b0o06nTBvHYzOo0WPTJ8+45eIHrw/jNzkWSb9+dxz7hx1w+SPJDmWlGpr1oaNOB41Sju099VjfasKP3riQdwTHqUkPWBbUGaxCMhmDvgYD+hr0aDLVxvl3QkpBrZDDqFHA6S9trFKpUDFYYr5glDIGS2RHnxXvjjmzBmQnOw8S7nal02XV47o1jfjZgVGEormNk0k5Y5DH/7cJNSpqT5xHFQKfNQgAl3cWNyLKU8pluPeqXrx9wYF3E9mFAOBcCOPdMReuWdO45Pk2gbetZjPm8K94o2ZDmznnGJlYnMU3nz+LP//lURy3r1xAuvxhfOO3p9Bk4n4/nMwjqqYchmYX0NfAbVZlGAaf3t2DczM+vH4u90VaADciCoA6g1Xq67etxz/dvrncl0GI5Jg0SngCkXJfhiioGCwxbzBCZwZLZFefDZEYi0MXnSs+b/FMknS7XZl8alc35nwhPHt8Mqfn250ByWYM8vgsPaGC58ddAUHPWLYlbloUGjafzh1XdMCsVeL7ry12B187NwuWBa5b07DkuTaDCrPe0hWDdmdgxRs1G9tMGHcFcurknp/xwR+OIRZn8YXH3oE3mPkH+//ZewauQAQP3bUVchmDU5OVWwzG4yyGZ33oSzkzdsvmFjQY1fjRmxfyeq0TEx7YDCo0GqV7w0fKtnbVCzY1QAhZZNYq4aZikBQrFmexEI7RmGiJXNFdB4WMSWYuZcIHNHfV115e2Z5+G3ob9Hhk30hOz7c7/ZLOGAQWO4NzAhQ8gXAMc76woGcsO+q00KvkWJPYCCsEvVqBT+zowt7BKVyY4xaRvHJmFnU65bIMQptBjYVwrODlJPmIx1mMOwNoX+FGDd/BymVU9MgYd2PoH/9wE8YcfnzlyRNpxygPjzjx2NujuGdXNy7vrENfgx4nK7gYHHcFEIrGk9skAW6s6RM7uvDKmdm8FuAMTniwvtVMmygJISQFFYNEEL4gN65IncHS0KkUuKzTgrdWyBtcCEXx0wOjuGGgCWZd7f1/kckY3L2zG0fHXDltXpV6xiDAhc4DwsQnjLv4TaLCFdBfun4VvvPxy6GQC/vt++5d3VDKZXj49WHE4yxePTuLa1ZzkRKpGkqYNTjjDSEci6/YGVzfyhWDJ3IqBt0waRS4fWs7vvze1fjNkQn88rB9yXOisTj+9tfH0WLW4E/ftxoAsK7FVNFjosOJAj61MwgAH7+yEyqFDP/55sWcXicUjeHctJfOCxJCyCVMWgU8K0yTVDMqBkvIG+J+ExnpzGDJ7Oyz4fi4O+PdnJ8fHIM7EMEfX9tX4iurHB/e2g6DWoFH911c8Xm1kDEIAHqVHBqlTJBiZyyxfZVfSy2EVU1GXHvJOT4hNBjVuH1rO544bMdLp2fgWAin/To2I3dmUcj4jUwyxUqkMmuV6LLqsp4BBLgpgM0dFshkDD5/XT929Vnx4G8Gl3TOHtl3EaenvHjw1vXJ890DLSZMuINwVejygKEZLmOQPzPIsxrU+NCWNvzqHXtO1352yodonKXzgoQQcgnqDBJBeJOdQSoGS2VXnxVxFnj7gmPZxyKxOH74xgVs764vOry7mhnUXKfkmWMTmPFmXptcCxmDALd8g9uYWfwb/2qL4vjsVb2IxOL4y18dA8MsjZTgNRi4LYVCjNFmky5wPp0NbWacmFi5GAyEYzgz7cXmxNirXMbgW3+0BTqVHF/42bsIRmKYcAXwzefP4vq1jbhxfVPycwcSnbJKHRUdmvXBolOiXr88JP6ePd0IRuL42dvZtwbzv4bUGSSEkKWoGCSC8NKYaMld1mmBWiHDvjSjos8cm8C4K4A/vra3DFdWWT65swuRGIvHDoxlfE61FTbFsBnUgixJsTv9UMqZqlnG0WPT46b1zZhfCGNzuyVtccF3BoVasLMSftNva5bO6sY2M+zOAJwrLJE5MeFGLM5iS8fiGcgmkwb//NHNOD3lxd//9iS+/vRJxFkWX/2D9UvOzK1rSRSDFToqOpRYHpPunN/aZhP29Nvw430jiGXJShyccMOoUaCzxmJ2CCEkG7NWiWAknvP29WpCxWAJ8ZvrqDNYOmqFHFd01y/LG2RZFt97dRirmwy4drXwI3fVprfBgGtWN+CnB0YQjqYPW6+FjEGeUFl6dmcAbVW2ffX+a7iR6fesTf/nwqov3ZnBMacfTSY1NEr5is/bwJ8bXKE7yC+K2tSxdATyujWNuO/qXvzX/lHsHZzCF69ftWws1WZQo9GoxqnJ3BexlFJqrEQ6d27vxJQniEMXl09IpDox7sFAi4mWxxBCyCVMWq6R4wmsHFdWjagYLCFfiPsNZKBisKR29llxesq75M3rK2dmcXrKi/uv7quqN+pi+tTubsx4Q/jdifQxE7WQMchrMKqEWSBThQt3tnRY8Nhnd+AzV/Wk/bhKIYNZqyxNMejw55T/uaGN69yttFH0yJgLbRYtGo3Lw7j//IY12NpVh4EWEz6zJ/2kwECrqSLHRN2BCGa9IfResjwm1bVrGqBWyLB3cCrjc6KxOE5Peei8ICGEpGFOFINSHBWlYrCEPHRmsCx29VkBAPuHF7uD3311CK1mDf5gS2u5LqviXLOqAT02fcZFMmNOv+QzBnk2gxqOhXDWsbpsuO2r1ddJ3dlnhU6V+ftUqbIG7c7AistjeBadCh31WgyOZy7WjtpdS0ZEU6kUMvzi/p349QO7oFKk/7G4rsWE8zPejJ3zchme5ZfHZC4G9WoFrl7dgOdOTKWN0gC4jaTBSJzOCxJCSBomCReDVJWUED8maqIzgyW1sc0Mg1qBfUPzuGVTK94ddeLABQe+cvM6KAVez1/NZDIGn9jRha8/cxIPvzYMfziGkfkFXJxfwMi8H/MLYVyTZqGIFNkMasRZwLEQTkZN5CsYiWHOF6rKYjAbocZoVxKJxTHpDuQ8lryxzZyxMzjvC2HMEcAndnRl/Hy5jIFclnkcdaDFhEiMxfkZX3KhTCUYmuVjJVbOSb1pfTOePzmN4+PuZdmRAHdeEAB1BgkhJA3+vbsU4yXonXAJeYNRKOUM1BnuPBNxKOQyXNmzeG7wu68OwaxV4s7tnWW+sspz+7Z2GNUKfOPZU/jWC2exf3geaoUcN6xvwl+9fy0evHWg3JdYEkJkDUp54Y7NKMy21ZVMuAKIs0B7jstM1reaMerww+1f/oP6qJ07L7g5TRGUq0rdKDo064NSzmTtoF6/rhEKGYPfnUg/Knpi3AO1QoZe28pFJSGE1CJz8syg9IpB6gyWkC8YhUGtoMP5ZbCzz4oXT8/gjXNz+P3JaTxwbT/0lPe4jEmjxLNfugrBSAwd9bqsizukyiZAsDq/cKdNgp3BBoNa9GgJfpNoLmcGAa4zCHBLZHb325Z87MiYGzIG2NheeNer26qHRinjNopuLfhlBDc040OXVZ91ysGiU2FnnxV7T0zhf964ZtnPocEJN9a1mKCgaQlCCFmGzgwSQXiDEYqVKJNdfdybwz/7xRGo5DJ8and3eS+ognXU67CqyVizhSDAnYkDhOoMSrAYNKrhDUURjIi3YnsxcD73MVEg/RKZo2MurG4yrngOMhu5jMHaZhNOVWBnMNuIKO/G9c24MLeAc4mQeh7Lshic8NB5QUIIycCk5X5+pJs+qXZUDJaQNxil5TFlsrbZiDqdEjPeED6yrb0mNmKSwtn4MVFv4aOQdmcgkTG4fHtltROiWM5mzOGHQsagxZxbMVinV6HNosWJS4pBlmVXXB6TD36jaKYlLKUWicUxMu9fcXlMqhvWN4FhgL2XjIqOOQLwBqN0XpAQQjJQK+TQKGV0ZpAUh4rB8pHJGOzss0JRJ5mzAAAgAElEQVTGAJ+9ikLmycqMagVUChlmixwTbbVoIZfg9tXFMVrxzg2OOQN5//ptbDMvKwZH5v1w+SPYLEAxuK7FBHcgggl3sOjXEsKow49onM25GGw0arCtq25ZMcjnM1JnkBBCMjNrlTQmSorjDUVhUNOYaLn8+Q1r8NBdW9FlpQUJZGUMwxR9Lm7cVZ2xErngi0Ex4yXGHP6cR0R5G9pMuDjvX3Lnll8eI0hnsIUrlk5NVMao6FBi3LOvMbdiEOBGRU9OejA6708+NjjhhkLGYHWTUfBrJIQQqaBikBTNG4zARJ3BsultMODG9c3lvgxSJWwGVZGdwQDaLdLbJAqkjNGKOCZqd+YWOJ+KH3NM7Q4eGXNBq5RjVR4FUyZrm41gmMrZKDo8x8VK9OZ4ZhBA8nvg3sHJ5GMnxj3obzTU9DlhQgjJxqRRwhOIlvsyBEfFYAnRmCgh1YPL0itsDDIYiWHWK82MQQCw6hNnBkXqDPrDUcz5wjkFzqfamKEY3NhmFmRLpl6tQLdVz20UrQBDMz40GtV5Zdd21Ouwoc2UHBXllse46bwgIYRkQZ1BUhSWZeELRWmbKCFVophg9XFXYpNonmOO1UKjlMOoUYjWGRwvcBOr1aBGq1mDE+NcsRaOxjE44cGWzuJHRHkDLSacmqqQYnDWl/N5wVQ3rW/GO6MuTHuCmPGGMOcL03lBQgjJgopBUpRAJIZYnIWBOoOEVIUGoxqOhTDi8fw3R0o5cJ7XUETnNJvFWIn8f/3WpyyROTPlRTgaLyps/lIDrSaMzPvhLfNGOZZlMTS7gL7G/M9A37SBGxX9/eAUBhPLY6gzSAghKzNplbRNlBTOG+RmjGlMlJDqYDOoEIuzcPrzL3iSgfMWaXYGAa5zWsyZypXkGzifamObGcNzC/AGIzgy5gQAbO4QrtBZ18ItWTk95RXsNQsxvxCGOxApqDPY32hEf6MBewencGLcA4bhNqUSQgjJzKRVwhuMIlbATeJKRsVgifB3kWlMlJDqsLgkpZBiMACFjEGTSXoZg7wGY+FjtNmMOfzQKuXJPMN88OcGByc8ODLmhs2gErQoH2jhXr/c4fPJTaIFFIMANyq6f9iBN87Poceqh0FNNyoJIWQlZi33Hr7ckyFCo2KwRDzUGSSkqixm6eVf8NgLyMirNjaDSrQFMmNOP9rrtGCY/H/9UjeK8mHzhbxOJk0mNer1qrIvkRma5TaJ5hMrkeqmDc2IxVm8fcGBATovSAghWfGJAFI7N0jFYIn4+GKQ7r4SUhWKydIbTxQzUmYzqOEJRhGMxAR/7TFHoKDzggDXsWw2abB/eB5Dsz5BzwsCXAbluhZj2eMlhmZ90ChlaCmw+7y+1ZTsmNJ5QUIIyY7vDEotXoKKwRJZPDNIY6KEVIOGIjuDki8GE2O08wvCL5EZc/rRUcSv34Y2E146PQOWBTYLEDZ/qYEWE85MeRGNxQV/7VwNzfrQazNAVmD3mWGY5CIZ2iRKCCHZ8cUgdQZJQRbPDFJnkJBqYNIqoJLL8l6SEozEMOMNSXqTKJAyRivwqKjbH4E3GC24MwhwnS7+fL/QnUGA2ygaisZxIRH6fqlICYrEoVlfwSOivLt2dOHmTS3Y2lUn0FURQoh0mXVUDJIi+EJ0ZpCQasIwDKwGFea8+XW+JlyFZeRVG365i9BLZPhYiWKKaX6JTK9Nn/zhLSR+8+alo6JT7iA+/9PDWP93z2F03i/41+UFIzHYnQH0NeQfK5Gqx6bHdz52OXQq+rlUkP0PAd+9CvA7yn0lhJASMCWm+6QWL0HFYIl4glEwDKCnH7qEVI1CgudrIWMQKG7BzkrGHHwxWHgxzReDYoyIAtwGT5VcliwGo7E4fvD6MK7/l1ew98QUwrF4Mr9PDBfmFsCyhW8SJQI58d/A1DHgiXuAmLTOEBFClqMxUVIUbzACg0pR8PkOQkjpFRKfsFgMSrsz2FBE9MZKigmc5zWaNLjv6l587MpOoS5rCaVchtXNBpyc8ODwiAO3/Psb+PvfnsL2nno8/Sd7AACjDvE6g0OzxcVKEAGE/cDEO0DTBmD4FeD3Xyn3FRFCRKZTyaGQMZIrBqlNVSLeYJRGRAmpMjaDKu8Oj93pl3zGIABolHIY1YqCtq2uZMwRgEmjSN6BLdTffGCdQFeU3rpmE548Mo4PPzSHFrMG373rcty4vhkMw6Ber8KImMXgzAIYhhvzJGViPwjEo8B7vwqcfxE48BDQvAG47K5yXxkhRCQMw8CkVcJDxSAphC8YhYGKQUKqis2gxrwvjHiczbmrb3cG0GLRSDpjkGcTIXh+zOkvqitYKjv7rPjvd8fx2at68KfvXQ19SmxQZ71O1DODw3M+tFm00Krkon0NksXoWwAjAzq2A73XAbOngGe+DNhWc48RQiTJrFVKrjNIY6Il4g1FKFaCkCrTVqdFNM7i3Iwv588ZdwXQbqn8YkYINoNKhM6gHx1VcN7yQ5e14fhXb8Df3jywpBAEuGJwxJF+06gQLswtUFew3Ebe5EZENWZArgBu/0/A1AY8/nHAPV7uqyOEiMRExSApFI2JElJ9blrfDKWcwc8PjuX8OfYaCJznFbJgZyUsy8LuDKCjvvJ//RiGybiFs8uqw4QrKFrEBPdrVPkFs2RFw8DYQaBr9+JjunrgzseAiB94/GNAJFC+6yOEiMakUUhuTJSKwRLhikHqDBJSTawGNW5c34xfvWNHMBLL+vxQNIZpj/QzBnlcMSjcAplZXwihaLzqC53Oeh1icRbjTuELgoVQFI6FcM3ccKhIk0eAaADo2rX08cZ1wB8+DEweBZ76IsCy5bk+QohozFolPEFpbQ+mYrBEvMEoDGrqDBJSbT62vRPuQAR7T0xlfe65aW6ctFbeqNsMargDEYSjwnTAxhxc8VQNY6Ir6bJyI5xiLJEZd9VGdElFG3mT+/ulxSAArP0AcO1fAcd/wZ0rJIRICp0ZJAXzBiMw0ZgoIVVnR68V3VYdfvb2aNbnPvTqEPQqOa5b21iCKys/m5ELnp9fEGZU9K2hOQCoijHRlXRZuUJtdF74c4N2Z/E5jKRII29xi2L0tvQf3/VFQGcF3vzX0l4XIUR0fDHISqjzT8VgCYSjcYSicTozSEgVkskY3LG9E29fcOD8CotkTk958Ntjk7hndw/q9aoSXmH5JIPnvcWNirIsi++8fB7//PuzuGZ1A3pt1Z2f12hUQ6OUiZI1WCs5lhUrHgNG96fvCvJUOmD7fcDZvcDM6dJdGyFEdCatErE4C384+9GRakHFYAl4g1w7mc4MElKdbt/aDqWcweMrdAe//fw5GNUKfOaqnhJeWXktBs8X3hmMx1l87emT+L/PncEHt7Ti4U9uyznGo1IxDMNtFBUhXsLuDECtkKEhUYiTEpseBELupctj0rnis4BCC+z799JcFyGkJPgMXCmNilIxWAK+EHfQlM4MElKdbAY1bhjIvEjmxLgbewen8Ok9PbDoaqMrCCBZkMwWWAyGojF88fF38ci+i7h3Tw+++dEtUCmk8WOps14nUmfQj7Y6LRimugvmqjWyj/v7Sp1BANBbuQD6Yz8HPJPiXxchpCSoGCQF8Sa2DtGYKCHV687tnXD6I3hucPkimW+/cA4mjQKf3lM7XUFgcUy0kKxBXyiKTz9yEM8cm8Rfv38tvnLzuqrvCKbqrNdj1OEX/FyJ3Rmg5THlNPImYOkEzO3Zn7vzAYCNAQceEv+6CCElYUpM+UkpXoKKwRLw0JgoIVVvV58VnfU6PHbJqOgxuwsvnJrGZ6/qTd4xrBValRx6lTzvMdEZbxB3fP8t7B924F8+shn3X9MnuU5Xl1UHfzhWcNc0E64YpPOCZcGy3IbQzixdQV59DzDwQeDQfwJBj7jXRggpiZrsDDIM8yOGYWYYhjmR8lg9wzDPMwxzLvH3usTjDMMw/8YwzHmGYY4xDHN5yufcnXj+OYZh7k55fCvDMMcTn/NvTOIdQaavUY2oM0hI9eMWyXRg/7ADw7OLi2S+9fxZWHRKfGp3d/kuroxsxvyyBl86PY0P/OvrOD/jww8+uQ0f3ppDh6UKdSY3igo3KkoZg2U2fx5YmM0+Ippq9xeBkAc4/Ihol0UIKZ2aLAYBPALgpkse+ysAL7IsuwrAi4l/B4D3A1iV+Os+AA8BXGEH4EEAVwLYDuDBlOLuIQCfTfm8m7J8jarjo2KQEEm4fWs7FDIGjx8cAwC8M+rEy2dmcd/VvTXb+bcZ1JjLYUw0EI7hfz15Ap9+5BBsBjV+88AeSUdwdNVzxaCQS2QoY7DMkvmCWZbHpGq9DOi5Gtj/EBAtbusuIaT8TFruvXxNFYMsy74GwHHJw7cBeDTxz48C+GDK4z9mOfsBWBiGaQFwI4DnWZZ1sCzrBPA8gJsSHzOxLLuf5Q5W/PiS10r3NaoObRMlRBoajRq8b6AJTxy2IxSN4VvPn0W9XoW7d3aX+9LKxmZQZR0TPTHuxq3/7w38ZP8IPrOnB08+sBtrmo0lusLyaK/TQcZA0CUylDFYZiP7AH0jYO3L7/N2fQnwTgAnnhDnugghJcO/l/ckGj1SUOiZwSaWZfn1WFMAmhL/3AZgLOV59sRjKz1uT/P4Sl9jGYZh7mMY5hDDMIdmZ2cL+M8RF42JEiIdd27vhGMhjH949jRePzeHP76mF/oa3hRsM6gzFoPxOIvvvjqED/3Hm/AGI/ive6/EV24ZgEYpL/FVlp5KIUOLWStwMUgZg2U1so8bEc33fGv/9UDjeuDNf+POHRJCqpZcxsCoUdACmVSJjp6o392yfQ2WZb/Psuw2lmW3NTQ0iHkpBfGGotAoZVDKaV8PIdVuT78N7XVaPLLvImwGNT6xo7vcl1RWDUY1nP4IIrH4ksfjcRZ/8vi7+Mffncb1a5uw90tXY88qW5musjy4rMEFwV6PMgbLyDUKuMfyOy/IYxju7ODsKeDc88JfGyGkpMxaZW2NiWYwnRjxROLvM4nHxwF0pDyvPfHYSo+3p3l8pa9RdbzBKAxqGhElRApkMgZ3bu8EAHzu2j5oVdLvcq2Ej5dwLCw9D/XtF87it8cm8Rc3rsFDd12OOn3t5C/yuqzCZg1SxmAZjbzF/b2QYhAANnwYMLUD+/5NuGsihJSFSaOkziCApwDwG0HvBvCblMc/mdgqugOAOzHq+RyAGxiGqUssjrkBwHOJj3kYhtmR2CL6yUteK93XqDreYAQmGhElRDI+ubMLX7l5He7a0VnuSym7dFmDTx+dwL+9dB4f2dqOz18rvdiIXHVadZjzheELCXO2hDIGy2jkTUBjBhoHCvt8uRLY+Xng4uvA0Z8Le22EkJKquc4gwzCPAXgLwBqGYewMw9wL4B8BvI9hmHMA3pv4dwB4FsAwgPMAHgbweQBgWdYB4H8DOJj46+uJx5B4zg8SnzME4HeJxzN9jarjDUbpvCAhEmLUKPGZq3qhVtR2VxAAGoxcx4/P0ztmd+HPf3kUV3TX4e8/tKFmC0EA6KrXAxAuXsLuDKCDzguWx8g+oHMnICviz/y2e4Huq4AnPweceka4ayOElJTUisGsFQrLsndm+ND1aZ7LAnggw+v8CMCP0jx+CMCGNI/Pp/sa1cgXitImUUKIJPGdwTlvCNOeID77Yy464qG7ttZ8sdzFZw06FjDQairqtRYzBqkzKJqgG4jHAF390sd9M8D8OeCyu4p7faUGuPNx4CcfBJ64h/vnfkm8zSGkppi0CniCNVQMkuL94v6dCEfj2Z9ICCFVhi8G7c4A7vvxIXiDUfzqc7uSj9cyPnheiKzBxYxB6gyK5icfAsbfAVo2A73Xcn917gBG+fOCeeQLZqI2AB//JfDorcDjHwc+8d+Fn0MkhJRFzXUGSfHkMqbml0wQQqRJr1ZAq5Tju68OIRyL4/uf2IZ1LcV1waTCpFGiTqcUZIkMZQyWgGMYaNoAqPTAW98B3vw2IFdznUKljisShaCtA+76NfDIB4CffhS4+ymg7XJhXpsQIjqzVolgJI5QNCaJCRjKOiCEEFIUm1GFUDSOv7hxDd43kDEStiZ1WvUCFYN8Z5DGREURjwEBF7D2A8A9zwJ/eRH42C+BKz4D6KzA5jsAhYAbcQ0NwCeeBHR1wH/9ITB9UrjXJoSIyqTljn5JpTtInUFCCCFFee+6JsTjLD53TV+5L6XidNbrcHTMVfTr8BmDNkPtRXSURMAFgOUKP4Ab51x9A/eXWMxtwCefAv7z/dw5ws++zD1GCKlo5kQx6AlE0Wgs88UIgDqDhBBCivLgrevxtdtqe3NoJl31Ooy7AojEijs3bnf60U4Zg+Lxz3N/54vBUqnvAT7+BOCbBk5WbYIWITVFap1BKgYJIYQQkXRadYjFWUwkFsAUijIGRZYsButXfp4YmjdwgfT2g6X/2oSQvJk0fGeQikFCCCGErKCrXpiNolwxSMtjRFOuziCvfSswfqg8X5sQkpfkmKhE4iWoGCSEEEJE0mXlgudHilgiQxmDJVD2YvAKwDUK+GbL8/UJITkz05goIYQQQnLRaFRDrZBhdH6h4NegjMES4ItBbRnGRAGgbRv3d+oOElLxTFpu/6bbT8UgIYQQQlYgkzHorNcVFS8x5qCMQdH557ksQVWZuq8tmwFGTucGCakCaoUcGqWMxkQJIYQQkl1nva6oM4OUMVgCfkf5RkQBrghtWg/YqTNISDUwa5U0JkoIIYSQ7DqtXGeQZdmCPt/u9FPGoNj88+XZJJqq/Qpg4l0gXlwMCSFEfFQMEkIIISQnXfU6+MMxzPnCBX0+v0mUMgZF5J8vb2cQANq3ASEPMHe2vNdBCMnKpKFikBBCCCE54DeKjjoKWyJDGYMlUAnFIL9Ehs4NElLxzFolPIFouS9DEFQMEkIIISLqtBaXNWh3+ml5jNjKfWYQAKz9gMZMG0UJqQI0JkoIIYSQnHAjnoUVg75QFE5/hDqDYopFgJC7/MWgTAa0bQXsh8t7HYSQrExaJTxUDBJCCCEkG7VCjlazNhkRkY9xJ2UMis7v4P5e7gUyADcqOjMIhHzlvhJCyApMWiW8oShi8cIWg1USKgYJIYQQkXXUazFSQDFod1LGoOjKHTifqn0bwMaBySPlvhJCyArMWiUAwCuBrEEqBgkhhBCRddXrCxoTpYzBEuCLwXKPiQIpS2To3CAhlYwvBqVwbpCKQUIIIURknVYd5nwhLITy2z5HGYMlUEnFoN4K1PXQEhlCKpxJowBAxSAhhBBCctCV2Cg6mueoKGUMlkCAPzNYAcUgwI2KUmeQkIrGdwalEC9BxSAhhBAisu5E1uDQbH6LQShjsASSncEKODMIAO1XAN5JwD1e7ishhGRg1tGYKCGEEEJytKbZCJNGgVfPzOb1eZQxWAJ+B6AyAgp1ua+Ew58bpFFRQiqWSUPFICGEEEJypJTLcN3aRrx0eibnVeSUMVgi/vnK6QoCQPMGQK6iUVFCKlhyTJS2iRJCCCEkF+8baML8Qhjvjjpzej6fMdhRT51BUfnnK+e8IMB1KJs3UTFISAXTqeRQyBjqDBJCCCEkN9esboBSzuD5k9M5PX8xY5A6g6KqtGIQ4M4NTh4BYtW/nIIQKWIYBiatkopBQgghhOTGqFFiR681j2KQzxikzqCoKrIY3AZE/MDMyXJfCSEkA7NWCQ8Vg4QQQgjJ1Q0DTRieW8D5mexbRe1OPzRKGax6yhgUld9RecVg21bu7/aD5b0OQkhG1BkkhBBCSF6uX9cEAHjhVPbuIB8rQRmDIooEgf/f3n3HR1Wlfxz/HJJAQgmh996kgzQVLCgoVuwFO4rr/nRXt7i665bfrrqrW3+2de1iQ7GgiCi42BBEBUSa9N5LIAmE9PP745kY0IRMkimZzPf9es3rTu7ce+fceAzzzDnnefIOVK8EMgCNOkLdprB1QbRbIiJl0MigiIiIVEjrtBT6tEkNaqpoccF5CaPqVnC+mHMqPi9SzaUmJ2pkUERERCpmdM+WLNy0j91ZuWUeszk9mxU7MuneokEEWxaHvis4X82CQbB6g3tWwqH90W6JiJSiYUoSmTmxn+RJwaCIiEgEjerVHO/hoxW7yjzmHzNXUss5xg/vFMGWxaHqHAy2Dawb3LYwuu0QkVI1DKwZ9D642rHVlYJBERGRCOrVKpU2aSnMLGOq6NKtGby1aBvjR3SiZcPkCLcuzlTnYLA4icy2r6PbDhEpVWpKEoVFnoN5hdFuSpUoGBQREYkg5xyje7XgszW7OVTKh4gH3l9BWt0kbj65SxRaF2eyq+maQYDkhlC/JaSvi3ZLRKQUDVOSAGI+iYyCQRERkQgb1bMFOflFzF69+4j9n63ew+zVe7h1ZNfvPmhIGBWPDKY0im47ytK4E6Svj3YrRKQUxX+jYz2JjIJBERGRCBvWuTENkhOPKDFRVOS5//1vaZOWwtXHd4hi6+JI9l5IToOExGi3pHSNO2tkUKSaSk1WMCgiIiKVkJRQi5E9mjPr210UFlnygWlLtrN0aya/OL07dRITotzCOJG9t3pOES3WuBNkbYe87Gi3RKRmydgKVUz8ommiIiIiUmmjerVg78E8vt60j7yCIv4+YyU9W6Vy/oA20W5a/Kj2wWBn2+7bENVmiNQoi1+Df/WCaT+DwsoHcpomKiIiIpV2So9mJNZyfPDtTl7+YiOb0rO5c0wPatVy0W5a/MhOh7qNo92KsjUKlBbRVFGR0MjNgpm/hbpNYcGz8NIlkJNRqUvVlGCwmk6SFxERqdlSk5M4rnMT3luyg4O5BZzQpQknd28W7WbFl+x0aNk32q0oW2MFgyIh9clf4cAOuHEW7F4B79wGT58O416FRh0rdKn6yRZGaZqoiIiIVMroXi3YlJ7N3oN53DnmGJzTqGBEZe+t3iODKY0gpbGCQZFQ2LMa5j0GA66CtoNh4FVw9RRbl/vkabD5ywpdLqGWo0FyIpk5BWFqcGQoGBQREYmSUb1aAHB2v1b0b5cW5dbEmbxsKDhUvdcMgq0b3KfyEiJV4j28fxckpcCoP5Ts73SSjRLWaQDPnQNL36jQZRumJGmaqIiIiFROm7QUXrpxGH1aN4x2U+JPcY3BWAgGN8+LditEYtvK92DNf+GMv0D95ke+1rSbBYSvjIPXx4NLgN7nB3XZy4e0o1XDlDA0OHI0MigiIhJFw7s2pWFdFZiPuJgJBjtBxhYoyI12S0RMFUsyRFx+Dsz4NTQ7BoZOKP2Yek3g2qnQqr+NIOZmBXXpW0/txkWD2oawsZGnkUERERGJPzETDHYGXwT7N9kIhkgk5OfA8rchYzNkbgs8ttrDe7jgceh+erRbGZzPH7byLNe8DQlH+eItsQ6c9Q94ehR88gCcfm/EmhhNGhkUERGR+JOdbttYCAZBSWQkst77FUy5CT68B5ZNsdHpBq2g53mQ2gZeucLq9VV3GVtg9j+t3Z1PKf/4dkMsscy8x2D3ynC3rlrQyKCIiIjEn1gaGQRIVxIZiZD9m2HRyzDoOhhzvyVdOVxOJky6At6cADn7y556CRZQffmEBZLdRkPLfhDJrMkzf2sjmWfcF/w5o/4I374D0++w0cQanuVZwaCIiIjEn+y94GpBcjVP3lO3CdRuoJFBiZy5D9n2xF/+MBAESE6Fq163ZCvTf2mj7Cf/6sigKWsHfPwXWPg81EqCwlwbZazfArqOskeXkVY+JVw2zrVRzVN+A2ntgz+vXlM49Xd2b8vfgt4XhK+N1YCCQREREYk/2Xvtg2ithGi35OicsyQyCgYlErJ2WgDX/3JIa1f2cUkpcOkLMPVW+PjPcCjdMnXmH4S5D9ujMA+G3gQn3QFFhZbNc80HsGIaLHrJsnYOnQCn3wcJYQhJ5jwE9ZrB8J9W/NzB42HhRJhxN3QdDXXqh7591YSCQREREYk/2Xur/xTRYo07w44l0W6FxIPPH7EgbsTPyj82IRHG/tu+VJn3byvqvmMxHNxto2mn/g6adCk5fuCV9igsgK3z4ZtJ8MV/bCrpJc9BSghrraavg1Xv24hlaaOb5amVYMlknjkdZv8dRv1v6NpWzSiBjIiIiMSfWAsG92+yD9Ei4ZKdDl89DX0uOjKIO5pateCMP8PI38LaWdC0u9Xsu+S5sq+RkAjtj4NzH4TzHoENn8HTo2Hv2pDdCl8+aQHd4PGVv0b7YdB/HMx9xALdGkrBoIiIiMSf7PQYCgY7QVE+ZG6JdkukJvviPzbN88RfVOw85+DkO+AXq+C6d6Ht4ODPPfZquOYtG0186jQLDKsqNwu+ftFGJxu0rNq1Rv8RkupadtVYq68YJAWDIiIiEn+y90LdxtFuRXBUXkLCLSfDgsFjzoHmPSt3jQYtKpd5s+MImPChre97/nxY+ELl3r/YokmQmwnDfly16wDUbw4jfwNrP4SV06t+vWpIwaCIiIjEF+9jb5ooxF4w6L1NO9y5LNotkfJ89ZQFhCf9Mjrv37gz3PABdDrRktJM+xkc2l/x6xQVwZePQ5vB0HZQaNo25Eb7W6FgUERERKQGyM2yaZexEgzWbwmJKbFXa3D+M/Duz2FqJbI5SuTkHYTPH7VyD60HRq8dKWkw7jU4/lZY8Bw8MthG+SoyPXPtLNi7Bo4LwahgsYREaNkXdiwN3TWrEQWDIiIiEl9ipeB8sVq1oFHH2AoGty6E9++Cuk0tc+SW+dFukZRlwUT7f+KkO6LdEgu8zrgPJnxkff6tm+HZM4MPxL74j3150vO80LarRR/YvaJGJnFSMCgiIiLx5VC6bWMlGASbRhcr00QP7YPXroV6zeGmj6BOKsx7LNqtktLk51iR+Q4jLMNnddF6AIyfadlG96yCx0+C9+6yqaxl2b3KahkOuQESa4e2PS16Q0FO7Pw/WAFVqjPonNsAZAGFQIH3frBzrjHwKtAR2ABc6r3f55xzwIPAWUA2cJ33fmHgOtcCvw1c9lT6iMYAACAASURBVF7v/cTA/kHAc0AKMB24zfsamspHREREIiM7FoPBTjYFrqjIRgqjITfLsj12GA7JqaUfU1QEU26GzO0w/n1Iaw8Dr7Z1XJn3QGrryLZZzMIXYN3H9tw5wNn2wC7I2g7nV8NgvVYtyzZ6zNnw4b026rf8bbjoKeg4/IfHf/kEJNSGQdeHvi0t+th25xJo1j3014+iUPw1Gem9H+C9L84jexcwy3vfDZgV+BngTKBb4HET8BhAIHj8AzAMGAr8wTnXKHDOY8CEw84bE4L2ioiISDz7bppojGQTBRsZLMixD+6Rlp9ja8oe7A+TLodHh8LyqaWv5Zr7oBX7PuPPJSUGhk6AokJLJiOR9+nfLCnLxrmwdYFN2d3yJWyaZyNdvS+EzqdEu5Vlq9sYzvknTJgFSckw8Rz4+AHrU8UO7YdFL0Ofi6F+s9C3oVkPcAk1MhlSlUYGyzAWOCXwfCLwMXBnYP/zgZG9ec65NOdcq8CxH3jv0wGccx8AY5xzHwOp3vt5gf3PA+cD74WhzSIiIhIvioPBlFgKBjvZdt96aNgmMu9ZmG/12j75K2Rtg84jYeBVMOf/YPLV0H0MnPU3G/0DWD8bZv3J6rsNnXBk23ucBQuetXVpScmRaX+0rPmvBVqn/rb8Y8Pt4wfg4z9Dv8ts9K9WQrRbVHltBsGPPoVpP7d72jAbLnwSUlvBopesRuKwH4XnvRPrQNPuNTIYrOrIoAdmOucWOOduCuxr4b0v/tpqB9Ai8LwNsPmwc7cE9h1t/5ZS9ouIiIhUXvZe+5Y/uWG0WxK8SJaXKCqCxZPhkSEw7XZIawfXTrPi4H0vhgkfw+n3wfpP4dFhMOchyNgCr4+Hxl3gvId/WG/uuJvt97709fC3P9r++782GpexpdxDw8Z7+OgvFjT1Hxf7gWCxOg3gwifsfrYugP8Mh5XvwRePQ/vjba1huLTsUyMzilY1GBzhvT8WmwJ6i3PupMNfDIwChn2Nn3PuJufcfOfc/N27d4f77URERCSWFdcYrEyB7GhJbQu1ksIfDGanw6TL4M0JUKc+jJsM42dY/bdiCYlwwq1wyxfQ6WT44Hfw0LG2pvDS5+0D+/d1PBGa94J5/6lYqYBYs30x7Fhiz1dGaTKb9/DRffDJ/TDgKhj7SM0IBIs5BwPGwU2fQINWNnV5/8bwjQoWa9EbMrdYgqQapErBoPd+a2C7C5iCrfnbGZj+SWC7K3D4VqDdYae3Dew72v62pewvrR1PeO8He+8HN2sWhnnCIiIiUnPEUsH5YgmJ0KhDeIPBrQvh8ZNh7Udw1t/hpk+h+xllB81p7eGKSXDZi9C0G5z/KLToVfqxzsGwmy0Bx8Y54buHaPtmkiUxSW0bfDCYf8im4x6+Bq6yvLepup/+DY69xkZpa1IgeLhm3eHGWdavOp0Mx5wb3vf7LonM8vC+T4RVOhh0ztVzzjUofg6cDiwFpgLXBg67Fng78HwqcI0zxwEZgemkM4DTnXONAoljTgdmBF7LdM4dF8hEes1h1xIRERGpnOz02AsGARp1Ck+tQe+tQPwzZwDeRgKHTggua6lz0PNc+PEc6HPR0Y/td6mt06ypZSYK8mDxq9DjTOhzgU2jzcks/7z5z8Lbt8CKaVV7/6IimPlb+OyfMOg6OOfB6GWejZSkZDjzAbh2qn1hEk7fBYM1a6poVXpIC+Az59w3wJfAu97794H7gdHOudXAqMDPYKUh1gFrgCeB/wEIJI65B/gq8PhTcTKZwDFPBc5Zi5LHiIiISFVl742tTKLFGne2YDCU0yzzsq0UxLSf2VTOmz6BtoNCd/3DJaVYkLJyOuzbGJ73iKbVM61vDbjSEuYU5Vs5kPIsfsW2S6qwnvLQfpve+/kjMGQCnP2vmh8IRlqDlvZlRg0LBisdQnvv1wH9S9m/FzitlP0euKWMaz0DPFPK/vlAn8q2UUREROQHYnGaKFgwmJcFB/eEJn3+vg0waRzsWg6n/NoyfYZ7SuGQG2HOg1YT7oz7wvtekbboZajXHLoEPganNLapor0vKPucXd/C9m+gXjNYNcNGEsuq4Xi0a7wyDvZvgrP/AYNviK31sLHCOVs3WMMyiuorAxEREYkfRUWxO000lBlFs9PhhQshcytc9Tqccldk1pY1bAO9zrMi6LkHwv9+kXJgN6yeAf0vs+mKCYlWemPVDCgsKPu8b16xzLbnPQyFuRWfKrrsLXjyNPtdXjvNgm0FguHTsq+tGQzF+s5qIsyTa0VERESqkdwM8IUxGgweVmuw/bDKX6cgF165EjI2w7XvQPvjQtO+YA37MSybYlNTG7aF3EwbEcvNsudNusLoP0FKWmTbVRVLXoOiApsiWqzHmfDNy7B5HnQc8cNzigrtvK6jLHBM62BTRQeMK//9igrhw3vgs39B2yGWxTW1dejuR0rXojcUHLLp2k27Rrs1IaGRQREREYkf2YG0BLEYDKa1B1eraiOD3sPbt8KmuVarLdKBIEC7odD+BFgyGeY+BEvfhC1fWtp+762A+H9OhM1fRr5tlVHc5tbHQvOeJfu7nGqZRcvKKrphto3M9r/MRvP6XgzrPrZRxqMpKoRJV1ggeOy1cN27CgQjpQYmkVEwKCIiIvEje69tYzEYTKxjI2lVCQY/vt+CsFN/Z8FHNDgH102Du3fA7/bAnevhtm/g5s9g/Htw/ft2zDNj4NO/V/8peTsWW3Dw/RG9OvWt5MGKd0tP+vPNq1An1ZLNAPS52Eatl7919Pdb+oZNSR19D5z3kPULiYxmx9gXMgoGRURERGLQd8FgDGYThUBG0UoGg4smlRQiP/EXoW1XRdVKsOyipa1vazcEbp4Nvc+3qZDPj4XM7ZFvY7AWvWwjgKUF18ecZdN6d688cn/eQVj+NvQaa78HsBqNzXsdPatoYT589Gdo0ReOvzV09yDBSUqGJt1qVBIZBYMiIiISP2J5ZBACtQYrEQyunw1TfwKdToJz/lX9k4wkN4SLnoaxj8LWBfDYCZaMpbopyIPFk+GYsyGl0Q9f7z7GtiunH7l/xbuQfxD6X37k/r4X2xrD/ZtKf79FL1lweepvVToiWlr20cigiIiISEyK9WCwcWc4tM8ewdq9El690s699AVIrB2+9oWSczDwKvjRp5aFdNLlsHxqtFt1pFXvw6H0IxPHHC61NbQe+MN1g9+8Ag3b29rJw/W5yLZL3/jhtfJz4JO/WsKY7mdUve1SOS16W7CekxHtloSEgkERERGJH9l7IaEO1K4X7ZZUznflJdYHd/ziyfDUKJvGeOXk2MrQWaxpNxg/A9oMhjdusCQr1cWil6F+S+g8suxjepwNW76CA7vs56wdsO4j6HfpD0f3GnW0YG9JKcHg/Gcs4cypv6v+I7s12XdJZJZHtx0homBQRERE4kdxjcFY/TAdbK3BnAx4YwK8OcHWod04ywKNWFW7Hox71cpOvHKlTR2NhIJcWP0BrJgOe9YcWTPwwC5YPdOmeiYcpVpbjzMBb6OIYOUkfNEPp4gW63sJ7FwCu1aU7Ms9ALP/YQlpOp9c5duSKqhhGUVVZ1BERETiR6wWnC9WHNBt/wZ6X1B6ofhNX8CbN0LGVjjlN5Ys5mjBSqyo2xiungJPnw4vXgzj34dmPUL/PvmHYM1/bUrqyvcgL6vktYTa0LgLNOtugaIvLL8uYIveNiV05Xtw7DWWRbTNIBvxLE3vC+D9u2Dp67Y2EOCL/0D2Hjjt96G5R6m81NaQnKZgUERERCTmZO+N3UyiALXrWhKZuQ/ZtME2x9q0wjaDbW3awonwyQPQsJ0FS+2GRrvFodWgJVzzlpWdeP58uGGG1V8MhdUfWIKWVTMtuUtKI8to2musffjfsxL2rILdq2DHEti3ATqeWH5A6pyNDi58HrbMt1G/M/9W9vH1m1uinyWvwci7IWc/zHkIup8JbQeH5l6l8pyz0cEaklFUwaCIiIjEpgO7rPTA8NuhSZfgzsneCy37hrdd4Xb9e7D+E1uHtmU+zHkQig6bvtjvMjjr75CcGr02hlPjznDVm/DcWRYQjp8B9ZtV/nreWz3Dj+6Fuk1tLV+vsdBxBCQklRzXbsiR5xXkgitlZLY0x5wFXz4OU38KtRJLEsWUpe8l8PYtsHUhrHwXcjPg1Lsrdl8SPi37wMIXoKgo5rO6KhgUERGR2DT3IRttWfMhXD8dGnU4+vHe21S7WJ4mCpDaytabFa85y8u2aaNbF0DjTlbmoKZr2QfGTbZg8MUL4bp3Kxf8FhXBjF/bNMx+l8PYR44MAI+mIsXeOwyHOg1h1zIrMl+vnD54zDkw7WfwxWO2XrHPRbH/JUZN0qK3jR7vWx/8F1HVVGyHsiIiIhKfcrNgwURofzzkHYCJ50DGlrKPzz8Eb95kJRma94xcOyOhdl3ocDyccGt8BILF2h8Hl70Iu5bDK+NspK4iCvNhyo8sEDzuFjj/seADwYpKSIJuo+x5v8vKPz4lDbqdblNFC3Js7adUHy1627YGTBVVMCgiIiKx5+uXIDcTTr/Pkooc2g/PnQOZ2394bOY2ePZMWDLZ0vIPHh/59kp4dBsFY/8NG2Zb5tSiwuDOyzsIk66wPnHa7+GM+8I/3W/IBFv3V1yIvjx9L7btgCugadfwtUsqrllPcLUUDIqIiIhEXFEhzPs3tBsGbQdZEpWr3oSDu+H580rquYGtqXtiJOxZDZe/DCf9MnbLSkjp+l9mXwosfxve+5VNBz6a7HSbXrp2Fpz7oGVbjUSf6HA8jHsFkpKDO77H2TYieNr/hrVZUgm161pW2RqQUVTBoIiIiMSWFe/C/o1w/C0l+9oNgStft6miE8+Dg3tg0SR49ixb23XDB/E1hTLenHArDL8NvnoKPi0jU2dRkZV3eGYMbF8El0yEQddFtJkVklgbTrmzaslxJHxa9K4RwaASyIiIiEh4HNxjQVuTrpDcMHTXnfdvSOtgSTYO1+F4uOIVePlSeOwEOLDTUv9f+nxsl5OQ4Iz6IxzYDR/dB/WaweDrbX9BLiyeDHMftvIQDdvZFwcq3i5V0bIPLH/L1i/XaRDt1lSagkEREREJvb1r4alRcCjdfq7X3ILCJl1s2/W0ymVH3LIANn0OZ/yl9ILrnU+26aCTr4GhN8EZfw5fUhCpXpyD8x6yjLHv/hySUiBrB8x7DA7ssP520dPQ63xI0EdgqaIWfWy7czm0HxbdtlSB/k8QERGR0MpOt9E5gAuftAQue9dYgLhqBhx8AT7+i5WDaDOoYtee9yjUSYWBV5V9TNfT4M6N+sAfjxKS4JLn4PmxlikUoPNIuOAx22q9qITKdxlFlyoYFBEREQGgIM9G5fZvgmum2tTN78vYCs+OsWyON86CtHbBXTtjCyx7C477cfk15RQIxq/a9awG4RePW7H3Vv2j3SKpiRq2s9qRMZ5RVAlkREREJDS8h2m3W5r/sY+WHggCNGxjH9bzD8Gky23NTTC+eBzwMOxHIWuy1FB1G8PIXysQlPBxDvpdAo07RbslVaJgUERERELjs3/Copfg5Lug36VHP7Z5T5vOt+tbeP2G8uvD5R6wIvO9xkJa+5A1WUSk0s7+B5zwk2i3okoUDIqIiEjVLZsCs/4EfS+BU+4K7pyup8FZf4XVM2DG3Uc/dtFLkJsBx99a9baKiAigNYMiIiJSVZu/gik3Q7vj4LxHKpakY8iNllhm3r+haVf7+fuKi8y3HQptB4eu3SIicU7BoIiISE2QsQU2zoXa9a3mVXKqbeukWo2/cJRXKCyA+U/Dh/dCg5ZW0iEpueLXOf1eSF8H038VaH+qJaDZv9G2e9fCvg1WR05EREJGwaCIiEisWz8bXr0KcvaX/npKIzjr79D34tC956Z58O4vYecS6HwKnPsg1GtSuWvVSoCLnoJnxpSUAwBIqmvrA9M6QJ8Loee5oWi5iIgEKBgUERGJZV+/CO/cDo07w1VvWGCVk2kZOosfSybDGzfAinct4UHdxqVfKz8HFj4Pi1+1DHntj4P2x0OznlArkGbgwC744PfwzSRIbQuXBJK6VLV+W50GcN002DAHUltZAFi3ierCiYiEkfPeR7sNITV48GA/f/78aDdDREQkvIqKYNYfYc7/WTHtS56DlLTSjy0sgDn/go/vh3rNYOwj0HVUyev5ObBwInz2L8jaDi37wsE99hyslla7odC0mwWf+Ycsg95Jv7SabiIiUq045xZ478tdZK2RQRERkViTlw1TboJv34HB4+HMvx59TWBCIpx0B3QdbdMwX7wIhkyAkb+BxZMtoMzaDh2Gw4VPQMcT7bz9G2HTF7Dpc5sWuuYD6HKavV/TrpG5VxERCRuNDIqIiMSSzG0w6QrY/g2c8Wc47scVm0qZn2MlIOY9Cq4W+CLoMMLKQXQ68ejnFuRCYp2qtV9ERMJOI4MiIiJVtXM57FkJPceWrJmLhux0WDENlr0F6z+BhDpwxSvQY0zFr5WUDGP+bOcufRP6XFR+EFhMgaCISI2iYFBERKq/glzbJtSOTEIR7+Grp6wQemGuTZs890Fo0iX8710sOx2+nRoIAD8FX2hJVY6/BQZeU/Vpmp1OsoeIiMQtBYMiIlK9LXoZ3rkNCvMAB4nJNkKVlGKlB7qeBsdeY0lPQuHQfpj6EwvEuo6G7mfArHvgseFw6t1w3P9Yxs5w2rIAXroYDqVDo04w/KfQ63xo1V/ZNUVEJGQUDIqIRNPO5bZuq/kx0W5J9bTkdXj7Fitv0OVUGyEsyCl5HNwLCybCl09A62MtKOxzkRVcr4zNX8Hr4yFrG4y+B46/1aaHHnM2vPsLmPlbWDYFznsEWvQqOa+oyM7Zu8ZKOXQfU/ki72tmwatXQ/1mcNXrdl8KAEVEJAyUQEZEJBpys+CDP8D8p+3npj2g9/lWr615r+rx4b+oEHZ9C5vnweYvYdvX0HEEjP6T1YQLt2/fgcnXWq27K18ru4RBdrplxFw4EXYtt9HC3hdCt9HQeoBNrSzv91lUBJ8/bIlVUlvDxc9C2++tu/celr0J038FORkwYBzkZsKeNZC+FvKzS47tdDJcOtGKvVfE0jfgzR9Bs2MsEGzQsmLni4iIEHwCGQWDIiKRtu5jePsnkLHZphw27gTL34aNcyyzY5NuFhT2vyJ06fsL82HPKtixJPBYDHtW23TL5DSrT5ecBskNoXZ9C6q2zIe8LDu/XnMbCVv/KTRsC+c/ZoFhuKyaCa+Ms2Du6inBBZ/ew9aFsPA5WPIG5B+0/SmNbHplq/7QaoCtO8zcChlbAtutsH+Tjez1PA/Oe7jsen1go5Hv3wXL37LfRZOuRz7S18H0OyCtPYx71WrzBePLJ+289sfDFZOO3gYREZGjUDAoIhKs3ANQVBD+D985mfDB72HBsxY0jP03tB9W8vqBXTYatvxt2DAbcDD4ejjl11Cv6dGvvXetBZk5++19cjJs1ConAw7shN0rA2vusDV3LXrb6FNhvp1zaH/JNjfL2tduKLQbZm0sHl3bNA+m3Az7Nlgge9rvbO1eKK39CF6+zKbOXjO1cv9d8nNg1zLYtgi2L7Ltrm+hKL/kmIQ6NgrYsC2ktoHOJ1sAHuyorPdlH7vxc3j1SutXlzxnU1yPdp2P74dP7oceZ8HFz4T+dyoiInFFwaCISFkO7bOgZuMc2DjXAoWEJBgZSA6SEOLl1AV5sHaWjfpkbrVskCPvPvoH/qyd8OlfYf6zNj3yxJ/DsB9bWYBihfmwcjp89bSVGyiWUNtG+JIbQp1UqNvERvVa9rMkK427VO0ecw/Af/9g2Tab9oAL/gNtjq389Q63YY4VRG/cGa6bBnUbh+a6YOsNd30LeEhtawF2OKfj7tsIky63QPzMB2DohCNfP7DL+t6yN+GbSTDgSjj3odD3PxERiTsKBkUkupa/DV88Dg3b2TTIRp1KtuH+EF5UBNl7LfDK2m7bzG322LEEdi4DvAVNbQZDhxNsWuTK6dB6oCUHadmn8u9fmG/r6zbMhvWzYfMXtp6saXcbDWw3JPhr7V5po4mr3oeG7WHUH2wN3cLnLXHKgR32Ox50LfS9BOq3PDJgDKc1s+DtW23kcfD1toauMslODu23NYmb5tpUydTWcN10S6AS63Kz4I0JsOo9GHi1TR3d9rUFgVnbAgc5GH4bjPrf6rFWVEREYp6CQRGJnqyd8OgQSEyBWokWjHHY35q6TW10bNiPyk4KUppD+y2Q27m0JKjLyTgsw2Su1YQrng55OJcADVrZ+q0Owy0AbDOoJHDy3rJETr/Dpkue+At7VKTI9obPYO7Dts07YPua97IadZ1OtDIFlQ3U1n0CM++2+7YbsgQpg8dDt9PDX+qgLIf2W4bNxZPtd9+0O/S7DPpdaoHP9+UesLWSu5bbVMpNn5cE57USbb3chU9CaquI30rYFBVaYpo5/wc4m4LbeqCth2w1AFr1i0xCHhERiRsKBkUkeiZfa6NsP55rwVd+jiXo2Lce0tfDmv/Cmg+gXjMY8TMLaEqbMnlgl42IrZ4J27+xaxSr2wRa9LFrJCZDYm3bJtS2AK5uExthatDatvWbBxcwZadbcpDFr9qaunP+z0bijjZis2U+fHiPrdmr3xJ6nmMBYMcR5a/1q4iiQljymv0e+l0KjTqG7tpVdWi/JVT55lUb4QPoMMKStmRstjZnbLYR22JJ9WyUtP0J0OF4G6WtXTc67Y+E/ZssmY0CPxERCTMFgyISHSvetSyQp/4WTrqj7OM2fwkf3mtr3Rq0slG4Y6+1xCQr34WV79kxxeu72g21qZst+1kQ2KBleKfUrZoJ0263Uc0GraHzKdBlpG3rN7djdiyBD++zKYB1m8CIn8OQG5T8Y98GWPyaBdQZm20aa1r7Ix9NukCLvlofJyIiEgYKBkUk8nIy4NFhkNIYbvrYRuvKs342fHSfTRdMqldSDqBVf8us2OMsS3oSjbVUOZmW3GPtRxa0Htpn+1v0sdHG1TOhTkMY/hMYdrNGfEpztIybIiIiEhbBBoP6SlZEQue/f4SsHXDZS8EFgmBr6Tq+B2s/tILbrQdCjzMt3X+0JafCoOvsUVRotfnWfgTrPrJRwRN/CSfcWvHC4vFEgaCIiEi1pWBQguM95B2EOvWj3RKprjZ+DvOfttIMbQdV7FznoOtp9qiuaiUEkn4MtDIPIiIiIjFOwaCULzvdCkBv+dJGQBp1tEdaB9u2Odam9EXSlvlWuLv1QBhyY2TfW34oPwfe+amVPhh5d7RbIyIiIiJBUDAoR5e5HV64ANLXWYKPQ/uskPL2xfDtNCjKt+NOugNO+XV409sX5Frq/y8eh20LrVTA1y9aQe/j/yd87xur8g7aaN3OpdDrPCviHS6z/wF7VsGVb2j0WERERCRGKBiUsqWvg+fPt1TwV70OnU468vWiQivi/ckD8OnfrLD2RU+XZFoMlcxtMP9ZGwk8uBuadIOz/g59L4apP4UZv4aEJBg6IbTvG2sK8mDrAkt0su4T2PJVSbD+4T227u2kX0GDFqF7T+/tPT/7p9WW6zYqdNcWERERkbBSNlEp3c5lNiJYmA9XvWFTQY/m65fg3V9AckO4+BnoOLxq7797lZUXWDHdghqA7mfA0Jug80ioVcv2FeTBa4Gaduc+aAFPOGXtgEUvwcr3ofkx0H0MdDo5cqNh+TlW6mDfhu891sPetZCfDTibttv5ZCuD0KiTFUJfONFq8B33PzD8p/bfqqKydtqo7Lav7bF1IWTvsbIKt3wF9ZqE8GZFREREpDJUWkIqb/NX8NLFkFQXrp5iQU8wdi6DyddYUfHTfg8n/LQkaCtPToZlZ1w1wwK7vWtsf6sBVlqg3yVlT3MsyIVXrrRC5mMfhYFXBveewSoqtEyXC56z2ne+0IKt9PWQm2kBVscRFhh2G2018Wol/vDeC3IhY0vgsRn2b7bn+dlWly4x2R5JyZCYYqN6mdsga7sFoZnb4FD6kddMqAONAms3G3eBDidYW+o2/uF97F1rJRyWvmFrP0f8zNZ9Htz9vcceyDtg7S3IhcI8KMixwLu47IOrZQXZWx8LrQdYoJ7WPrS/dxERERGpFAWDUnFFRbBiGky52aZ6XvO2BRoVkZNpiUSWTYGOJ1qgkJwGKWkl28RkC0x2r4Td38KuFZC1zc6vlWTBzDFnV6y8QH4OTLoc1n0MFz4B/S6tWLsPl3fQ1kXu3wjbFtlIYMZmqNsUBoyzwuhNu1pwtHmeBbCrZsDe1Udex9UKBIWJtr4x7wBw+P9vzgqn165n7S84VLL1RfZ6/eZWkL1BK0htZcXPU1tD404WANZvGXzAXWzbIpj1J1g768i21G0C9ZpBvaZWLy+hdiBArW1BZ2IdSG1jo8Qt+1q7RURERKTaUTAowdu3ERa9bI+MTVZQ+6o3K7+2zHv48kmY86CtNyw4VPpxiSnQrDs062mjj816QofjKzd9ESAvG16+FDbOgVN+Ay37WDCZ2sZGworrnXlvI2Dp6ywoTV9n0yz3bbQpl9l7jrxu55Ew6FrocfbRa+elr7MRxEP7bTSxqMBG94oKoLDA2pDWztrUsJ21q7TreW/Tc52ztZDhsnO5BZ31m1uR+AQtIRYRERGpCRQMisnYatMQayXaSE9CUkmAsfq/8PULlnAEZ+vLBl4Fx5xjUxVDJT8HcvZbkJSz30beGneyKYqhzj6ae8BGCDfMPnJ/Uj0LwhJqW+CXd6DkNZdgrzXqaCOhxSUz0jrY1FStgxMRERGRGBJsMKihgJpqy3xL979y+tGPSwvUhet/hY1ahUNSMiS1tCmR4VanPlz7DhzYaYFwxmZLuFK8Vq8gx5LbNO5c8mjY7ugjfiIiIiIiNZCCwZrEexvlm/0PWP+prdE7+U5o2t2SgBTml2yL8i05S8cTK77mrLpzgbV4DVpC20HRbo2IiIiISLWkYDASti+2Eana9eyRVLxNKVnHp2j/MwAACedJREFUVlnFtf62LYQ5D8HW+VC/BZx+r5VZqNMgJLcgIiIiIiI1S7UPBp1zY4AHgQTgKe/9/VFuUsW9dydsmlvKC86yaxYnFGnYtiThSb2mltY//1AgrX+Orb3LzbIkL8XZLjO2WIISsDVu5/wL+o8L7Zo/ERERERGpcap1MOicSwAeBUYDW4CvnHNTvffLo9uyChrzF8temXfQHvnZlsAkL9uybWZuhf2bLAtmTkb516vX3Nb6tRkEvS+05407Q4fhyggpIiIiIiJBqe6Rw1Bgjfd+HYBz7hVgLBBbwWDrAcEfm5NpwWF2+mEFyJNLipLXrmf13kRERERERKqgugeDbYDNh/28BRgWpbZERnKqPURERERERMKoRqSRdM7d5Jyb75ybv3v37mg3R0REREREpNqr7sHgVuDw4ndtA/uO4L1/wns/2Hs/uFmzZhFrnIiIiIiISKyq7sHgV0A351wn51xt4HJgapTbJCIiIiIiEvOq9ZpB732Bc+5WYAZWWuIZ7/2yKDdLREREREQk5lXrYBDAez8dmB7tdoiIiIiIiNQk1X2aqIiIiIiIiISBgkEREREREZE4pGBQREREREQkDikYFBERERERiUMKBkVEREREROKQgkEREREREZE4pGBQREREREQkDikYFBERERERiUMKBkVEREREROKQgkEREREREZE45Lz30W5DSDnndgMbI/BW7YFNEXifWNYQyIh2I2KA+lJw1J/Kp74UHPWl4Kg/lU99KTjqS+VTXwqO+lJwGgJp3vtm5R1Y44LBSHHO7Q7mFxzPnHNPeO9vinY7qjv1peCoP5VPfSk46kvBUX8qn/pScNSXyqe+FBz1peBUpD9pmmjl7Y92A2LAO9FuQIxQXwqO+lP51JeCo74UHPWn8qkvBUd9qXzqS8FRXwpO0P1JwWDlaSi/HN57/WELjvpSENSfgqK+FAT1paCpP5VDfSlo6kvlUF8KmvpSECrSnxQMVt4T0W6A1BjqSxIq6ksSSupPEirqSxIq6kshpjWDIiIiIiIicUgjgyIiIiIiInFIwWCAc66dc+4j59xy59wy59xtgf2NnXMfOOdWB7aNAvudc+4h59wa59xi59yxh13rAefc0sDjsmjdk0RHJfrSMc65z51zuc65X37vWs8453Y555ZG414kukLVl5xzyc65L51z3wSu88do3ZNET4j/Nm1wzi1xzi1yzs2Pxv1I9ITwb1OPQB8qfmQ6526P1n1J5IX479Jtgc/ey9SPgqdpogHOuVZAK+/9QudcA2ABcD5wHZDuvb/fOXcX0Mh7f6dz7izgJ8BZwDDgQe/9MOfc2cDtwJlAHeBj4DTvfWbEb0qiohJ9qTnQIXDMPu/93w+71knAAeB5732fSN+LRFeo+pJzzgH1vPcHnHNJwGfAbd77eVG4LYmSEP9t2gAM9t7vifR9SPSFsi8dds0EYCswzHsfiXrRUg2E8N+5PsArwFAgD3gfuNl7vybiNxVjNDIY4L3f7r1fGHieBXwLtAHGAhMDh03EOh+B/c97Mw9IC3ToXsCn3vsC7/1BYDEwJoK3IlFW0b7kvd/lvf8KyC/lWp8C6ZFot1Q/oepLgb9TBwI/JgUe+iYwzoTyb5PEtzD1pdOAtQoE40sI+1JP4Avvfbb3vgD4BLgwArcQ8xQMlsI51xEYCHwBtPDebw+8tANoEXjeBth82GlbAvu+AcY45+o655oCI4F2EWi2VENB9iWRclW1LznnEpxzi4BdwAfe+y/C1FSJASH42+SBmc65Bc45FcqOYyH8d+5yYFJIGycxpYp9aSlwonOuiXOuLjZzT5+/g5AY7QZUN865+sAbwO3e+0ybXWW89945d9Rv0733M51zQ4C5wG7gc6AwjE2WaqqqfUmkWCj6kve+EBjgnEsDpjjn+njvtRY1DoXob9MI7/3WwJStD5xzKwIzGSSOhOrfOedcbeA84NdhaahUeyH4/P2tc+4BYCZwEFiEPn8HRSODhwmspXkDeMl7/2Zg987A9M/iec27Avu3cuQ3Dm0D+/De3+e9H+C9Hw04YFUk2i/VRwX7kkiZQt2XvPf7gY/Q9PW4FKr+5L0v/vduFzAFW6cjcSTEf5vOBBZ673eGvqVS3YXw79LT3vtB3vuTgH3o83dQFAwGBBIsPA18673/52EvTQWuDTy/Fnj7sP3XOHMckOG93x6YitUkcM1+QD/sWwqJE5XoSyKlClVfcs41C4wI4pxLAUYDK0LfYqnOQtif6gUSPeCcqwecjk3RkjgRhn/nrkBTRONSKPtSYKYCzrn22HrBl0Pb2ppJ2UQDnHMjgNnAEqAosPs32LzlyUB7YCNwqfc+PdB5H8G+Xc8Grvfez3fOJQMLA+dnYpmMFkXuTiTaKtGXWgLzgdTA8QeAXoFpEpOAU4CmwE7gD977pyN4OxJFoepLQEdsAX4C9iXgZO/9nyJ3J1IdhLA/NcVGA8GWm7zsvb8vUvch0Rfif+fqAZuAzt77jMjeiURbiPvSbKAJllzm5977WRG9mRilYFBERERERCQOaZqoiIiIiIhIHFIwKCIiIiIiEocUDIqIiIiIiMQhBYMiIiIiIiJxSMGgiIiIiIhIHFIwKCIiccc5dyAE1+jonPPOuXsP29fUOZfvnHukCtccd9jP11X2WiIiIuVRMCgiIlJ564GzD/v5EmBZFa7XERhX3kEiIiKhoGBQRESE70blPnTOLXbOzXLOtQ/s7+Kcm+ecW+Kcu/d7o4rZwLfOucGBny/DCiWXd83nnHMPOefmOufWOecuDpxyP3Cic26Rc+5ngX2tnXPvO+dWO+f+GtZfgoiIxBUFgyIiIuZhYKL3vh/wEvBQYP+DwIPe+77AllLOewW43DnXDigEtgVxTYBWwAjgHCwIBLgLmO29H+C9/1dg3wAsyOwLXBZ4HxERkSpTMCgiImKOB14OPH8BC9SK978WeP7y908C3gdGA5cDrwZ5TYC3vPdF3vvlQIujtGuW9z7De58DLAc6BHEvIiIi5VIwKCIiUgXe+zxgAfAL4PUKnJp72HMX5HGFQGIF3kNERKRMCgZFRETMXGx0D+BKYHbg+TzgosDzy79/UsA/gDu99+lBXrMsWUCDYBssIiJSFfp2UURE4lFd59zh6//+CfwEeNY5dwewG7g+8NrtwIvOubuxKaEZ37+Y934ZpWcRLeuaZVkMFDrnvgGeA/YFfUciIiIV5Lz30W6DiIhIteWcqwsc8t5759zlwBXe+7HRbpeIiEhVaWRQRETk6AYBjzjnHLAfGB/l9oiIiISERgZFRERERETikBLIiIiIiIiIxCEFgyIiIiIiInFIwaCIiIiIiEgcUjAoIiIiIiIShxQMioiIiIiIxCEFgyIiIiIiInHo/wF3jQz1d/i0IAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x504 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(15,7))\n", + "df_hits_month_privacy_agg['Freq'].unstack().plot(ax=ax)" + ] + }, { "cell_type": "markdown", "metadata": {},