from typing import Dict, Union, Set from math import inf import networkx as nx from evrouting.T import Node, SoC, Time from evrouting.utils import PriorityQueue from evrouting.charge.factories import ( ChargingFunctionMap, SoCFunctionFactory, SoCProfileFactory ) from ..graph_tools import distance from .T import ChargingFunction, SoCFunction, Label from .utils import LabelPriorityQueue, keys __all__ = ['shortest_path'] def shortest_path(G: nx.Graph, charging_stations: set, s: Node, t: Node, initial_soc: SoC, final_soc: SoC, capacity: SoC): """ Calculates shortest path using the CHarge algorithm. :param G: :param charging_stations: :param s: :param t: :param initial_soc: :param final_soc: :param capacity: :return: """ # Add node that is only connected to the final node and takes no time # to travel but consumes exactly the amount of energy that should be # left at t (final_soc). The node becomes the new final node. dummy_final_node: Node = len(G) G.add_node(dummy_final_node) G.add_edge(t, dummy_final_node, weight=0, c=final_soc) t = dummy_final_node # Init factories cf_map = ChargingFunctionMap(G=G, capacity=capacity, initial_soc=initial_soc) f_soc_factory = SoCFunctionFactory(cf_map) soc_profile_factory = SoCProfileFactory(G, capacity) # Init maps to manage labels l_set: Dict[int, Set[Label]] = {v: set() for v in G} l_uns: Dict[int, LabelPriorityQueue] = { v: LabelPriorityQueue(f_soc_factory, l_set[v]) for v in G } # Add dummy charging station with charging function # cf(t) = initial_soc (ie charging coefficient is zero). dummy_node: Node = len(G.nodes) G.add_node(dummy_node, c=0) charging_stations.add(dummy_node) # Register dummy charging station as the last # seen charging station before s. l_uns[s].insert(Label( t_trip=0, soc_last_cs=initial_soc, last_cs=dummy_node, soc_profile_cs_v=soc_profile_factory(s) )) # A priority queue defines which node to visit next. # The key is the trip time. prio_queue = PriorityQueue() prio_queue.insert(s, priority=0, count=0) while prio_queue: node_min: Node = prio_queue.peak_min() label_node_min: Label = l_uns[node_min].delete_min() l_set[node_min].add(label_node_min) if node_min == t: return f_soc_factory(label_node_min).minimum # Handle charging stations if node_min in charging_stations and \ not node_min == label_node_min.last_cs: f_soc: SoCFunction = f_soc_factory(label_node_min) t_charge = f_soc.calc_optimal_t_charge(cf_map[node_min]) if t_charge is not None: # Spawn new label at t_charge l_uns[node_min].insert( Label( t_trip=label_node_min.t_trip + t_charge, soc_last_cs=f_soc(label_node_min.t_trip + t_charge), last_cs=node_min, soc_profile_cs_v=soc_profile_factory(node_min) ) ) # Update priority queue. This node might have gotten a new # minimum label spawned is th previous step. try: prio_queue.insert( item=node_min, **keys(f_soc_factory(l_uns[node_min].peak_min())) ) except KeyError: # l_uns[v] empty prio_queue.delete_min() # scan outgoing arcs for n in G.neighbors(node_min): # Create SoC Profile for getting from minimum_node to n soc_profile = label_node_min.soc_profile_cs_v + \ soc_profile_factory(node_min, n) if soc_profile(capacity) != -inf: l_new = Label( t_trip=label_node_min.t_trip + distance(G, node_min, n), soc_last_cs=label_node_min.soc_last_cs, last_cs=label_node_min.last_cs, soc_profile_cs_v=soc_profile ) try: l_uns[n].insert(l_new) except ValueError: # Infeasible because last_cs might be an # dummy charging station. Therefore, the path might # be infeasible even though one could reach it with a full # battery, because charging is not possible at dummy # stations. # # That means, the SoC and thereby the range is restricted # to the SoC at the last cs (soc_last_cs). continue try: is_new_min_label: bool = l_new == l_uns[n].peak_min() except KeyError: continue if is_new_min_label: prio_queue.insert(n, **keys(f_soc_factory(l_new)))