from typing import Dict, Union, Set from math import inf import networkx as nx from evrouting.T import Node, SoC, Time from evrouting.utils import PriorityQueue from evrouting.charge.factories import ( ChargingFunctionMap, SoCFunctionFactory, SoCProfileFactory ) from ..graph_tools import distance from .T import ChargingFunction, SoCFunction, Label from .utils import LabelPriorityQueue, keys __all__ = ['shortest_path'] def shortest_path(G: nx.Graph, charging_stations: set, s: Node, t: Node, initial_soc: SoC, final_soc: SoC, capacity: SoC): """ Calculates shortest path using the CHarge algorithm. :param G: :param charging_stations: :param s: :param t: :param initial_soc: :param final_soc: :param capacity: :return: """ t = _apply_final_constraints(G, t, final_soc) # Init factories cf_map = ChargingFunctionMap(G=G, capacity=capacity, initial_soc=initial_soc) f_soc_factory = SoCFunctionFactory(cf_map) soc_profile_factory = SoCProfileFactory(G, capacity) # Init maps to manage labels l_set: Dict[int, Set[Label]] = {v: set() for v in G} l_uns: Dict[int, LabelPriorityQueue] = {v: LabelPriorityQueue(f_soc_factory, l_set[v]) for v in G} # Init environment entry_label = _create_entry_label(G, charging_stations, s, initial_soc, soc_profile_factory) l_uns[s].insert(entry_label) # A priority queue defines which node to visit next. # The key is the trip time. prio_queue = PriorityQueue() prio_queue.insert(s, priority=0, count=0) while prio_queue: minimum_node: Node = prio_queue.peak_min() label_minimum_node: Label = l_uns[minimum_node].delete_min() l_set[minimum_node].add(label_minimum_node) if minimum_node == t: return f_soc_factory(label_minimum_node).minimum # Handle charging stations if minimum_node in charging_stations and \ not minimum_node == label_minimum_node.last_cs: f_soc: SoCFunction = f_soc_factory(label_minimum_node) t_charge = _calc_optimal_t_charge( current_cs=cf_map[minimum_node], f_soc=f_soc, capacity=capacity) if t_charge is not None: # Spawn new label at t_charge l_uns[minimum_node].insert( Label( t_trip=label_minimum_node.t_trip + t_charge, soc_last_cs=f_soc(label_minimum_node.t_trip + t_charge), last_cs=minimum_node, soc_profile_cs_v=soc_profile_factory(minimum_node) ) ) # Update priority queue. This node might have gotten a new # minimum label spawned is th previous step. _update_priority_queue(f_soc_factory, prio_queue, l_uns, minimum_node) # scan outgoing arcs for n in G.neighbors(minimum_node): # Create SoC Profile for getting from minimum_node to n soc_profile = label_minimum_node.soc_profile_cs_v + \ soc_profile_factory(minimum_node, n) if soc_profile(capacity) != -inf: l_new = Label( t_trip=label_minimum_node.t_trip + distance(G, minimum_node, n), soc_last_cs=label_minimum_node.soc_last_cs, last_cs=label_minimum_node.last_cs, soc_profile_cs_v=soc_profile ) try: l_uns[n].insert(l_new) except ValueError: # Infeasible because last_cs might be an # dummy charging station. Therefore, the path might # be infeasible even though one could reach it with a full # battery, because charging is not possible at dummy # stations. # # That means, the SoC and thereby the range is restricted # to the SoC at the last cs (soc_last_cs). continue try: is_new_min_label: bool = l_new == l_uns[n].peak_min() except KeyError: continue if is_new_min_label: prio_queue.insert(n, **keys(f_soc_factory, l_new)) def _calc_optimal_t_charge(current_cs: ChargingFunction, f_soc: SoCFunction, capacity: SoC) -> Union[Time, None]: f_soc_breakpoints = f_soc.breakpoints t_charge = None if current_cs > f_soc.cf_cs: # Faster charging station -> charge as soon as possible t_charge = f_soc_breakpoints[0].t - f_soc.t_trip elif f_soc_breakpoints[-1].soc < capacity: # Slower charging station might still be dominating # because the soc cannot be more than the full capacity # decreased by the trip costs. This will be refilled at this station. t_charge = f_soc_breakpoints[-1].t - f_soc.t_trip return t_charge def _create_entry_label( G: nx.Graph, charging_stations: set, s: Node, initial_soc: SoC, soc_profile_factory: SoCProfileFactory ) -> Label: """ Create dummy charging station with initial soc as constant charging function. :param G: Graph :param charging_stations: Set of charging stations in Graph G :param s: Starting Node :param initial_soc: Initial SoC at beginng of the route :param capacity: The restricting battery capacity :return: Label for the starting Node """ dummy_node: Node = len(G.nodes) # Charging coefficient 0 indicates dummy node G.add_node(dummy_node, c=0) charging_stations.add(dummy_node) # Register dummy charging station as the last # seen charging station before s. return Label( t_trip=0, soc_last_cs=initial_soc, last_cs=dummy_node, soc_profile_cs_v=soc_profile_factory(s) ) def _update_priority_queue( f_soc: SoCFunctionFactory, prio_queue: PriorityQueue, l_uns: Dict[int, LabelPriorityQueue], node: Node): """ Update key of a node the priority queue according to its minimum label. """ try: minimum_label: Label = l_uns[node].peak_min() except KeyError: # l_uns[v] empty prio_queue.delete_min() else: prio_queue.insert(node, **keys(f_soc, minimum_label)) def _apply_final_constraints(G: nx.Graph, t: Node, final_soc: SoC) -> Node: temp_final_node = len(G) G.add_node(temp_final_node) G.add_edge(t, temp_final_node, weight=0, c=final_soc) return temp_final_node