diff --git a/jobs/src/bht_algorithm.py b/jobs/src/bht_algorithm.py
deleted file mode 100644
index c6630cae4f9ba184cc3789c4b41d35e86dee8ef3..0000000000000000000000000000000000000000
--- a/jobs/src/bht_algorithm.py
+++ /dev/null
@@ -1,3 +0,0 @@
-"""
-This module implements the Barnes Hut Tree Algorithm
-"""
\ No newline at end of file
diff --git a/jobs/src/bht_algorithm_2D.py b/jobs/src/bht_algorithm_2D.py
new file mode 100644
index 0000000000000000000000000000000000000000..b896fa8407a1030501c48f23aa15817a2e7339d8
--- /dev/null
+++ b/jobs/src/bht_algorithm_2D.py
@@ -0,0 +1,321 @@
+"""
+This module implements the Barnes Hut Tree (BHT) Algorithm for 2D data.
+"""
+
+import numpy as np
+
+
+class MainApp:
+
+    def __init__(self):
+        """Initialize the MainApp with a root node."""
+        self.rootNode = TreeNode(x=-1, y=-1, width=2, height=2)
+
+    def BuildTree(self, particles):
+        """Build the Quadtree by inserting particles.
+        
+        Args:
+        particles (list): A list of Particle objects to be inserted into the Quadtree.
+        """
+        self.ResetTree()  # Empty the tree
+        for particle in particles:
+            self.rootNode.insert(particle)
+
+    def ResetTree(self):
+        """Reset the Quadtree by reinitializing the root node."""
+        self.rootNode = TreeNode(x=-1, y=-1, width=2, height=2)
+
+
+class Particle:
+
+    def __init__(self, x, y, mass):
+        """Initialize a Particle with x and y coordinates and mass."""
+        self.x = x
+        self.y = y
+        self.mass = mass
+        self.vx = 0.0  # Velocity component in x direction
+        self.vy = 0.0  # Velocity component in y direction
+        self.fx = 0.0  # Force component in x direction
+        self.fy = 0.0  # Force component in y direction
+
+
+class TreeNode:
+
+    def __init__(self, x, y, width, height):
+        """Initialize a TreeNode representing a quadrant in the Quadtree.
+
+        Args:
+        x (float): x-coordinate of the node.
+        y (float): y-coordinate of the node.
+        width (float): Width of the node.
+        height (float): Height of the node.
+        """
+        self.x = x
+        self.y = y
+        self.width = width
+        self.height = height
+        self.particle = None  # Particle contained in this node
+        self.center_of_mass = np.array([(x + width) / 2, (y + width) / 2])
+        self.total_mass = 0
+        self.children = np.empty(4, dtype=object)  # Children nodes (SW, SE, NW, NE)
+
+    def contains(self, particle):
+        """Check if the particle is within the bounds of this node.
+        
+        Args:
+        particle (Particle): The particle to be checked.
+
+        Returns:
+        bool: True if the particle is within the node's bounds, False otherwise.
+        """
+        return (self.x <= particle.x < self.x + self.width and self.y <= particle.y < self.y + self.height)
+
+    def insert(self, particle):
+        """Insert a particle into the Quadtree.
+        
+        Args:
+        particle (Particle): The particle to be inserted.
+
+        Returns:
+        bool: True if the particle is inserted, False otherwise.
+        """
+        if not self.contains(particle):
+            return False  # Particle doesn't belong in this node
+
+        if self.particle is None and all(child is None for child in self.children):
+            # If the node is empty and has no children, insert particle here.
+            self.particle = particle
+            #print(f'particle inserted: x={round(self.particle.x,2)}, y={round(self.particle.y,2)}')
+            return True  # Particle inserted in an empty node
+
+        if all(child is None for child in self.children):
+            # If no children exist, create and insert both particles
+            self.subdivide()
+            self.insert(self.particle)  # Reinsert existing particle
+            self.insert(particle)  # Insert new particle
+            self.particle = None  # Clear particle from this node
+        else:
+            # If the node has children, insert particle in the child node.
+            quad_index = self.get_quadrant(particle)
+            if self.children[quad_index] is None:
+                # Create a child node if it doesn't exist
+                self.children[quad_index] = TreeNode(self.x + (quad_index % 2) * (self.width / 2),
+                                                     self.y + (quad_index // 2) * (self.height / 2), self.width / 2,
+                                                     self.height / 2)
+            self.children[quad_index].insert(particle)
+
+    def subdivide(self):
+        """Subdivide the node into four quadrants."""
+        sub_width = self.width / 2
+        sub_height = self.height / 2
+        self.children[0] = TreeNode(self.x, self.y, sub_width, sub_height)  # SW
+        self.children[1] = TreeNode(self.x + sub_width, self.y, sub_width, sub_height)  # SE
+        self.children[2] = TreeNode(self.x, self.y + sub_height, sub_width, sub_height)  # NW
+        self.children[3] = TreeNode(self.x + sub_width, self.y + sub_height, sub_width, sub_height)  # NE
+
+    def get_quadrant(self, particle):
+        """Determine the quadrant index for a particle based on its position.
+        
+        Args:
+        particle (Particle): The particle to determine the quadrant index for.
+
+        Returns:
+        int: Quadrant index (0 for SW, 1 for SE, 2 for NW, 3 for NE).
+        """
+        mid_x = self.x + self.width / 2
+        mid_y = self.y + self.height / 2
+        quad_index = (particle.x >= mid_x) + 2 * (particle.y >= mid_y)
+        return quad_index
+
+    def print_tree(self, depth=0):
+        """Print the structure of the Quadtree.
+        
+        Args:
+        depth (int): Current depth in the tree (for indentation in print).
+        """
+        if self.particle:
+            print(
+                f"{' ' * depth}Particle at ({round(self.particle.x,2)}, {round(self.particle.y,2)}) in Node ({self.x}, {self.y}), size={self.width}"
+            )
+        else:
+            print(f"{' ' * depth}Node ({self.x}, {self.y}) - Width: {self.width}, Height: {self.height}")
+            for child in self.children:
+                if child:
+                    child.print_tree(depth + 2)
+
+    def ComputeMassDistribution(self):
+        """Compute the mass distribution for the tree nodes.
+
+        This function calculates the total mass and the center of mass
+        for each node in the Quadtree. It's a recursive function that
+        computes the mass distribution starting from the current node.
+
+        Note:
+        This method modifies the 'mass' and 'center_of_mass' attributes
+        for each node in the Quadtree.
+
+        Returns:
+        None
+        """
+        if self.particle is not None:
+            # Node contains only one particle
+            self.center_of_mass = np.array([self.particle.x, self.particle.y])
+            self.total_mass = self.particle.mass
+        else:
+            # Multiple particles in node
+            total_mass = 0
+            center_of_mass_accumulator = np.array([0.0, 0.0])
+
+            for child in self.children:
+                if child is not None:
+                    # Recursively compute mass distribution for child nodes
+                    child.ComputeMassDistribution()
+                    total_mass += child.total_mass
+                    center_of_mass_accumulator += child.total_mass * child.center_of_mass
+
+            if total_mass > 0:
+                self.center_of_mass = center_of_mass_accumulator / total_mass
+                self.total_mass = total_mass
+            else:
+                # If total mass is 0 or no child nodes have mass, leave values as default
+                pass
+                #self.center_of_mass = np.array([(x+width)/2, (y+width)/2])
+                #self.total_mass = 0
+
+    def CalculateForceFromTree(self, target_particle, theta=1.0):
+        """Calculate the force on a target particle using the Barnes-Hut algorithm.
+
+        Args:
+        target_particle (Particle): The particle for which the force is calculated.
+        theta (float): The Barnes-Hut criterion for force approximation.
+
+        Returns:
+        np.ndarray: The total force acting on the target particle.
+        """
+
+        total_force = np.array([0.0, 0.0])
+
+        if self.particle is not None:
+            # Node contains only one particle
+            if self.particle != target_particle:
+                # Calculate gravitational force between target_particle and node's particle
+                force = self.GravitationalForce(target_particle, self.particle)
+                total_force += force
+        else:
+            if self.total_mass == 0:
+                return total_force
+
+            r = np.linalg.norm(np.array([target_particle.x, target_particle.y]) - self.center_of_mass)
+            d = max(self.width, self.height)
+
+            if d / r < theta:
+                # Calculate gravitational force between target_particle and "node particle" representing cluster
+                node_particle = Particle(self.center_of_mass[0], self.center_of_mass[1], self.total_mass)
+                force = self.GravitationalForce(target_particle, node_particle)
+                total_force += force
+            else:
+                for child in self.children:
+                    if child is not None:
+                        # Recursively calculate force from child nodes
+                        if target_particle is not None:  # Check if the target_particle is not None
+                            force = child.CalculateForceFromTree(target_particle)
+                            total_force += force
+
+        return total_force
+
+    def CalculateForce(self, target_particle, particle, theta=1.0):
+        """Calculate the gravitational force between two particles.
+
+        Args:
+        target_particle (Particle): The particle for which the force is calculated.
+        particle (Particle): The particle exerting the force.
+
+        Returns:
+        np.ndarray: The force vector acting on the target particle due to 'particle'.
+        """
+        force = np.array([0.0, 0.0])
+        print('function CalculateForce is called')
+        if self.particle is not None:
+            # Node contains only one particle
+            if self.particle != target_particle:
+                # Calculate gravitational force between target_particle and node's particle
+                force = self.GravitationalForce(target_particle, self.particle)
+        else:
+            if target_particle is not None and particle is not None:  # Check if both particles are not None
+                r = np.linalg.norm(
+                    np.array([target_particle.x, target_particle.y]) - np.array([particle.x, particle.y]))
+                d = max(self.width, self.height)
+
+                if d / r < theta:
+                    # Calculate gravitational force between target_particle and particle
+                    force = self.GravitationalForce(target_particle, particle)
+                else:
+                    for child in self.children:
+                        if child is not None:
+                            # Recursively calculate force from child nodes
+                            force += child.CalculateForce(target_particle, particle)
+        return force
+
+    def GravitationalForce(self, particle1, particle2):
+        """Calculate the gravitational force between two particles.
+
+        Args:
+        particle1 (Particle): First particle.
+        particle2 (Particle): Second particle.
+
+        Returns:
+        np.ndarray: The gravitational force vector between particle1 and particle2.
+        """
+        #G = 6.674 * (10 ** -11)  # Gravitational constant
+        #G = 1
+        G = 4 * np.pi**2  # AU^3 / m / yr^2
+
+        dx = particle2.x - particle1.x
+        dy = particle2.y - particle1.y
+        cutoff_radius = 0
+        r = max(np.sqrt(dx**2 + dy**2), cutoff_radius)
+
+        force_magnitude = G * particle1.mass * particle2.mass / (r**2)
+        force_x = force_magnitude * (dx / r)
+        force_y = force_magnitude * (dy / r)
+
+        return np.array([force_x, force_y])
+
+    # Helper method to retrieve all particles in the subtree
+    def particles_in_subtree(self):
+        """Retrieve all particles in the subtree rooted at this node.
+
+        Returns:
+        list: A list of particles in the subtree rooted at this node.
+        """
+        particles = []
+        if self.particle is not None:
+            particles.append(self.particle)
+        else:
+            for child in self.children:
+                if child is not None:
+                    particles.extend(child.particles_in_subtree())
+        return particles
+
+    def compute_center_of_mass(self):
+        """Compute the center of mass for the node."""
+        print('Function compute_center_of_mass is called')
+        if self.particle is not None:
+            self.center_of_mass = np.array([self.particle.x, self.particle.y])
+            self.mass = self.particle.mass
+        else:
+            total_mass = 0
+            center_of_mass_accumulator = np.array([0.0, 0.0])
+
+            for child in self.children:
+                if child is not None:
+                    child.compute_center_of_mass()
+                    total_mass += child.mass
+                    center_of_mass_accumulator += child.mass * child.center_of_mass
+
+            if total_mass > 0:
+                self.center_of_mass = center_of_mass_accumulator / total_mass
+                self.mass = total_mass
+            else:
+                self.center_of_mass = np.array([0.0, 0.0])
+                self.mass = 0
\ No newline at end of file
diff --git a/jobs/src/bht_algorithm_3D.py b/jobs/src/bht_algorithm_3D.py
new file mode 100644
index 0000000000000000000000000000000000000000..7ade62d4c16433743a372b7384e55b928140f61c
--- /dev/null
+++ b/jobs/src/bht_algorithm_3D.py
@@ -0,0 +1,366 @@
+"""
+This module implements the Barnes Hut Tree (BHT) Algorithm for 3D data.
+"""
+
+import numpy as np
+
+
+class MainApp:
+
+    def __init__(self, particles):
+        """Initialize the MainApp with a root node."""
+        self.rootNode = TreeNode(x=0, y=0, z=0, width=200, height=200, depth=200)
+
+    def BuildTree(self, particles):
+        """Build the Octree by inserting particles.
+        
+        Args:
+        particles (list): A list of Particle objects to be inserted into the Octree.
+        """
+        self.ResetTree(particles)  # Empty the tree
+        for particle in particles:
+            self.rootNode.insert(particle)
+
+    def ResetTree(self, particles):
+        """Reset the Quadtree by reinitializing the root node."""
+        # Define the size of the rootNode based on the positions of the particles
+        #min_x = min([particle.x for particle in particles])
+        #min_y = min([particle.y for particle in particles])
+        #min_z = min([particle.z for particle in particles])
+        #max_x = max([particle.x for particle in particles])
+        #max_y = max([particle.y for particle in particles])
+        #max_z = max([particle.z for particle in particles])
+        #root_height = max_y - min_y
+        #root_width = max_x - min_x
+        #root_depth = max_z - min_z
+        #self.rootNode = TreeNode(x=min_x, y=min_y, z=min_z, width=root_width, height=root_height, depth=root_depth)
+        self.rootNode = TreeNode(x=0, y=0, z=0, width=200, height=200, depth=200)
+
+
+class Particle:
+
+    def __init__(self, x, y, z, mass):
+        """Initialize a Particle with x, y, z coordinates and mass."""
+        self.x = x
+        self.y = y
+        self.z = z
+        self.mass = mass
+
+        self.vx = 0.0  # Velocity component in x direction
+        self.vy = 0.0  # Velocity component in y direction
+        self.vz = 0.0  # Velocity component in z direction
+
+        self.fx = 0.0  # Force component in x direction
+        self.fy = 0.0  # Force component in y direction
+        self.fz = 0.0  # Force component in z direction
+
+
+class TreeNode:
+
+    def __init__(self, x, y, z, width, height, depth):
+        """Initialize a TreeNode representing a octant in the Octree.
+
+        Args:
+        x (float): x-coordinate of the node.
+        y (float): y-coordinate of the node.
+        z (float): z-coordinate of the node.
+        width (float): Width of the node.
+        height (float): Height of the node.
+        depth (float): Depth of the node.
+        """
+        self.x = x
+        self.y = y
+        self.z = z
+        self.width = width
+        self.height = height
+        self.depth = depth
+        self.particle = None  # Particle contained in this node
+        self.center_of_mass = np.array([(x + width) / 2, (y + height) / 2, (z + depth) / 2])
+        self.total_mass = 0  # Total mass contained in the node
+        self.children = np.empty(8, dtype=object)  # Children nodes (F-SW, F-SE, F-NW, F-NE, B-SW, B-SE, B-NW, B-NE,)
+
+    def contains(self, particle):
+        """Check if the particle is within the bounds of this node.
+        
+        Args:
+        particle (Particle): The particle to be checked.
+
+        Returns:
+        bool: True if the particle is within the node's bounds, False otherwise.
+        """
+        return (self.x <= particle.x <= self.x + self.width and self.y <= particle.y <= self.y + self.height
+                and self.z <= particle.z <= self.z + self.depth)
+
+    def insert(self, particle):
+        """Insert a particle into the Octree.
+        
+        Args:
+        particle (Particle): The particle to be inserted.
+
+        Returns:
+        bool: True if the particle is inserted, False otherwise.
+        """
+        if not self.contains(particle):
+            return False  # Particle doesn't belong in this node
+
+        if self.particle is None and all(child is None for child in self.children):
+            # If the node is empty and has no children, insert particle here.
+            self.particle = particle
+            #print(f'particle inserted: x={round(self.particle.x,2)}, y={round(self.particle.y,2)}, , z={round(self.particle.z,2)}')
+            return True  # Particle inserted in an empty node
+
+        if all(child is None for child in self.children):
+            # If no children exist, create and insert both particles
+            self.subdivide()
+            self.insert(self.particle)  # Reinsert existing particle into subnode
+            self.insert(particle)  # Insert new particle
+            self.particle = None  # Clear particle from this node
+        else:
+            # If the node has children, insert particle in the child node.
+            oct_index = self.get_octant(particle)
+            if self.children[oct_index] is None:
+                print('Missing node:', self.children)
+                # Create a child node if it doesn't exist
+                self.children[oct_index] = TreeNode(self.x + (oct_index % 2) * (self.width / 2),
+                                                    self.y + (oct_index // 2) * (self.height / 2),
+                                                    self.z + (oct_index // 2) * (self.depth / 2), self.width / 2,
+                                                    self.height / 2, self.depth / 2)
+            self.children[oct_index].insert(particle)
+
+    def subdivide(self):
+        """Create the children of the node."""
+        sub_width = self.width / 2
+        sub_height = self.height / 2
+        sub_depth = self.depth / 2
+        self.children[0] = TreeNode(self.x, self.y, self.z, sub_width, sub_height, sub_depth)  # B-SW
+        self.children[1] = TreeNode(self.x + sub_width, self.y, self.z, sub_width, sub_height, sub_depth)  # B-SE
+        self.children[2] = TreeNode(self.x, self.y + sub_height, self.z, sub_width, sub_height, sub_depth)  # B-NW
+        self.children[3] = TreeNode(self.x + sub_width, self.y + sub_height, self.z, sub_width, sub_height,
+                                    sub_depth)  # B-NE
+        self.children[4] = TreeNode(self.x, self.y, self.z + sub_depth, sub_width, sub_height, sub_depth)  # T-SW
+        self.children[5] = TreeNode(self.x + sub_width, self.y, self.z + sub_depth, sub_width, sub_height,
+                                    sub_depth)  # T-SE
+        self.children[6] = TreeNode(self.x, self.y + sub_height, self.z + sub_depth, sub_width, sub_height,
+                                    sub_depth)  # T-NW
+        self.children[7] = TreeNode(self.x + sub_width, self.y + sub_height, self.z + sub_depth, sub_width, sub_height,
+                                    sub_depth)  # T-NE
+
+    def get_octant(self, particle):
+        """Determine the octant index for a particle based on its position.
+        
+        Args:
+        particle (Particle): The particle to determine the octant index for.
+
+        Returns:
+        int: Octant index 
+        B - Bottom, T - Top
+        (0 for B-SW, 1 for B-SE, 2 for B-NW, 3 for B-NE,
+        4 for T-SW, 5 for T-SE, 6 for T-NW, 7 for T-NE).
+        """
+        # Determine separating planes
+        mid_x = self.x + self.width / 2
+        mid_y = self.y + self.height / 2
+        mid_z = self.z + self.depth / 2
+        quad_index = (particle.x >= mid_x) + 2 * (particle.y >= mid_y) + 4 * (particle.z >= mid_z)
+        return quad_index
+
+    def print_tree(self, depth_=0):
+        """Print the structure of the Octree.
+        
+        Args:
+        depth_ (int): Current depth in the tree (for indentation in print).
+        """
+        if self.particle:
+            print(
+                f"{' ' * depth_}Particle at ({round(self.particle.x,2)}, {round(self.particle.y,2)}, {round(self.particle.z,2)}) in Node ({round(self.x,2)}, {round(self.y,2)}, {round(self.z,2)}), width={round(self.width,2)}, height={round(self.height,2)}, depth={round(self.depth,2)}"
+            )
+        else:
+            print(
+                f"{' ' * depth_}Node ({round(self.x,2)}, {round(self.y,2)}, {round(self.z,2)}) - Width: {round(self.width,2)}, Height: {round(self.height,2)}, Depth: {round(self.depth,2)}"
+            )
+            for child in self.children:
+                if child:
+                    child.print_tree(depth_ + 2)
+
+    def ComputeMassDistribution(self):
+        """Compute the mass distribution for the tree nodes.
+
+        This function calculates the total mass and the center of mass
+        for each node in the Octree. It's a recursive function that
+        computes the mass distribution starting from the current node.
+
+        Note:
+        This method modifies the 'total_mass' and 'center_of_mass' attributes
+        for each node in the Octree.
+
+        Returns:
+        None
+        """
+        if self.particle is not None:
+            # Node contains only one particle
+            self.center_of_mass = np.array([self.particle.x, self.particle.y, self.particle.z])
+            self.total_mass = self.particle.mass
+        else:
+            # Multiple particles in node
+            total_mass = 0
+            center_of_mass_accumulator = np.array([0.0, 0.0, 0.0])
+
+            for child in self.children:
+                if child is not None:
+                    # Recursively compute mass distribution for child nodes
+                    child.ComputeMassDistribution()
+                    total_mass += child.total_mass
+                    center_of_mass_accumulator += child.total_mass * child.center_of_mass
+
+            if total_mass > 0:
+                self.center_of_mass = center_of_mass_accumulator / total_mass
+                self.total_mass = total_mass
+            else:
+                # If total mass is 0 or no child nodes have mass, leave values as default
+                pass
+                #self.center_of_mass = np.array([(x+width)/2, (y+height)/2, (z+depth)/2])
+                #self.total_mass = 0
+
+    def CalculateForceFromTree(self, target_particle, theta=1.0):
+        """Calculate the force on a target particle using the Barnes-Hut algorithm.
+
+        Args:
+        target_particle (Particle): The particle for which the force is calculated.
+        theta (float): The Barnes-Hut criterion for force approximation.
+
+        Returns:
+        np.ndarray: The total force acting on the target particle.
+        """
+
+        total_force = np.array([0.0, 0.0, 0.0])
+
+        if self.particle is not None:
+            # Node contains only one particle
+            if self.particle != target_particle:
+                # Calculate gravitational force between target_particle and node's particle
+                force = self.GravitationalForce(target_particle, self.particle)
+                total_force += force
+        else:
+            if self.total_mass == 0:
+                return total_force
+
+            r = np.linalg.norm(
+                np.array([target_particle.x, target_particle.y, target_particle.z]) - self.center_of_mass)
+            d = max(self.width, self.height, self.depth)
+
+            if d / r < theta:
+                # Calculate gravitational force between target_particle and "node particle" representing cluster
+
+                force = self.GravitationalForce(
+                    target_particle,
+                    Particle(self.center_of_mass[0], self.center_of_mass[1], self.center_of_mass[2], self.total_mass))
+                total_force += force
+            else:
+                for child in self.children:
+                    if child is not None:
+                        # Recursively calculate force from child nodes
+                        if target_particle is not None:  # Check if the target_particle is not None
+                            force = child.CalculateForceFromTree(target_particle)
+                            total_force += force
+
+        return total_force
+
+    def CalculateForce(self, target_particle, particle, theta=1.0):
+        """Calculate the gravitational force between two particles.
+
+        Args:
+        target_particle (Particle): The particle for which the force is calculated.
+        particle (Particle): The particle exerting the force.
+
+        Returns:
+        np.ndarray: The force vector acting on the target particle due to 'particle'.
+        """
+        force = np.array([0.0, 0.0, 0.0])
+        print('function CalculateForce is called')
+        if self.particle is not None:
+            # Node contains only one particle
+            if self.particle != target_particle:
+                # Calculate gravitational force between target_particle and node's particle
+                force = self.GravitationalForce(target_particle, self.particle)
+        else:
+            if target_particle is not None and particle is not None:  # Check if both particles are not None
+                r = np.linalg.norm(
+                    np.array([target_particle.x, target_particle.y, target_particle.z]) -
+                    np.array([particle.x, particle.y, particle.z]))
+                d = max(self.width, self.height, self.depth)
+
+                if d / r < theta:
+                    # Calculate gravitational force between target_particle and particle
+                    force = self.GravitationalForce(target_particle, particle)
+                else:
+                    for child in self.children:
+                        if child is not None:
+                            # Recursively calculate force from child nodes
+                            force += child.CalculateForce(target_particle, particle)
+        return force
+
+    def GravitationalForce(self, particle1, particle2):
+        """Calculate the gravitational force between two particles.
+
+        Args:
+        particle1 (Particle): First particle.
+        particle2 (Particle): Second particle.
+
+        Returns:
+        np.ndarray: The gravitational force vector between particle1 and particle2.
+        """
+        #G = 6.674 * (10 ** -11)  # Gravitational constant
+        G = 1
+
+        dx = particle2.x - particle1.x
+        dy = particle2.y - particle1.y
+        dz = particle2.z - particle1.z
+        cutoff_radius = 5
+        r = max(np.sqrt(dx**2 + dy**2 + dz**2), cutoff_radius)
+
+        force_magnitude = G * particle1.mass * particle2.mass / (r**2)
+        force_x = force_magnitude * (dx / r)
+        force_y = force_magnitude * (dy / r)
+        force_z = force_magnitude * (dz / r)
+
+        return np.array([force_x, force_y, force_z])
+
+    # Helper method to retrieve all particles in the subtree
+    def particles_in_subtree(self):
+        """Retrieve all particles in the subtree rooted at this node.
+
+        Returns:
+        list: A list of particles in the subtree rooted at this node.
+        """
+        particles = []
+
+        if self.particle is not None:
+            particles.append(self.particle)
+        else:
+            for child in self.children:
+                if child is not None:
+                    particles.extend(child.particles_in_subtree())
+        return len(particles), particles
+
+    def compute_center_of_mass(self):
+        """Compute the center of mass for the node."""
+        print('Function compute_center_of_mass is called')
+        if self.particle is not None:
+            self.center_of_mass = np.array([self.particle.x, self.particle.y, self.particle.z])
+            self.mass = self.particle.mass
+        else:
+            total_mass = 0
+            center_of_mass_accumulator = np.array([0.0, 0.0, 0.0])
+
+            for child in self.children:
+                if child is not None:
+                    child.compute_center_of_mass()
+                    total_mass += child.mass
+                    center_of_mass_accumulator += child.mass * child.center_of_mass
+
+            if total_mass > 0:
+                self.center_of_mass = center_of_mass_accumulator / total_mass
+                self.mass = total_mass
+            else:
+                self.center_of_mass = np.array([0.0, 0.0, 0.0])
+                self.mass = 0
\ No newline at end of file
diff --git a/jobs/src/system.py b/jobs/src/system.py
index 264dcfdf22572b1208902fe034f99542928a374c..3e008f00defd27d1c05c6864574d296f4335cc23 100644
--- a/jobs/src/system.py
+++ b/jobs/src/system.py
@@ -1,6 +1,5 @@
 """
-This module contains base class for a n-body gravitational system
-with 2 methods of simulations: direct and approximated force field.
+This module contains base class for a n-body gravitational system.
 """
 
 from collections.abc import Callable
@@ -23,12 +22,12 @@ class GravitationalSystem:
         assert self.r0.shape == self.v0.shape
         assert self.m.shape[0] == self.r0.shape[0]
 
-        solvers = ['verlet']
+        solvers = ['verlet', 'bht']
         assert self.solver.__name__ in solvers
 
-    def direct_simulation(self):
+    def simulation(self):
         """
-        Using integrator to compute trajector in phase space
+        Using integrator to compute trajectory in phase space
         """
         p = np.zeros((len(self.t), *self.v0.shape))
         q = np.zeros((len(self.t), *self.r0.shape))
@@ -39,19 +38,4 @@ class GravitationalSystem:
             dt = self.t[i] - self.t[i - 1]
             p[i], q[i] = self.solver(self.force, q[i - 1], p[i - 1], self.m, dt)
 
-        return self.t, p, q
-
-    def force_field(self):
-        """
-        Using force field method to compute trajector in phase space
-        """
-        p = np.zeros((len(self.t), *self.v0.shape))
-        q = np.zeros((len(self.t), *self.r0.shape))
-        q[0] = self.r0
-        p[0] = self.m * self.v0
-        for i in range(1, len(self.t)):
-            # something with dt = self.t[i] - self.t[i-1]
-            # p = m*v
-            pass
-
-        return self.t, p, q
+        return self.t, p, q
\ No newline at end of file
diff --git a/jobs/tests/test_bht_algorithm.py b/jobs/tests/test_bht_algorithm.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/jobs/tests/test_bht_algorithm_2D.py b/jobs/tests/test_bht_algorithm_2D.py
new file mode 100644
index 0000000000000000000000000000000000000000..0318849e84fb25bdd49676bf5134d385994cd9d6
--- /dev/null
+++ b/jobs/tests/test_bht_algorithm_2D.py
@@ -0,0 +1,150 @@
+"""
+This unittest tests implementation of the BHT algorithm
+for the restricted three-body (sun-earth-moon) problem.
+The sun is fixed at the origin (center of mass). For 
+simplicity, the moon is assumed to be in the eliptic plane,
+so that vectors can be treated as two-dimensional. 
+"""
+
+import logging
+import unittest
+
+import matplotlib.pyplot as plt
+import numpy as np
+
+from jobs.src.integrators import verlet
+from jobs.src.system import GravitationalSystem
+from jobs.src.bht_algorithm_2D import MainApp, Particle
+
+logger = logging.getLogger(__name__)
+logging.basicConfig(level=logging.INFO)
+
+# system settings
+R_SE = 1  # distance between Earth and the Sun, 1 astronomical unit (AU)
+R_L = 2.57e-3 * R_SE  # distance between Earth and the Moon
+
+M_S = 1  # solar mass
+M_E = 3.00e-6 * M_S
+M_L = 3.69e-8 * M_S
+
+T_E = 1  # earth yr
+T_L = 27.3 / 365.3 * T_E
+
+G = 4 * np.pi**2  # AU^3 / m / yr^2
+
+# simulation settings
+T = 0.3  # yr
+n_order = 6
+dt = 4**(-n_order)  # yr
+
+
+# force computation
+def force(q: np.ndarray) -> np.ndarray:
+    r1 = q[0:2]  # Earth coordinates
+    r2 = q[2:4]  # Moon coordinates
+
+    sun = Particle(0, 0, M_S)
+    earth = Particle(r1[0], r1[1], M_E)
+    moon = Particle(r2[0], r2[1], M_L)
+
+    particles = [sun, earth, moon]
+
+    barnes_hut = MainApp()  # Initialize Barnes-Hut algorithm instance
+    barnes_hut.BuildTree(particles)  # Build the Barnes-Hut tree with particles
+    barnes_hut.rootNode.ComputeMassDistribution()  #Compute the center of mass of the tree nodes
+
+    f_earth = barnes_hut.rootNode.CalculateForceFromTree(earth)
+    f_moon = barnes_hut.rootNode.CalculateForceFromTree(moon)
+
+    return np.concatenate((f_earth, f_moon), axis=0)
+
+
+class IntegratorTest(unittest.TestCase):
+
+    def test_bht(self):
+        """
+        Test functionalities of velocity-Verlet algorithm
+        """
+        # vector of r0 and v0
+        x0 = np.array([
+            R_SE,
+            0,
+            R_SE + R_L,
+            0,
+            0,
+            R_SE * 2 * np.pi / T_E,
+            0,
+            1 / M_E * M_E * R_SE * 2 * np.pi / T_E + 1 * R_L * 2 * np.pi / T_L,
+        ])
+
+        system = GravitationalSystem(r0=x0[:4],
+                                     v0=x0[4:],
+                                     m=np.array([M_E, M_E, M_L, M_L]),
+                                     t=np.linspace(0, T, int(T // dt)),
+                                     force=force,
+                                     solver=verlet)
+
+        t, p, q = system.simulation()
+
+        ## checking total energy conservation
+        H = np.linalg.norm(p[:,:2], axis=1)**2 / (2 * M_E) + np.linalg.norm(p[:,2:], axis=1)**2 / (2 * M_L) + \
+            -G * M_S * M_E / np.linalg.norm(q[:,:2], axis=1) - G * M_S * M_L / np.linalg.norm(q[:,2:], axis=1) + \
+            -G * M_E * M_L / np.linalg.norm(q[:,2:] - q[:,:2], axis=1)
+
+        self.assertTrue(np.greater(1e-7 + np.zeros(H.shape[0]), H - H[0]).all())
+
+        ## checking total linear momentum conservation
+        P = p[:, :2] + p[:, 2:]
+        self.assertTrue(np.greater(1e-10 + np.zeros(P[0].shape), P - P[0]).all())
+
+        ## checking total angular momentum conservation
+        L = np.cross(q[:, :2], p[:, :2]) + np.cross(q[:, 2:], p[:, 2:])
+        self.assertTrue(np.greater(1e-8 + np.zeros(L.shape[0]), L - L[0]).all())
+
+        ## checking error
+        dts = [dt, 2 * dt, 4 * dt]
+        errors = []
+        ts = []
+        for i in dts:
+            system = GravitationalSystem(r0=x0[:4],
+                                         v0=x0[4:],
+                                         m=np.array([M_E, M_E, M_L, M_L]),
+                                         t=np.linspace(0, T, int(T // i)),
+                                         force=force,
+                                         solver=verlet)
+
+            t, p_t, q_t = system.simulation()
+
+
+            H = np.linalg.norm(p_t[:,:2], axis=1)**2 / (2 * M_E) + np.linalg.norm(p_t[:,2:], axis=1)**2 / (2 * M_L) + \
+            -G * M_S * M_E / np.linalg.norm(q_t[:,:2], axis=1) - G * M_S * M_L / np.linalg.norm(q_t[:,2:], axis=1) + \
+            -G * M_E * M_L / np.linalg.norm(q_t[:,2:] - q_t[:,:2], axis=1)
+
+            errors.append((H - H[0]) / i**2)
+            ts.append(t)
+
+        plt.figure()
+        plt.plot(ts[0], errors[0], label="dt")
+        plt.plot(ts[1], errors[1], linestyle='--', label="2*dt")
+        plt.plot(ts[2], errors[2], linestyle=':', label="4*dt")
+        plt.xlabel("$t$")
+        plt.ylabel("$\delta E(t)/(\Delta t)^2$")
+        plt.legend()
+        plt.show()
+
+        ## checking time reversal: p -> -p
+        x0 = np.concatenate((q[-1, :], -1 * p[-1, :] / np.array([M_E, M_E, M_L, M_L])), axis=0)
+        system = GravitationalSystem(r0=x0[:4],
+                                     v0=x0[4:],
+                                     m=np.array([M_E, M_E, M_L, M_L]),
+                                     t=np.linspace(0, T, int(T // dt)),
+                                     force=force,
+                                     solver=verlet)
+
+        t, p_reverse, q_reverse = system.simulation()
+        self.assertTrue(np.greater(1e-10 + np.zeros(4), q_reverse[-1] - q[0]).all())
+        self.assertTrue(np.greater(1e-10 + np.zeros(4), p_reverse[-1] - p[0]).all())
+
+
+if __name__ == '__main__':
+    unittest.main()
diff --git a/jobs/tests/test_integrator.py b/jobs/tests/test_integrator.py
index f772a1376a1a0b3cfed84b736ba14eee4fbc5715..fbd7008b4b6fc50f031150cd410577a64e2cdaa8 100644
--- a/jobs/tests/test_integrator.py
+++ b/jobs/tests/test_integrator.py
@@ -73,7 +73,7 @@ class IntegratorTest(unittest.TestCase):
                                      force=force,
                                      solver=verlet)
 
-        t, p, q = system.direct_simulation()
+        t, p, q = system.simulation()
 
         ## checking total energy conservation
         H = np.linalg.norm(p[:,:2], axis=1)**2 / (2 * M_E) + np.linalg.norm(p[:,2:], axis=1)**2 / (2 * M_L) + \
@@ -102,7 +102,7 @@ class IntegratorTest(unittest.TestCase):
                                          force=force,
                                          solver=verlet)
 
-            t, p_t, q_t = system.direct_simulation()
+            t, p_t, q_t = system.simulation()
 
 
             H = np.linalg.norm(p_t[:,:2], axis=1)**2 / (2 * M_E) + np.linalg.norm(p_t[:,2:], axis=1)**2 / (2 * M_L) + \
@@ -130,7 +130,7 @@ class IntegratorTest(unittest.TestCase):
                                      force=force,
                                      solver=verlet)
 
-        t, p_reverse, q_reverse = system.direct_simulation()
+        t, p_reverse, q_reverse = system.simulation()
         self.assertTrue(np.greater(1e-10 + np.zeros(4), q_reverse[-1] - q[0]).all())
         self.assertTrue(np.greater(1e-10 + np.zeros(4), p_reverse[-1] - p[0]).all())