#include <dune/matrix-vector/axpy.hh> #include <dune/istl/matrixindexset.hh> #include "backward_euler.hh" template <class Vector, class Matrix, class Function, size_t dim> BackwardEuler<Vector, Matrix, Function, dim>::BackwardEuler( const Matrices<Matrix,2>& _matrices, const std::vector<Vector>& _u_initial, const std::vector<Vector>& _v_initial, const std::vector<Vector>& _a_initial, const std::vector<Dune::BitSetVector<dim>>& _dirichletNodes, const std::vector<const Function*>& _dirichletFunctions) : RateUpdater<Vector, Matrix, Function, dim>( _matrices, _u_initial, _v_initial, _a_initial, _dirichletNodes, _dirichletFunctions) {} template <class Vector, class Matrix, class Function, size_t dim> void BackwardEuler<Vector, Matrix, Function, dim>::setup(const std::vector<Vector>& ell, double _tau, double relativeTime, std::vector<Vector>& rhs, std::vector<Vector>& iterate, std::vector<Matrix>& AM) { for (size_t i=0; i<this->u.size(); i++) { this->dirichletFunctions[i]->evaluate(relativeTime, this->dirichletValue); this->tau = _tau; /* We start out with the formulation M a + C v + A u = ell Backward Euler means a1 = 1.0/tau ( v1 - v0 ) u1 = tau v1 + u0 in summary, we get at time t=1 M [1.0/tau ( v1 - v0 )] + C v1 + A [tau v1 + u0] = ell or 1.0/tau M v1 + C v1 + tau A v1 = [1.0/tau M + C + tau A] v1 = ell + 1.0/tau M v0 - A u0 */ // set up LHS (for fixed tau, we'd only really have to do this once) Matrix& LHS = AM[i]; { Dune::MatrixIndexSet indices(this->matrices.elasticity[i]->N(), this->matrices.elasticity[i]->M()); indices.import(*this->matrices.elasticity[i]); indices.import(*this->matrices.mass[i]); indices.import(*this->matrices.damping[i]); indices.exportIdx(LHS); } LHS = 0.0; Dune::MatrixVector::addProduct(LHS, 1.0 / this->tau, *this->matrices.mass[i]); Dune::MatrixVector::addProduct(LHS, 1.0, *this->matrices.damping[i]); Dune::MatrixVector::addProduct(LHS, this->tau, *this->matrices.elasticity[i]); // set up RHS { Vector& rhss = rhs[i]; rhss = ell[i]; Dune::MatrixVector::addProduct(rhss, 1.0 / this->tau, *this->matrices.mass[i], this->v_o[i]); Dune::MatrixVector::subtractProduct(rhss, *this->matrices.elasticity[i], this->u_o[i]); } iterate = this->v_o; const Dune::BitSetVector<dim>& dirichletNodess = this->dirichletNodes[i]; for (size_t k = 0; k < dirichletNodess.size(); ++k) for (size_t j = 0; j < dim; ++j) if (dirichletNodess[k][j]) iterate[k][j] = (j == 0) ? this->dirichletValue : 0; } } template <class Vector, class Matrix, class Function, size_t dim> void BackwardEuler<Vector, Matrix, Function, dim>::postProcess( const std::vector<Vector>& iterate) { this->postProcessCalled = true; this->v = iterate; this->u = this->u_o; for (size_t i=0; i<this->u.size(); i++) { Dune::MatrixVector::addProduct(this->u[i], this->tau, this->v[i]); Vector& ai = this->a[i]; ai = this->v[i]; ai -= this->v_o[i]; ai /= this->tau; } } template <class Vector, class Matrix, class Function, size_t dim> std::shared_ptr<RateUpdater<Vector, Matrix, Function, dim>> BackwardEuler<Vector, Matrix, Function, dim>::clone() const { return std::make_shared<BackwardEuler<Vector, Matrix, Function, dim>>(*this); }