#ifndef SRC_PROGRAM_STATE_HH #define SRC_PROGRAM_STATE_HH #include <dune/common/parametertree.hh> #include <dune/matrix-vector/axpy.hh> #include <dune/fufem/boundarypatch.hh> #include <dune/tnnmg/nonlinearities/zerononlinearity.hh> #include <dune/tnnmg/problem-classes/blocknonlineartnnmgproblem.hh> #include <dune/contact/assemblers/nbodyassembler.hh> #include <dune/tectonic/body.hh> #include "assemblers.hh" #include "matrices.hh" #include "spatial-solving/solverfactory.hh" template <class VectorTEMPLATE, class ScalarVectorTEMPLATE> class ProgramState { public: using Vector = VectorTEMPLATE; using ScalarVector = ScalarVectorTEMPLATE; ProgramState(const std::vector<int>& leafVertexCounts) : bodyCount(leafVertexCounts.size()) { u.resize(bodyCount); v.resize(bodyCount); a.resize(bodyCount); alpha.resize(bodyCount); weightedNormalStress.resize(bodyCount); for (size_t i=0; i<bodyCount; i++) { size_t leafVertexCount = leafVertexCounts[i]; u[i].resize(leafVertexCount); v[i].resize(leafVertexCount); a[i].resize(leafVertexCount); alpha[i].resize(leafVertexCount); weightedNormalStress[i].resize(leafVertexCount); } } // Set up initial conditions template <class Matrix, class GridView> void setupInitialConditions( const Dune::ParameterTree& parset, const Dune::Contact::NBodyAssembler<typename GridView::Grid, Vector>& nBodyAssembler, std::vector<std::function<void(double, Vector &)>> externalForces, const Matrices<Matrix>& matrices, const std::vector<std::shared_ptr<MyAssembler<GridView, Vector::block_type::dimension>>>& assemblers, const std::vector<Dune::BitSetVector<Vector::block_type::dimension>>& dirichletNodes, const std::vector<Dune::BitSetVector<Vector::block_type::dimension>>& noNodes, const std::vector<BoundaryPatch<GridView>>& frictionalBoundaries, const Body<Vector::block_type::dimension>& body) { using LocalVector = typename Vector::block_type; using LocalMatrix = typename Matrix::block_type; auto constexpr dims = LocalVector::dimension; /* // Solving a linear problem with a multigrid solver auto const solveLinearProblem = [&]( Dune::BitSetVector<dims> const &_dirichletNodes, const std::vector<std::shared_ptr<Matrix>>& _matrix, Vector const &_rhs, Vector &_x, Dune::ParameterTree const &_localParset) { using LinearFactory = SolverFactory< dims, BlockNonlinearTNNMGProblem<ConvexProblem< ZeroNonlinearity<LocalVector, LocalMatrix>, Matrix>>, typename GridView::Grid>; ZeroNonlinearity<LocalVector, LocalMatrix> zeroNonlinearity; LinearFactory factory(parset.sub("solver.tnnmg"), // FIXME assemblers.gridView.grid(), _dirichletNodes); typename LinearFactory::ConvexProblem convexProblem( 1.0, _matrix, zeroNonlinearity, _rhs, _x); typename LinearFactory::BlockProblem problem(parset, convexProblem); auto multigridStep = factory.getStep(); multigridStep->setProblem(_x, problem); //multigridStep->setProblem(_x); EnergyNorm<Matrix, Vector> const norm(_matrix); LoopSolver<Vector> solver( multigridStep.get(), _localParset.get<size_t>("maximumIterations"), _localParset.get<double>("tolerance"), &norm, _localParset.get<Solver::VerbosityMode>("verbosity"), false); // absolute error solver.preprocess(); solver.solve(); Vector totalX = multigridStep->getSol(); // cleanup delete(multigridStep); nBodyAssembler.postprocess(totalX, x); }; */ timeStep = 0; relativeTime = 0.0; relativeTau = 1e-6; std::vector<Vector> ell0(bodyCount); for (size_t i=0; i<bodyCount; i++) { // Initial velocity v[i] = 0.0; ell0[i].resize(u[i].size()); externalForces[i](relativeTime, ell0[i]); } // Initial displacement: Start from a situation of minimal stress, // which is automatically attained in the case [v = 0 = a]. // Assuming dPhi(v = 0) = 0, we thus only have to solve Au = ell0 solveLinearProblem(dirichletNodes, matrices.elasticity, ell0, u, parset.sub("u0.solver")); // Initial acceleration: Computed in agreement with Ma = ell0 - Au // (without Dirichlet constraints), again assuming dPhi(v = 0) = 0 std::vector<Vector> accelerationRHS = ell0; for (size_t i=0; i<bodyCount; i++) { // Initial state alpha[i] = parset.get<double>("boundary.friction.initialAlpha"); // Initial normal stress assemblers[i]->assembleWeightedNormalStress( frictionalBoundaries[i], weightedNormalStress[i], body.getYoungModulus(), body.getPoissonRatio(), u[i]); Dune::MatrixVector::subtractProduct(accelerationRHS[i], *matrices.elasticity[i], u[i]); } solveLinearProblem(noNodes, matrices.mass, accelerationRHS, a, parset.sub("a0.solver")); } public: std::vector<Vector> u; std::vector<Vector> v; std::vector<Vector> a; std::vector<ScalarVector> alpha; std::vector<ScalarVector> weightedNormalStress; double relativeTime; double relativeTau; size_t timeStep; private: const size_t bodyCount; }; #endif