// Copied from dune/tnnmg/problem-classes/directionalconvexfunction.hh // Allows phi to be const #ifndef MY_DIRECTIONAL_CONVEX_FUNCTION_HH #define MY_DIRECTIONAL_CONVEX_FUNCTION_HH #include <dune/fufem/arithmetic.hh> #include <dune/fufem/interval.hh> /* 1/2 <A(u + hv),u + hv> - <b, u + hv> = 1/2 <Av,v> h^2 - <b - Au, v> h + const. localA = <Av,v> localb = <b - Au, v> */ template <class MatrixType, class VectorType> double computeDirectionalA(MatrixType const &A, VectorType const &v) { return Arithmetic::Axy(A, v, v); } template <class MatrixType, class VectorType> double computeDirectionalb(MatrixType const &A, VectorType const &b, VectorType const &u, VectorType const &v) { VectorType tmp = b; Arithmetic::addProduct(tmp, -1.0, A, u); return tmp * v; } template <class NonlinearityType> class MyDirectionalConvexFunction { public: using VectorType = typename NonlinearityType::VectorType; using MatrixType = typename NonlinearityType::MatrixType; MyDirectionalConvexFunction(double A, double b, NonlinearityType const &phi, VectorType const &u, VectorType const &v) : A(A), b(b), phi(phi), u(u), v(v) { phi.directionalDomain(u, v, dom); } double quadraticPart() const { return A; } double linearPart() const { return b; } void subDiff(double x, Interval<double> &D) const { VectorType uxv = u; Arithmetic::addProduct(uxv, x, v); phi.directionalSubDiff(uxv, v, D); D[0] += A * x - b; D[1] += A * x - b; } void domain(Interval<double> &domain) const { domain[0] = this->dom[0]; domain[1] = this->dom[1]; } double A; double b; private: NonlinearityType const φ VectorType const &u; VectorType const &v; Interval<double> dom; }; #endif