From f67733e408d0073506421c60b748a7ce74744b98 Mon Sep 17 00:00:00 2001 From: swetharom99 <swetharom99@mi.fu-berlin.de> Date: Wed, 16 Apr 2025 08:53:33 +0000 Subject: [PATCH] Update file README.md --- README.md | 17 +++++++++++------ 1 file changed, 11 insertions(+), 6 deletions(-) diff --git a/README.md b/README.md index cfe401d..79458cb 100644 --- a/README.md +++ b/README.md @@ -30,25 +30,28 @@ Pipeline Steps 1. Loading and Preprocessing Data Load and preprocess the datasets to extract the numeric data, with gene names as row identifiers. - ``` data("mrna_data") + ``` + data("mrna_data") data("protein_data") data("phosphosite_data") data("drug_gene_interactions") 2. Identifying Group-Specific Columns Identify the columns corresponding to the two groups using prefixes. - ``` control <- grep("^control_", colnames(protein_matrix)) + ``` + control <- grep("^control_", colnames(protein_matrix)) disease <- grep("^disease_", colnames(protein_matrix)) 3. Computing Condition-Specific Networks Compute condition-specific correlation networks for the control and disease groups. - ``` data_control <- cor(t(data_control[, control])) + ``` + data_control <- cor(t(data_control[, control])) data_disease <- cor(t(data_disease[, disease])) 4. Reducing Noise Using Thresholds Apply a threshold to reduce weak correlations and focus on the stronger relationships. ``` - threshold_value <- 0.5 + threshold_value <- 0.5 reduced_network_control <- applyThreshold(network_control, threshold_value) reduced_network_disease <- applyThreshold(network_disease, threshold_value) @@ -68,7 +71,8 @@ After generating the correlation matrices for each sample using LIONESS, the ne 7. Integrating Data and Running DrDimont After processing all omics layers, integrate them using the DrDimont framework. - ``` # Create layers using DrDimont for each omics dataset + ``` + # Create layers using DrDimont for each omics dataset mrna_layer <- make_layer(name="mrna", data_groupA=groupA_correlation_matrices$rna, data_groupB=groupB_correlation_matrices$rna, @@ -85,7 +89,8 @@ After processing all omics layers, integrate them using the DrDimont framework. 8. Creating Inter-Layer Connections The inter-layer connections was supplied by the user with make_connection(). The parameters from and to have to match to a name given in the previously created layers by make_layer(). The established connection results in an undirected combined graph. The parameter group indicates whether the connection will be applied to both groups (default) or only group A or B. Define the inter-layer connections between the omics layers based on shared gene names. - ``` all_inter_layer_connections <- list( + ``` + all_inter_layer_connections <- list( make_connection(from='mrna', to='protein', connect_on='gene_name', weight=1, group="both"), make_connection(from='protein', to='phosphosite', connect_on='gene_name', weight=1, group="both")) -- GitLab