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Abstract8

In the context of the PACE 2024 challenge, this project presents a solver designed to minimize9

crossings in bipartite graphs for the exact track. The primary goal is to reduce the number of edge10

crossings when a bipartite graph is drawn, with one partition on the left and the other on the right.11

We approach this problem using Integer Linear Programming (ILP), leveraging linear constraints12

and optimization techniques to achieve minimal crossings. Additionally, we detect and eliminate13

cycles by adding specific constraints to the ILP model. This work is a student submission.14
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1 Problem Description and Approach18

1.1 Problem19

In the one-sided crossing minimization problem, we are given a bipartite graph G = (V, E),20

consisting of a vertex set V and an edge set E. The graph is bipartite, meaning that V can21

be partitioned into two disjoint subsets V1 and V2 (thus, V = V1 ∪ V2, V1 ∩ V2 = ∅, and22

E ⊆ V1 × V2). The nodes in V1 are arranged in a linear order and placed in one layer, while23

the nodes in V2 are placed in another layer parallel to the first. Edge crossings between V124

and V2 depend on the sequence of nodes in these two partitions.25

In the one-sided variation of this problem, the objective is to arrange the nodes in V226

while keeping the order of V1 fixed, such that the total number of edge crossings is minimized27

[3].28

1.2 Approach29

Our approach to solving the one-sided crossing minimization problem involves the use of30

Integer Linear Programming (ILP). The goal is to minimize edge crossings by leveraging31

linear constraints and optimization techniques. Initially, we do not impose any restrictions32

or constraints on the y variables, which represent the ordering of nodes in V2. Defining all33

constraints at once is not feasible due to the complexity and size of the problem. As a result,34

cycles can occur in the graph. To address this, a significant aspect of our method is the35

detection and elimination of these cycles through the addition of specific constraints to the36

ILP model. This iterative process of adding constraints allows us to achieve a more optimal37

arrangement of the nodes in V2, reducing the overall number of crossings. However, this38

approach is still memory and runtime inefficient, especially with many crossings and initial39

cycles.40
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2 Algorithm Description41

2.1 Input Parsing42

The input consists of graph edges and the number of nodes in each partition. The edges are43

parsed and stored in a list, while the degree of each node in the second partition is tracked.44

2.2 ILP Problem Formulation45

An ILP problem is formulated where the objective is to minimize the sum of binary crossing46

variables. The variables represent potential crossings between edges, and constraints ensure47

that each pair of edges either crosses or does not cross based on their relative positions.48

This method adapts the approach from [2], who derived an ILP formulation for minimizing49

crossings in multi-layer graphs. However, we simplify the problem by not considering crossing50

variables directly but instead focusing on cycle elimination to achieve the desired order in V2.51

2.3 Adding Constraints for Cycle Elimination52

Initially, we do not impose any restrictions or constraints on the y variables, which represent53

the ordering of nodes in V2. Defining all constraints at once is not feasible due to the54

complexity and size of the problem. As a result, cycles can occur in the graph. To address55

this, a significant aspect of our method is the detection and elimination of these cycles56

through the addition of specific constraints to the ILP model. This constraints are the same57

that are presented i This iterative process of adding constraints allows us to achieve a more58

optimal arrangement of the nodes in V2, reducing the overall number of crossings.59

2.4 Solving the ILP60

The ILP is solved iteratively. After each solution, the graph is updated, and cycles are61

detected and eliminated until an optimal solution is reached. The problem is solved using62

the PULP_CBC_CMD solver with cycle constraints added iteratively. This approach63

ensures that the solution remains feasible and progressively improves as more constraints are64

introduced to eliminate cycles.65

2.5 Topological Sorting of Nodes66

Once the ILP provides an optimal solution, the nodes are sorted topologically. Nodes with67

zero in-degree are processed first, ensuring that the final order respects the dependencies68

dictated by the ILP solution [1].69

3 Experimental Results70

The proposed method was tested on several bipartite graphs provided by the PACE 202471

challenge. The results demonstrate significant reductions in edge crossings compared to naive72

methods. The iterative cycle elimination and constraint addition proved effective in finding73

optimal solutions efficiently. However, there is considerable potential for further optimization74

in both memory usage and runtime performance. The current implementation represents the75

results achieved within a 7-week timeframe.76

It is important to note that only the medium test sets (excluding 9 of the 60 test77

sets) could be solved within an acceptable time frame and memory usage with the current78
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approach. The public test instances were found to be significantly more challenging and79

remain unsolved with the current methodology, highlighting the need for further development80

and optimization.81

4 Conclusion82

This project presents an effective approach to minimizing edge crossings in bipartite graphs83

using integer linear programming (ILP) and cycle elimination techniques. Combining these84

methods provides a robust solution suitable for large graphs with complex structures. The85

iterative process of adding constraints after detecting cycles ensures that we can handle the86

problem’s complexity without defining all constraints upfront, which is infeasible.87

Despite achieving significant reductions in edge crossings, there is considerable potential88

for further optimization in both memory usage and runtime performance. The current89

implementation represents the results achieved within a 7-week timeframe. Notably, only the90

medium test sets (excluding 9 of the 60 test sets) could be solved with the current approach,91

while the public test instances remain unsolved, indicating the need for further development92

and optimization.93

Future work could explore more efficient cycle detection methods, advanced ILP-solving94

techniques and optimization strategies to handle larger and more complex graphs. Addition-95

ally, addressing the limitations encountered with the public test instances could provide a96

pathway for achieving more comprehensive solutions in this domain.97

5 Source Code98

Our contribution’s source code has been published under the MIT License and can be found99

at https://git.imp.fu-berlin.de/voic00/appalgo-sose24/. Our login name from op-100

til.io is „studentgroupfuberlin“. This projekt is also available under https://zenodo.org/101

records/12282167.102

References103

1 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to104

Algorithms. MIT press, 2009.105

2 Andrei Munteanu, Camelia-Mihaela Pintea, and D. Dumitrescu. Hierarchical optimization for106

multiple crossings minimization. European Journal of Operational Research, 202(3):622–634,107

2009.108

3 PACE Challenge. Pace challenge 2024. https://pacechallenge.org, 2024. Accessed: 2024-109

06-21.110

CVIT 2016

https://git.imp.fu-berlin.de/voic00/appalgo-sose24/
https://zenodo.org/records/12282167
https://zenodo.org/records/12282167
https://zenodo.org/records/12282167
https://pacechallenge.org

	1 Problem Description and Approach
	1.1 Problem
	1.2 Approach

	2 Algorithm Description
	2.1 Input Parsing
	2.2 ILP Problem Formulation
	2.3 Adding Constraints for Cycle Elimination
	2.4 Solving the ILP
	2.5 Topological Sorting of Nodes

	3 Experimental Results
	4 Conclusion
	5 Source Code

