|
RcdMathLib_doc
Open Source Library for Linear and Non-linear Algebra
|
Examples of optimization algorithms. More...
#include <stdio.h>#include <math.h>#include "matrix.h"#include "vector.h"#include "modified_gauss_newton.h"#include "levenberg_marquardt.h"Go to the source code of this file.
Functions | |
| void | ieee_mobile_comp_get_exp_f (vector_t x_vec[], vector_t data_vec[], vector_t f_vec[]) |
| Calculate the error vector using exponential data. More... | |
| void | ieee_mobile_comp_get_exp_Jacobian (vector_t x_vec[], matrix_t J[][2]) |
| Calculate the Jacobian matrix using exponential data. More... | |
| void | ieee_mobile_comp_exponential_data_test (void) |
| void | ieee_mobile_comp_get_sin_f (vector_t x_vec[], vector_t data_vec[], vector_t f_vec[]) |
| Calculate the error vector using sinusoidal data. More... | |
| void | ieee_mobile_comp_get_sin_Jacobian (vector_t x_vec[], matrix_t J[][4]) |
| Calculate the Jacobian matrix using sinusoidal data. More... | |
| void | ieee_mobile_comp_sinusoidal_data_test (void) |
Examples of optimization algorithms.
Optimization algorithms examples (see the modified GN and LVM optimization methods).
Definition in file ieee_mobile_computing_non_lin_alg.c.
Calculate the error vector using exponential data.
The error function is: 
| [in] | x_vec[] | start vector. |
| [in] | data_vec[] | data vector. |
| [out] | f_vec[] | calculated error vector. |
Definition at line 46 of file ieee_mobile_computing_non_lin_alg.c.
References vector_t.
Calculate the Jacobian matrix using exponential data.
The Jacobian matrix is: 
| [in] | x_vec[] | start vector. |
| [in] | J[] | Jacobian matrix. |
Definition at line 82 of file ieee_mobile_computing_non_lin_alg.c.
References vector_t.
Calculate the error vector using sinusoidal data.
The error function is: 
| [in] | x_vec[] | start vector. |
| [in] | data_vec[] | data vector. |
| [out] | f_vec[] | calculated error vector. |
Definition at line 164 of file ieee_mobile_computing_non_lin_alg.c.
References vector_t.
Calculate the Jacobian matrix using sinusoidal data.
The Jacobian matrix is ![$ J_f = \left[\begin{matrix} \sin\left( x_2 +x_3\right) & x_1 \cos\left( x_2 +x_3\right) & x_1\cos\left( x_2 +x_3\right) \\ \sin\left( 2 x_2 +x_3\right) & 2 x_1 \cos\left( 2 x_2 +x_3\right) & x_1 \cos\left( 2 x_2 +x_3\right)\\ \vdots & \vdots \\ \sin\left( 12 x_2 +x_3\right) & 12 x_1 \cos\left( 12 x_2 +x_3\right) & x_1 \cos\left( 12 x_2 +x_3\right) \end{matrix}\right]. $](form_3.png)
| [in] | x_vec[] | start vector. |
| [in] | J[] | Jacobian matrix. |
Definition at line 199 of file ieee_mobile_computing_non_lin_alg.c.
References vector_t.