Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • podlesny/dune-tectonic
  • agnumpde/dune-tectonic
2 results
Show changes
Showing
with 711 additions and 490 deletions
#ifndef DUNE_TECTONIC_GEOCOORDINATE_HH
#define DUNE_TECTONIC_GEOCOORDINATE_HH
// tiny helper to make a common piece of code pleasanter to read
template <class Geometry>
typename Geometry::GlobalCoordinate geoToPoint(Geometry geo) {
assert(geo.corners() == 1);
return geo.corner(0);
}
#endif
#ifndef DUNE_TECTONIC_GLOBAL_NONLINEARITY_HH
#define DUNE_TECTONIC_GLOBAL_NONLINEARITY_HH
#ifndef DUNE_TECTONIC_GLOBALFRICTION_HH
#define DUNE_TECTONIC_GLOBALFRICTION_HH
#include <dune/common/fmatrix.hh>
#include <dune/common/fvector.hh>
#include <dune/common/shared_ptr.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/bvector.hh>
#include <dune/istl/matrixindexset.hh>
#include "frictionpotential.hh"
#include "localfriction.hh"
#include <dune/solvers/common/interval.hh>
namespace Dune {
template <class Matrix, class Vector> class GlobalNonlinearity {
#include <dune/tectonic/localfriction.hh>
template <class Matrix, class Vector> class GlobalFriction {
protected:
using SingletonVector = BlockVector<FieldVector<double, 1>>;
using ScalarVector = Dune::BlockVector<Dune::FieldVector<double, 1>>;
public:
using IndexSet = Dune::MatrixIndexSet;
......@@ -23,13 +22,12 @@ template <class Matrix, class Vector> class GlobalNonlinearity {
using LocalMatrix = typename Matrix::block_type;
using LocalVectorType = typename Vector::block_type;
size_t static const block_size = LocalVectorType::dimension;
using Friction = LocalFriction<block_size>;
using LocalNonlinearity = LocalFriction<block_size>;
double operator()(Vector const &x) const {
double tmp = 0;
for (size_t i = 0; i < x.size(); ++i) {
auto const res = restriction(i);
tmp += (*res)(x[i]);
tmp += restriction(i)(x[i]);
}
return tmp;
}
......@@ -37,28 +35,26 @@ template <class Matrix, class Vector> class GlobalNonlinearity {
/*
Return a restriction of the outer function to the i'th node.
*/
virtual shared_ptr<LocalFriction<block_size>> restriction(size_t i) const = 0;
LocalNonlinearity const virtual &restriction(size_t i) const = 0;
void addHessian(Vector const &v, Matrix &hessian) const {
for (size_t i = 0; i < v.size(); ++i) {
auto const res = restriction(i);
res->addHessian(v[i], hessian[i][i]);
}
for (size_t i = 0; i < v.size(); ++i)
restriction(i).addHessian(v[i], hessian[i][i]);
}
void directionalDomain(Vector const &, Vector const &,
Interval<double> &dom) const {
Dune::Solvers::Interval<double> &dom) const {
dom[0] = -std::numeric_limits<double>::max();
dom[1] = std::numeric_limits<double>::max();
}
void directionalSubDiff(Vector const &u, Vector const &v,
Interval<double> &subdifferential) const {
void directionalSubDiff(
Vector const &u, Vector const &v,
Dune::Solvers::Interval<double> &subdifferential) const {
subdifferential[0] = subdifferential[1] = 0;
for (size_t i = 0; i < u.size(); ++i) {
Interval<double> D;
auto const res = restriction(i);
res->directionalSubDiff(u[i], v[i], D);
Dune::Solvers::Interval<double> D;
restriction(i).directionalSubDiff(u[i], v[i], D);
subdifferential[0] += D[0];
subdifferential[1] += D[1];
}
......@@ -70,18 +66,21 @@ template <class Matrix, class Vector> class GlobalNonlinearity {
}
void addGradient(Vector const &v, Vector &gradient) const {
for (size_t i = 0; i < v.size(); ++i) {
auto const res = restriction(i);
res->addGradient(v[i], gradient[i]);
}
for (size_t i = 0; i < v.size(); ++i)
restriction(i).addGradient(v[i], gradient[i]);
}
double regularity(size_t i, typename Vector::block_type const &x) const {
auto const res = restriction(i);
return res->regularity(x);
return restriction(i).regularity(x);
}
ScalarVector coefficientOfFriction(Vector const &x) const {
ScalarVector ret(x.size());
for (size_t i = 0; i < x.size(); ++i)
ret[i] = restriction(i).coefficientOfFriction(x[i]);
return ret;
}
virtual void updateLogState(SingletonVector const &logState) = 0;
void virtual updateAlpha(ScalarVector const &alpha) = 0;
};
}
#endif
#ifndef DUNE_TECTONIC_GLOBALFRICTIONDATA_HH
#define DUNE_TECTONIC_GLOBALFRICTIONDATA_HH
#include <dune/common/function.hh>
#include <dune/common/fvector.hh>
#include <dune/tectonic/frictiondata.hh>
template <class DomainType>
double evaluateScalarFunction(
Dune::VirtualFunction<DomainType, Dune::FieldVector<double, 1>> const &f,
DomainType const &x) {
Dune::FieldVector<double, 1> ret;
f.evaluate(x, ret);
return ret;
};
template <int dimension> class GlobalFrictionData {
public:
FrictionData operator()(Dune::FieldVector<double, dimension> const &x) const {
return FrictionData(C(), L(), V0(), evaluateScalarFunction(a(), x),
evaluateScalarFunction(b(), x), mu0());
}
protected:
using VirtualFunction =
Dune::VirtualFunction<Dune::FieldVector<double, dimension>,
Dune::FieldVector<double, 1>>;
double virtual const &C() const = 0;
double virtual const &L() const = 0;
double virtual const &V0() const = 0;
VirtualFunction virtual const &a() const = 0;
VirtualFunction virtual const &b() const = 0;
double virtual const &mu0() const = 0;
};
#endif
#ifndef DUNE_TECTONIC_GLOBALRATESTATEFRICTION_HH
#define DUNE_TECTONIC_GLOBALRATESTATEFRICTION_HH
#include <vector>
#include <dune/common/bitsetvector.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/fvector.hh>
#include <dune/grid/common/mcmgmapper.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/bvector.hh>
#include <dune/tectonic/geocoordinate.hh>
#include <dune/tectonic/globalfrictiondata.hh>
#include <dune/tectonic/globalfriction.hh>
#include <dune/tectonic/index-in-sorted-range.hh>
template <class Matrix, class Vector, class ScalarFriction, class GridView>
class GlobalRateStateFriction : public GlobalFriction<Matrix, Vector> {
public:
using GlobalFriction<Matrix, Vector>::block_size;
using typename GlobalFriction<Matrix, Vector>::LocalNonlinearity;
private:
using typename GlobalFriction<Matrix, Vector>::ScalarVector;
public:
GlobalRateStateFriction(BoundaryPatch<GridView> const &frictionalBoundary,
GlobalFrictionData<block_size> const &frictionInfo,
ScalarVector const &weights,
ScalarVector const &weightedNormalStress)
: restrictions(), localToGlobal(), zeroFriction() {
auto const gridView = frictionalBoundary.gridView();
Dune::MultipleCodimMultipleGeomTypeMapper<
GridView, Dune::MCMGVertexLayout> const vertexMapper(gridView);
for (auto it = gridView.template begin<block_size>();
it != gridView.template end<block_size>(); ++it) {
auto const i = vertexMapper.index(*it);
if (not frictionalBoundary.containsVertex(i))
continue;
localToGlobal.emplace_back(i);
restrictions.emplace_back(weights[i], weightedNormalStress[i],
frictionInfo(geoToPoint(it->geometry())));
}
assert(restrictions.size() == frictionalBoundary.numVertices());
assert(localToGlobal.size() == frictionalBoundary.numVertices());
}
void updateAlpha(ScalarVector const &alpha) override {
for (size_t j = 0; j < restrictions.size(); ++j)
restrictions[j].updateAlpha(alpha[localToGlobal[j]]);
}
/*
Return a restriction of the outer function to the i'th node.
*/
LocalNonlinearity const &restriction(size_t i) const override {
auto const index = indexInSortedRange(localToGlobal, i);
if (index == localToGlobal.size())
return zeroFriction;
return restrictions[index];
}
private:
std::vector<WrappedScalarFriction<block_size, ScalarFriction>> restrictions;
std::vector<size_t> localToGlobal;
WrappedScalarFriction<block_size, ZeroFunction> const zeroFriction;
};
#endif
#ifndef DUNE_TECTONIC_GLOBAL_RUINA_NONLINEARITY_HH
#define DUNE_TECTONIC_GLOBAL_RUINA_NONLINEARITY_HH
#include <vector>
#include <dune/common/bitsetvector.hh>
#include <dune/common/nullptr.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/fvector.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/bvector.hh>
#include "globalnonlinearity.hh"
#include "localfriction.hh"
#include "frictionpotential.hh"
namespace Dune {
template <class Matrix, class Vector>
class GlobalRuinaNonlinearity : public GlobalNonlinearity<Matrix, Vector> {
public:
using GlobalNonlinearity<Matrix, Vector>::block_size;
using typename GlobalNonlinearity<Matrix, Vector>::Friction;
private:
using typename GlobalNonlinearity<Matrix, Vector>::SingletonVector;
public:
GlobalRuinaNonlinearity(Dune::BitSetVector<1> const &frictionalNodes,
SingletonVector const &nodalIntegrals,
FrictionData const &fd)
: restrictions(nodalIntegrals.size()) {
auto trivialNonlinearity =
make_shared<Friction>(make_shared<TrivialFunction>());
for (size_t i = 0; i < restrictions.size(); ++i) {
restrictions[i] =
frictionalNodes[i][0]
? make_shared<Friction>(
make_shared<FrictionPotential>(nodalIntegrals[i], fd))
: trivialNonlinearity;
}
}
void updateLogState(SingletonVector const &logState) override {
for (size_t i = 0; i < restrictions.size(); ++i)
restrictions[i]->updateLogState(logState[i]);
}
/*
Return a restriction of the outer function to the i'th node.
*/
shared_ptr<Friction> restriction(size_t i) const override {
return restrictions[i];
}
private:
std::vector<shared_ptr<Friction>> restrictions;
};
}
#endif
#ifndef DUNE_TECTONIC_GRAVITY_HH
#define DUNE_TECTONIC_GRAVITY_HH
#include <dune/common/function.hh>
#include <dune/common/fvector.hh>
template <int dimension>
class Gravity
: public Dune::VirtualFunction<Dune::FieldVector<double, dimension>,
Dune::FieldVector<double, dimension>> {
public:
Gravity(
Dune::VirtualFunction<Dune::FieldVector<double, dimension>,
Dune::FieldVector<double, 1>> const &_densityField,
Dune::FieldVector<double, dimension> const &_zenith, double _gravity)
: densityField(_densityField), zenith(_zenith), gravity(_gravity) {}
void evaluate(Dune::FieldVector<double, dimension> const &x,
Dune::FieldVector<double, dimension> &y) const {
y = zenith;
Dune::FieldVector<double, 1> density;
densityField.evaluate(x, density);
y *= -gravity * density;
}
private:
Dune::VirtualFunction<Dune::FieldVector<double, dimension>,
Dune::FieldVector<double, 1>> const &densityField;
Dune::FieldVector<double, dimension> const &zenith;
double const gravity;
};
#endif
#ifndef DUNE_TECTONIC_INDEX_IN_SORTED_RANGE_HH
#define DUNE_TECTONIC_INDEX_IN_SORTED_RANGE_HH
#include <algorithm>
// returns v.size() if value does not exist
template <typename T>
size_t indexInSortedRange(std::vector<T> const &v, T value) {
size_t const specialReturnValue = v.size();
auto const b = std::begin(v);
auto const e = std::end(v);
auto const lb = std::lower_bound(b, e, value);
if (lb == e) // all elements are strictly smaller
return specialReturnValue;
if (value < *lb) // value falls between to elements
return specialReturnValue;
return std::distance(b, lb);
}
#endif
#ifndef DUNE_TECTONIC_LOCAL_FRICTION_HH
#define DUNE_TECTONIC_LOCAL_FRICTION_HH
#ifndef DUNE_TECTONIC_LOCALFRICTION_HH
#define DUNE_TECTONIC_LOCALFRICTION_HH
#include <cmath>
#include <limits>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/shared_ptr.hh>
#include <dune/fufem/arithmetic.hh>
#include <dune/fufem/interval.hh>
#include <dune/solvers/common/interval.hh>
#include "frictionpotential.hh"
#include <dune/tectonic/frictionpotential.hh>
// In order to compute (x * y) / |x|, compute x/|x| first
template <class Vector>
double dotFirstNormalised(Vector const &x, Vector const &y) {
double const xnorm = x.two_norm();
if (xnorm <= 0.0)
return 0.0;
template <size_t dimension> class LocalFriction {
public:
virtual ~LocalFriction() {}
size_t const xsize = x.size();
assert(xsize == y.size());
using VectorType = Dune::FieldVector<double, dimension>;
using MatrixType = Dune::FieldMatrix<double, dimension, dimension>;
double sum = 0;
for (size_t i = 0; i < xsize; ++i)
sum += x[i] / xnorm * y[i];
void virtual updateAlpha(double alpha) = 0;
double virtual regularity(VectorType const &x) const = 0;
double virtual coefficientOfFriction(VectorType const &x) const = 0;
void virtual directionalSubDiff(VectorType const &x, VectorType const &v,
Dune::Solvers::Interval<double> &D) const = 0;
return sum;
}
void virtual addHessian(VectorType const &x, MatrixType &A) const = 0;
namespace Dune {
template <size_t dimension> class LocalFriction {
public:
using VectorType = FieldVector<double, dimension>;
using MatrixType = FieldMatrix<double, dimension, dimension>;
void virtual addGradient(VectorType const &x, VectorType &y) const = 0;
void virtual directionalDomain(
VectorType const &, VectorType const &,
Dune::Solvers::Interval<double> &dom) const = 0;
};
explicit LocalFriction(shared_ptr<FrictionPotentialWrapper> func)
: func(func) {}
template <size_t dimension, class ScalarFriction>
class WrappedScalarFriction : public LocalFriction<dimension> {
using VectorType = typename LocalFriction<dimension>::VectorType;
using MatrixType = typename LocalFriction<dimension>::MatrixType;
double operator()(VectorType const &x) const {
return func->evaluate(x.two_norm());
}
public:
template <typename... Args>
WrappedScalarFriction(Args... args)
: func_(args...) {}
void updateLogState(double logState) { func->updateLogState(logState); }
void updateAlpha(double alpha) override { func_.updateAlpha(alpha); }
double regularity(VectorType const &x) const {
double regularity(VectorType const &x) const override {
double const xnorm = x.two_norm();
if (xnorm <= 0.0)
return std::numeric_limits<double>::infinity();
return func->regularity(xnorm);
return func_.regularity(xnorm);
}
double coefficientOfFriction(VectorType const &x) const override {
return func_.coefficientOfFriction(x.two_norm());
}
// directional subdifferential: at u on the line u + t*v
// u and v are assumed to be non-zero
void directionalSubDiff(VectorType const &x, VectorType const &v,
Interval<double> &D) const {
Dune::Solvers::Interval<double> &D) const override {
double const xnorm = x.two_norm();
if (xnorm <= 0.0)
D[0] = D[1] = 0.0; // WARNING: we assume that the outer
// function approaches zero superlinearly
D[0] = D[1] = func_.differential(0.0) * v.two_norm();
else
D[0] = D[1] = func->differential(xnorm) * dotFirstNormalised(x, v);
D[0] = D[1] = func_.differential(xnorm) * (x * v) / xnorm;
}
/** Formula for the derivative:
......@@ -81,14 +85,14 @@ template <size_t dimension> class LocalFriction {
+ \frac {H'(|z|)}{|z|} \operatorname{id}
\f}
*/
void addHessian(VectorType const &x, MatrixType &A) const {
void addHessian(VectorType const &x, MatrixType &A) const override {
double const xnorm2 = x.two_norm2();
double const xnorm = std::sqrt(xnorm2);
if (xnorm2 <= 0.0)
return;
double const H1 = func->differential(xnorm);
double const H2 = func->second_deriv(xnorm);
double const H1 = func_.differential(xnorm);
double const H2 = func_.second_deriv(xnorm);
double const tensorweight = (H2 - H1 / xnorm) / xnorm2;
double const idweight = H1 / xnorm;
......@@ -106,23 +110,22 @@ template <size_t dimension> class LocalFriction {
}
}
void addGradient(VectorType const &x, VectorType &y) const {
void addGradient(VectorType const &x, VectorType &y) const override {
double const xnorm = x.two_norm();
if (std::isinf(func->regularity(xnorm)))
if (std::isinf(func_.regularity(xnorm)))
return;
if (xnorm > 0.0)
Arithmetic::addProduct(y, func->differential(xnorm) / xnorm, x);
Arithmetic::addProduct(y, func_.differential(xnorm) / xnorm, x);
}
void directionalDomain(VectorType const &, VectorType const &,
Interval<double> &dom) const {
Dune::Solvers::Interval<double> &dom) const override {
dom[0] = -std::numeric_limits<double>::max();
dom[1] = std::numeric_limits<double>::max();
}
private:
shared_ptr<FrictionPotentialWrapper> const func;
ScalarFriction func_;
};
}
#endif
#ifndef MINIMISATION_HH
#define MINIMISATION_HH
#ifndef DUNE_TECTONIC_MINIMISATION_HH
#define DUNE_TECTONIC_MINIMISATION_HH
#include <dune/common/fmatrix.hh>
#include <dune/common/fvector.hh>
......@@ -9,43 +9,33 @@
#include <dune/fufem/interval.hh>
#include <dune/tnnmg/problem-classes/bisection.hh>
#include "mydirectionalconvexfunction.hh"
#include <dune/tectonic/mydirectionalconvexfunction.hh>
namespace Dune {
// Warning: this exploits the property v*x = 0
template <class Functional>
void descentMinimisation(Functional const &J,
typename Functional::SmallVector &x,
typename Functional::SmallVector const &v,
Bisection const &bisection) {
using SmallVector = typename Functional::SmallVector;
using LocalNonlinearity = typename Functional::Nonlinearity;
MyDirectionalConvexFunction<LocalNonlinearity> const JRest(
computeDirectionalA(J.A, v), computeDirectionalb(J.A, J.b, x, v), *J.phi,
x, v);
// }}}
double lineSearch(Functional const &J,
typename Functional::LocalVector const &x,
typename Functional::LocalVector const &v,
Bisection const &bisection) {
MyDirectionalConvexFunction<typename Functional::Nonlinearity> const JRest(
J.alpha * v.two_norm2(), J.b * v, J.phi, x, v);
int count;
double const stepsize = bisection.minimize(JRest, 0.0, 0.0, count);
Arithmetic::addProduct(x, stepsize, v);
return bisection.minimize(JRest, 0.0, 0.0, count);
}
/** Minimise a quadratic problem, for which both the quadratic and the
nonlinear term have gradients which point in the direction of
their arguments */
template <class Functional>
void minimise(Functional const &J, typename Functional::SmallVector &x,
size_t steps, Bisection const &bisection) {
using SmallVector = typename Functional::SmallVector;
for (size_t step = 0; step < steps; ++step) {
SmallVector v;
J.gradient(x, v);
if (v.two_norm() == 0.0)
return;
v *= -1;
descentMinimisation(J, x, v, bisection);
}
}
void minimise(Functional const &J, typename Functional::LocalVector &x,
Bisection const &bisection) {
auto v = J.b;
double const vnorm = v.two_norm();
if (vnorm <= 0.0)
return;
v /= vnorm;
double const alpha = lineSearch(J, x, v, bisection);
Arithmetic::addProduct(x, alpha, v);
}
#endif
// Based on dune/tnnmg/problem-classes/blocknonlineartnnmgproblem.hh
#ifndef DUNE_TECTONIC_MYBLOCKPROBLEM_HH
#define DUNE_TECTONIC_MYBLOCKPROBLEM_HH
#ifndef MY_BLOCK_PROBLEM_HH
#define MY_BLOCK_PROBLEM_HH
// Based on dune/tnnmg/problem-classes/blocknonlineartnnmgproblem.hh
#include <dune/common/bitsetvector.hh>
#include <dune/common/nullptr.hh>
#include <dune/common/parametertree.hh>
// Just for debugging
#include "dune/solvers/computeenergy.hh"
#include <dune/common/fmatrixev.hh>
#include <dune/fufem/arithmetic.hh>
#include <dune/solvers/common/interval.hh>
#include <dune/solvers/computeenergy.hh>
#include <dune/tnnmg/problem-classes/bisection.hh>
#include <dune/tnnmg/problem-classes/blocknonlineargsproblem.hh>
#include "globalnonlinearity.hh"
#include "minimisation.hh"
#include "mydirectionalconvexfunction.hh"
#include "ellipticenergy.hh"
/* Just for debugging */
template <class Matrix, class Vector>
double computeEnergy(Matrix const &A, Vector const &x, Vector const &b,
Dune::GlobalNonlinearity<Matrix, Vector> const &phi) {
return computeEnergy(A, x, b) + phi(x);
}
#include <dune/tectonic/globalfriction.hh>
#include <dune/tectonic/minimisation.hh>
#include <dune/tectonic/mydirectionalconvexfunction.hh>
#include <dune/tectonic/quadraticenergy.hh>
/** \brief Base class for problems where each block can be solved with a
* modified gradient method */
template <class ConvexProblem> class MyBlockProblem {
template <class ConvexProblem>
class MyBlockProblem : /* not public */ BlockNonlinearGSProblem<ConvexProblem> {
private:
typedef BlockNonlinearGSProblem<ConvexProblem> Base;
public:
using ConvexProblemType = ConvexProblem;
using VectorType = typename ConvexProblem::VectorType;
using MatrixType = typename ConvexProblem::MatrixType;
using LocalVector = typename ConvexProblem::LocalVectorType;
using LocalMatrix = typename ConvexProblem::LocalMatrixType;
using typename Base::ConvexProblemType;
using typename Base::LocalMatrixType;
using typename Base::LocalVectorType;
using typename Base::MatrixType;
using typename Base::VectorType;
size_t static const block_size = ConvexProblem::block_size;
size_t static const coarse_block_size = block_size;
/** \brief Solves one local system using a modified gradient method */
/** \brief Solves one local system */
class IterateObject;
struct Linearization {
size_t static const block_size = coarse_block_size;
using LocalMatrix = typename MyBlockProblem<ConvexProblem>::LocalMatrix;
using LocalMatrix = typename MyBlockProblem<ConvexProblem>::LocalMatrixType;
using MatrixType = Dune::BCRSMatrix<typename Linearization::LocalMatrix>;
using VectorType =
Dune::BlockVector<Dune::FieldVector<double, Linearization::block_size>>;
......@@ -56,10 +54,16 @@ template <class ConvexProblem> class MyBlockProblem {
Dune::BitSetVector<Linearization::block_size> truncation;
};
MyBlockProblem(Dune::ParameterTree const &parset,
ConvexProblem const &problem)
: parset(parset), problem(problem) {
bisection = Bisection();
MyBlockProblem(Dune::ParameterTree const &parset, ConvexProblem &problem)
: Base(parset, problem),
maxEigenvalues_(problem.f.size()),
localBisection(0.0, 1.0, 0.0, true, 0.0) {
for (size_t i = 0; i < problem.f.size(); ++i) {
LocalVectorType eigenvalues;
Dune::FMatrixHelp::eigenValues(problem.A[i][i], eigenvalues);
maxEigenvalues_[i] =
*std::max_element(std::begin(eigenvalues), std::end(eigenvalues));
}
}
std::string getOutput(bool header = false) const {
......@@ -73,6 +77,11 @@ template <class ConvexProblem> class MyBlockProblem {
return s;
}
double computeEnergy(const VectorType &v) const {
return 0.0; // FIXME
// return ::computeEnergy(problem_.A, v, problem_.f) + problem_.phi(v);
}
void projectCoarseCorrection(VectorType const &u,
typename Linearization::VectorType const &v,
VectorType &projected_v,
......@@ -94,20 +103,15 @@ template <class ConvexProblem> class MyBlockProblem {
v /= vnorm; // Rescale for numerical stability
MyDirectionalConvexFunction<
Dune::GlobalNonlinearity<MatrixType, VectorType>> const
psi(computeDirectionalA(problem.A, v),
computeDirectionalb(problem.A, problem.f, u, v), problem.phi, u, v);
Interval<double> D;
auto const psi = restrict(problem_.A, problem_.f, u, v, problem_.phi);
Dune::Solvers::Interval<double> D;
psi.subDiff(0, D);
// NOTE: Numerical instability can actually get us here
if (D[1] > 0)
if (D[1] > 0) // NOTE: Numerical instability can actually get us here
return 0;
int bisectionsteps = 0;
Bisection bisection;
return bisection.minimize(psi, vnorm, 0.0, bisectionsteps) / vnorm; // TODO
Bisection const globalBisection; // NOTE: defaults
return globalBisection.minimize(psi, vnorm, 0.0, bisectionsteps) / vnorm;
}
void assembleTruncate(VectorType const &u, Linearization &linearization,
......@@ -119,7 +123,7 @@ template <class ConvexProblem> class MyBlockProblem {
linearization.truncation.resize(u.size());
linearization.truncation.unsetAll();
for (size_t i = 0; i < u.size(); ++i) {
if (problem.phi.regularity(i, u[i]) > 1e8) { // TODO: Make customisable
if (problem_.phi.regularity(i, u[i]) > 1e8) { // TODO: Make customisable
linearization.truncation[i] = true;
continue;
}
......@@ -130,73 +134,70 @@ template <class ConvexProblem> class MyBlockProblem {
}
// construct sparsity pattern for linearization
Dune::MatrixIndexSet indices(problem.A.N(), problem.A.M());
indices.import(problem.A);
problem.phi.addHessianIndices(indices);
Dune::MatrixIndexSet indices(problem_.A.N(), problem_.A.M());
indices.import(problem_.A);
problem_.phi.addHessianIndices(indices);
// construct matrix from pattern and initialize it
indices.exportIdx(linearization.A);
linearization.A = 0.0;
// compute quadratic part of hessian (linearization.A += problem.A)
for (size_t i = 0; i < problem.A.N(); ++i) {
auto const end = problem.A[i].end();
for (auto it = problem.A[i].begin(); it != end; ++it)
// compute quadratic part of hessian (linearization.A += problem_.A)
for (size_t i = 0; i < problem_.A.N(); ++i) {
auto const end = std::end(problem_.A[i]);
for (auto it = std::begin(problem_.A[i]); it != end; ++it)
linearization.A[i][it.index()] += *it;
}
// compute nonlinearity part of hessian
problem.phi.addHessian(u, linearization.A);
problem_.phi.addHessian(u, linearization.A);
// compute quadratic part of gradient
linearization.b.resize(u.size());
problem.A.mv(u, linearization.b);
linearization.b -= problem.f;
problem_.A.mv(u, linearization.b);
linearization.b -= problem_.f;
// compute nonlinearity part of gradient
problem.phi.addGradient(u, linearization.b);
problem_.phi.addGradient(u, linearization.b);
// -grad is needed for Newton step
linearization.b *= -1.0;
// apply truncation to stiffness matrix and rhs
for (size_t row = 0; row < linearization.A.N(); ++row) {
auto const col_end = linearization.A[row].end();
for (auto col_it = linearization.A[row].begin(); col_it != col_end;
auto const col_end = std::end(linearization.A[row]);
for (auto col_it = std::begin(linearization.A[row]); col_it != col_end;
++col_it) {
size_t const col = col_it.index();
for (size_t i = 0; i < col_it->N(); ++i) {
auto const blockEnd = (*col_it)[i].end();
for (auto blockIt = (*col_it)[i].begin(); blockIt != blockEnd;
auto const blockEnd = std::end((*col_it)[i]);
for (auto blockIt = std::begin((*col_it)[i]); blockIt != blockEnd;
++blockIt)
if (linearization.truncation[row][i] or linearization
.truncation[col][blockIt.index()])
if (linearization.truncation[row][i] or
linearization.truncation[col][blockIt.index()])
*blockIt = 0.0;
}
}
for (size_t j = 0; j < block_size; ++j)
if (linearization.truncation[row][j])
linearization.b[row][j] = 0.0;
}
for (size_t j = 0; j < block_size; ++j)
outStream << std::setw(9) << linearization.truncation.countmasked(j);
}
/** \brief Constructs and returns an iterate object */
IterateObject getIterateObject() {
return IterateObject(parset, bisection, problem);
return IterateObject(localBisection, problem_, maxEigenvalues_);
}
private:
Dune::ParameterTree const &parset;
std::vector<double> maxEigenvalues_;
// problem data
ConvexProblem const &problem;
using Base::problem_;
// commonly used minimization stuff
Bisection bisection;
Bisection const localBisection;
mutable std::ostringstream outStream;
};
......@@ -211,11 +212,11 @@ class MyBlockProblem<ConvexProblem>::IterateObject {
* \param bisection The class used to do a scalar bisection
* \param problem The problem including quadratic part and nonlinear part
*/
IterateObject(Dune::ParameterTree const &parset, Bisection const &bisection,
ConvexProblem const &problem)
IterateObject(Bisection const &bisection, ConvexProblem const &problem,
std::vector<double> const &maxEigenvalues)
: problem(problem),
bisection(bisection),
localsteps(parset.get<size_t>("localsolver.steps")) {}
maxEigenvalues_(maxEigenvalues),
bisection_(bisection) {}
public:
/** \brief Set the current iterate */
......@@ -225,67 +226,48 @@ class MyBlockProblem<ConvexProblem>::IterateObject {
}
/** \brief Update the i-th block of the current iterate */
void updateIterate(LocalVector const &ui, size_t i) {
void updateIterate(LocalVectorType const &ui, size_t i) {
u[i] = ui;
return;
}
/** \brief Minimise a local problem using a modified gradient method
/** \brief Minimise a local problem
* \param[out] ui The solution
* \param m Block number
* \param ignore Set of degrees of freedom to leave untouched
*/
void solveLocalProblem(
LocalVector &ui, size_t m,
LocalVectorType &ui, size_t m,
typename Dune::BitSetVector<block_size>::const_reference ignore) {
{
size_t ic =
block_size; // Special value that indicates nothing should be ignored
switch (ignore.count()) {
case 0: // Full problem
break;
case 1:
for (ic = 0; ic < block_size; ++ic)
if (ignore[ic])
break;
break;
case block_size: // Ignore the whole node
return;
default:
assert(false);
LocalVectorType localb = problem.f[m];
auto const end = std::end(problem.A[m]);
for (auto it = std::begin(problem.A[m]); it != end; ++it) {
size_t const j = it.index();
Arithmetic::subtractProduct(localb, *it, u[j]); // also the diagonal!
}
Arithmetic::addProduct(localb, maxEigenvalues_[m], u[m]);
LocalMatrix const *localA = nullptr;
LocalVector localb(problem.f[m]);
auto const end = problem.A[m].end();
for (auto it = problem.A[m].begin(); it != end; ++it) {
size_t const j = it.index();
if (j == m)
localA = &(*it); // localA = A[m][m]
// We minimise over an affine subspace
for (size_t j = 0; j < block_size; ++j)
if (ignore[j])
localb[j] = 0;
else
Arithmetic::subtractProduct(localb, *it, u[j]);
}
assert(localA != nullptr);
ui[j] = 0;
auto const phi = problem.phi.restriction(m);
Dune::EllipticEnergy<block_size> localJ(*localA, localb, phi, ic);
Dune::minimise(localJ, ui, localsteps, bisection);
QuadraticEnergy<
typename ConvexProblem::NonlinearityType::LocalNonlinearity>
localJ(maxEigenvalues_[m], localb, problem.phi.restriction(m));
minimise(localJ, ui, bisection_);
}
}
private:
// problem data
ConvexProblem const &problem;
// commonly used minimization stuff
Bisection bisection;
std::vector<double> maxEigenvalues_;
Bisection const bisection_;
// state data for smoothing procedure used by:
// setIterate, updateIterate, solveLocalProblem
VectorType u;
size_t const localsteps;
};
#endif
#ifndef DUNE_TECTONIC_MYDIRECTIONALCONVEXFUNCTION_HH
#define DUNE_TECTONIC_MYDIRECTIONALCONVEXFUNCTION_HH
// Copied from dune/tnnmg/problem-classes/directionalconvexfunction.hh
// Allows phi to be const
#ifndef MY_DIRECTIONAL_CONVEX_FUNCTION_HH
#define MY_DIRECTIONAL_CONVEX_FUNCTION_HH
#include <dune/fufem/arithmetic.hh>
#include <dune/fufem/interval.hh>
/*
1/2 <A(u + hv),u + hv> - <b, u + hv>
= 1/2 <Av,v> h^2 - <b - Au, v> h + const.
localA = <Av,v>
localb = <b - Au, v>
*/
template <class Matrix, class Vector>
double computeDirectionalA(Matrix const &A, Vector const &v) {
return Arithmetic::Axy(A, v, v);
}
template <class Matrix, class Vector>
double computeDirectionalb(Matrix const &A, Vector const &b, Vector const &u,
Vector const &v) {
return Arithmetic::bmAxy(A, b, u, v);
}
#include <dune/solvers/common/interval.hh>
template <class Nonlinearity> class MyDirectionalConvexFunction {
public:
......@@ -41,15 +22,16 @@ template <class Nonlinearity> class MyDirectionalConvexFunction {
double linearPart() const { return b; }
void subDiff(double x, Interval<double> &D) const {
void subDiff(double x, Dune::Solvers::Interval<double> &D) const {
Vector uxv = u;
Arithmetic::addProduct(uxv, x, v);
phi.directionalSubDiff(uxv, v, D);
D[0] += A * x - b;
D[1] += A * x - b;
auto const Axmb = A * x - b;
D[0] += Axmb;
D[1] += Axmb;
}
void domain(Interval<double> &domain) const {
void domain(Dune::Solvers::Interval<double> &domain) const {
domain[0] = this->dom[0];
domain[1] = this->dom[1];
}
......@@ -62,7 +44,25 @@ template <class Nonlinearity> class MyDirectionalConvexFunction {
Vector const &u;
Vector const &v;
Interval<double> dom;
Dune::Solvers::Interval<double> dom;
};
/*
1/2 <A(u + hv),u + hv> - <b, u + hv>
= 1/2 <Av,v> h^2 - <b - Au, v> h + const.
localA = <Av,v>
localb = <b - Au, v>
*/
template <class Matrix, class Vector, class Nonlinearity>
MyDirectionalConvexFunction<Nonlinearity> restrict(Matrix const &A,
Vector const &b,
Vector const &u,
Vector const &v,
Nonlinearity const &phi) {
return MyDirectionalConvexFunction<Nonlinearity>(
Arithmetic::Axy(A, v, v), Arithmetic::bmAxy(A, b, u, v), phi, u, v);
}
#endif
#ifndef DUNE_TECTONIC_QUADRATICENERGY_HH
#define DUNE_TECTONIC_QUADRATICENERGY_HH
#include <memory>
template <class NonlinearityTEMPLATE> class QuadraticEnergy {
public:
using Nonlinearity = NonlinearityTEMPLATE;
using LocalVector = typename Nonlinearity::VectorType;
QuadraticEnergy(double alpha, LocalVector const &b, Nonlinearity const &phi)
: alpha(alpha), b(b), phi(phi) {}
double const alpha;
LocalVector const &b;
Nonlinearity const &phi;
};
#endif
#ifndef DUNE_tectonic.hh
#define DUNE_tectonic .hh
#ifndef DUNE_TECTONIC_TECTONIC_HH
#define DUNE_TECTONIC_TECTONIC_HH
// add your classes here
#endif // DUNE_tectonic.hh
#endif
M4FILES = dune-tectonic.m4
aclocaldir = $(datadir)/aclocal
aclocal_DATA = $(M4FILES)
EXTRA_DIST = $(M4FILES)
include $(top_srcdir)/am/global-rules
dnl -*- autoconf -*-
# Macros needed to find dune-tectonic and dependent libraries. They are called by
# the macros in ${top_src_dir}/dependencies.m4, which is generated by
# "dunecontrol autogen"
# Additional checks needed to build dune-tectonic
# This macro should be invoked by every module which depends on dune-tectonic, as
# well as by dune-tectonic itself
AC_DEFUN([DUNE_TECTONIC_CHECKS])
# Additional checks needed to find dune-tectonic
# This macro should be invoked by every module which depends on dune-tectonic, but
# not by dune-tectonic itself
AC_DEFUN([DUNE_TECTONIC_CHECK_MODULE],
[
DUNE_CHECK_MODULES([dune-tectonic],[tectonic/tectonic.hh])
])
set(SW_SOURCE_FILES
assemblers.cc
enumparser.cc
hdf5/frictionalboundary-writer.cc
hdf5/iteration-writer.cc
hdf5/patchinfo-writer.cc
hdf5/restart-io.cc
hdf5/surface-writer.cc
hdf5/time-writer.cc
one-body-problem-data/mygeometry.cc
one-body-problem-data/mygrid.cc
one-body-problem.cc
spatial-solving/fixedpointiterator.cc
spatial-solving/solverfactory.cc
time-stepping/adaptivetimestepper.cc
time-stepping/coupledtimestepper.cc
time-stepping/rate.cc
time-stepping/rate/rateupdater.cc
time-stepping/state.cc
vtk.cc
)
set(UGW_SOURCE_FILES
assemblers.cc # FIXME
one-body-problem-data/mygrid.cc
uniform-grid-writer.cc
vtk.cc
)
foreach(_dim 2 3)
set(_sw_target one-body-problem-${_dim}D)
set(_ugw_target uniform-grid-writer-${_dim}D)
add_executable(${_sw_target} ${SW_SOURCE_FILES})
add_executable(${_ugw_target} ${UGW_SOURCE_FILES})
add_dune_ug_flags(${_sw_target})
add_dune_ug_flags(${_ugw_target})
add_dune_hdf5_flags(${_sw_target})
set_property(TARGET ${_sw_target} APPEND PROPERTY COMPILE_DEFINITIONS "MY_DIM=${_dim}")
set_property(TARGET ${_ugw_target} APPEND PROPERTY COMPILE_DEFINITIONS "MY_DIM=${_dim}")
endforeach()
bin_PROGRAMS = \
one-body-sample-2D \
one-body-sample-3D
2d: one-body-sample-2D
3d: one-body-sample-3D
SOURCES = \
assemblers.cc \
friction_writer.cc \
state/compute_state_dieterich_euler.cc \
state/compute_state_ruina.cc \
solverfactory.cc \
one-body-sample.cc \
timestepping.cc \
vtk.cc
## 2D
one_body_sample_2D_SOURCES = $(SOURCES)
one_body_sample_2D_CPPFLAGS = \
$(AM_CPPFLAGS) -Dsrcdir=\"$(abs_srcdir)\" -DDIM=2
## 3D
one_body_sample_3D_SOURCES = $(SOURCES)
one_body_sample_3D_CPPFLAGS = \
$(AM_CPPFLAGS) -Dsrcdir=\"$(abs_srcdir)\" -DDIM=3
# Some are for clang, others are for gcc
AM_CXXFLAGS = \
-Wall \
-Wextra \
-Wno-unused-parameter \
-Wno-overloaded-virtual
AM_CPPFLAGS = \
-DDUNE_FMatrix_WITH_CHECKING \
$(DUNE_CPPFLAGS) \
$(PYTHON_CPPFLAGS) \
$(ALUGRID_CPPFLAGS) \
-I$(top_srcdir)
# The libraries have to be given in reverse order (most basic libraries
# last).
LDADD = \
$(DUNE_LDFLAGS) $(DUNE_LIBS) \
$(ALUGRID_LIBS) \
$(PYTHON_LIBS)
AM_LDFLAGS = \
$(DUNE_LDFLAGS) \
$(ALUGRID_LDFLAGS) \
$(PYTHON_LDFLAGS)
include $(top_srcdir)/am/global-rules
......@@ -2,56 +2,181 @@
#include "config.h"
#endif
#include <dune/istl/scaledidmatrix.hh>
#include <dune/fufem/assemblers/localassemblers/boundarymassassembler.hh>
#include <dune/fufem/assemblers/localassemblers/l2functionalassembler.hh>
#include <dune/fufem/assemblers/localassemblers/neumannboundaryassembler.hh>
#include <dune/fufem/assemblers/localassemblers/normalstressboundaryassembler.hh>
#include <dune/fufem/assemblers/localassemblers/stvenantkirchhoffassembler.hh>
#include <dune/fufem/assemblers/localassemblers/variablecoefficientviscosityassembler.hh>
#include <dune/fufem/assemblers/localassemblers/vonmisesstressassembler.hh>
#include <dune/fufem/assemblers/localassemblers/weightedmassassembler.hh>
#include <dune/fufem/boundarypatch.hh>
#include <dune/fufem/functions/basisgridfunction.hh>
#include <dune/fufem/functions/constantfunction.hh>
#include <dune/fufem/assemblers/localassemblers/neumannboundaryassembler.hh>
#include <dune/fufem/functiontools/p0p1interpolation.hh>
#include <dune/fufem/quadraturerules/quadraturerulecache.hh>
#include <dune/tectonic/globalruinanonlinearity.hh>
#include <dune/tectonic/frictionpotential.hh>
#include <dune/tectonic/globalratestatefriction.hh>
#include "assemblers.hh"
// Assembles Neumann boundary term in f
template <class GridView, class LocalVector, class Assembler>
void assembleNeumann(GridView const &gridView, Assembler const &assembler,
Dune::BitSetVector<1> const &neumannNodes,
Dune::BlockVector<LocalVector> &f,
Dune::VirtualFunction<double, double> const &neumann,
double relativeTime) { // constant sample function on
// neumann boundary
BoundaryPatch<GridView> const neumannBoundary(gridView, neumannNodes);
template <class GridView, int dimension>
MyAssembler<GridView, dimension>::MyAssembler(GridView const &_gridView)
: cellBasis(_gridView),
vertexBasis(_gridView),
gridView(_gridView),
cellAssembler(cellBasis, cellBasis),
vertexAssembler(vertexBasis, vertexBasis) {}
template <class GridView, int dimension>
void MyAssembler<GridView, dimension>::assembleFrictionalBoundaryMass(
BoundaryPatch<GridView> const &frictionalBoundary,
ScalarMatrix &frictionalBoundaryMass) const {
BoundaryMassAssembler<Grid, BoundaryPatch<GridView>, LocalVertexBasis,
LocalVertexBasis, Dune::FieldMatrix<double, 1, 1>> const
frictionalBoundaryMassAssembler(frictionalBoundary);
vertexAssembler.assembleOperator(frictionalBoundaryMassAssembler,
frictionalBoundaryMass);
}
template <class GridView, int dimension>
void MyAssembler<GridView, dimension>::assembleMass(
Dune::VirtualFunction<LocalVector, LocalScalarVector> const &
densityFunction,
Matrix &M) const {
// NOTE: We treat the weight as a constant function
QuadratureRuleKey quadKey(dimension, 0);
WeightedMassAssembler<Grid, LocalVertexBasis, LocalVertexBasis,
Dune::VirtualFunction<LocalVector, LocalScalarVector>,
Dune::ScaledIdentityMatrix<double, dimension>>
localWeightedMass(gridView.grid(), densityFunction, quadKey);
vertexAssembler.assembleOperator(localWeightedMass, M);
}
template <class GridView, int dimension>
void MyAssembler<GridView, dimension>::assembleElasticity(double E, double nu,
Matrix &A) const {
StVenantKirchhoffAssembler<Grid, LocalVertexBasis, LocalVertexBasis> const
localStiffness(E, nu);
vertexAssembler.assembleOperator(localStiffness, A);
}
template <class GridView, int dimension>
void MyAssembler<GridView, dimension>::assembleViscosity(
Dune::VirtualFunction<LocalVector, LocalScalarVector> const &shearViscosity,
Dune::VirtualFunction<LocalVector, LocalScalarVector> const &bulkViscosity,
Matrix &C) const {
// NOTE: We treat the weights as constant functions
QuadratureRuleKey shearViscosityKey(dimension, 0);
QuadratureRuleKey bulkViscosityKey(dimension, 0);
VariableCoefficientViscosityAssembler<
Grid, LocalVertexBasis, LocalVertexBasis,
Dune::VirtualFunction<LocalVector, LocalScalarVector>> const
localViscosity(gridView.grid(), shearViscosity, bulkViscosity,
shearViscosityKey, bulkViscosityKey);
vertexAssembler.assembleOperator(localViscosity, C);
}
template <class GridView, int dimension>
void MyAssembler<GridView, dimension>::assembleBodyForce(
Dune::VirtualFunction<LocalVector, LocalVector> const &gravityField,
Vector &f) const {
L2FunctionalAssembler<Grid, LocalVertexBasis, LocalVector>
gravityFunctionalAssembler(gravityField);
vertexAssembler.assembleFunctional(gravityFunctionalAssembler, f);
}
template <class GridView, int dimension>
void MyAssembler<GridView, dimension>::assembleNeumann(
BoundaryPatch<GridView> const &neumannBoundary, Vector &f,
Dune::VirtualFunction<double, double> const &neumann,
double relativeTime) const {
LocalVector localNeumann(0);
neumann.evaluate(relativeTime, localNeumann[0]);
ConstantFunction<LocalVector, LocalVector> const fNeumann(localNeumann);
NeumannBoundaryAssembler<typename GridView::Grid, LocalVector>
neumannBoundaryAssembler(fNeumann);
assembler.assembleBoundaryFunctional(neumannBoundaryAssembler, f,
neumannBoundary);
}
// Assembles constant 1-function on frictional boundary in nodalIntegrals
template <class GridView, class LocalVector, class Assembler>
Dune::shared_ptr<Dune::BlockVector<Dune::FieldVector<double, 1>>>
assembleFrictionWeightsal(GridView const &gridView, Assembler const &assembler,
Dune::BitSetVector<1> const &frictionalNodes) {
using Singleton = Dune::FieldVector<double, 1>;
BoundaryPatch<GridView> const frictionalBoundary(gridView, frictionalNodes);
ConstantFunction<LocalVector, Singleton> const constantOneFunction(1);
NeumannBoundaryAssembler<typename GridView::Grid, Singleton>
frictionalBoundaryAssembler(constantOneFunction);
auto const nodalIntegrals = Dune::make_shared<Dune::BlockVector<Singleton>>();
assembler.assembleBoundaryFunctional(frictionalBoundaryAssembler,
*nodalIntegrals, frictionalBoundary);
return nodalIntegrals;
}
template <class Matrix, class Vector>
Dune::shared_ptr<Dune::GlobalNonlinearity<Matrix, Vector>> assembleNonlinearity(
Dune::BitSetVector<1> const &frictionalNodes,
Dune::BlockVector<Dune::FieldVector<double, 1>> const &nodalIntegrals,
FrictionData const &fd) {
return Dune::make_shared<Dune::GlobalRuinaNonlinearity<Matrix, Vector>>(
frictionalNodes, nodalIntegrals, fd);
NeumannBoundaryAssembler<Grid, LocalVector> neumannBoundaryAssembler(
std::make_shared<ConstantFunction<LocalVector, LocalVector>>(
localNeumann));
vertexAssembler.assembleBoundaryFunctional(neumannBoundaryAssembler, f,
neumannBoundary);
}
template <class GridView, int dimension>
void MyAssembler<GridView, dimension>::assembleWeightedNormalStress(
BoundaryPatch<GridView> const &frictionalBoundary,
ScalarVector &weightedNormalStress, double youngModulus,
double poissonRatio, Vector const &displacement) const {
BasisGridFunction<VertexBasis, Vector> displacementFunction(vertexBasis,
displacement);
Vector traction(cellBasis.size());
NormalStressBoundaryAssembler<Grid> tractionBoundaryAssembler(
youngModulus, poissonRatio, &displacementFunction, 1);
cellAssembler.assembleBoundaryFunctional(tractionBoundaryAssembler, traction,
frictionalBoundary);
auto const nodalTractionAverage =
interpolateP0ToP1(frictionalBoundary, traction);
ScalarVector weights;
{
NeumannBoundaryAssembler<Grid, typename ScalarVector::block_type>
frictionalBoundaryAssembler(
std::make_shared<ConstantFunction<
LocalVector, typename ScalarVector::block_type>>(1));
vertexAssembler.assembleBoundaryFunctional(frictionalBoundaryAssembler,
weights, frictionalBoundary);
}
auto const normals = frictionalBoundary.getNormals();
for (size_t i = 0; i < vertexBasis.size(); ++i)
weightedNormalStress[i] =
std::fmin(normals[i] * nodalTractionAverage[i], 0) * weights[i];
}
template <class GridView, int dimension>
auto MyAssembler<GridView, dimension>::assembleFrictionNonlinearity(
Config::FrictionModel frictionModel,
BoundaryPatch<GridView> const &frictionalBoundary,
GlobalFrictionData<dimension> const &frictionInfo,
ScalarVector const &weightedNormalStress) const
-> std::shared_ptr<GlobalFriction<Matrix, Vector>> {
// Lumping of the nonlinearity
ScalarVector weights;
{
NeumannBoundaryAssembler<Grid, typename ScalarVector::block_type>
frictionalBoundaryAssembler(std::make_shared<
ConstantFunction<LocalVector, typename ScalarVector::block_type>>(
1));
vertexAssembler.assembleBoundaryFunctional(frictionalBoundaryAssembler,
weights, frictionalBoundary);
}
switch (frictionModel) {
case Config::Truncated:
return std::make_shared<GlobalRateStateFriction<
Matrix, Vector, TruncatedRateState, GridView>>(
frictionalBoundary, frictionInfo, weights, weightedNormalStress);
case Config::Regularised:
return std::make_shared<GlobalRateStateFriction<
Matrix, Vector, RegularisedRateState, GridView>>(
frictionalBoundary, frictionInfo, weights, weightedNormalStress);
default:
assert(false);
}
}
template <class GridView, int dimension>
void MyAssembler<GridView, dimension>::assembleVonMisesStress(
double youngModulus, double poissonRatio, Vector const &u,
ScalarVector &stress) const {
auto const gridDisplacement =
std::make_shared<BasisGridFunction<VertexBasis, Vector> const>(
vertexBasis, u);
VonMisesStressAssembler<Grid, LocalCellBasis> localStressAssembler(
youngModulus, poissonRatio, gridDisplacement);
cellAssembler.assembleFunctional(localStressAssembler, stress);
}
#include "assemblers_tmpl.cc"
#ifndef ASSEMBLERS_HH
#define ASSEMBLERS_HH
#ifndef SRC_ASSEMBLERS_HH
#define SRC_ASSEMBLERS_HH
#include <dune/common/bitsetvector.hh>
#include <dune/common/function.hh>
#include <dune/common/fvector.hh>
#include <dune/common/shared_ptr.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/bvector.hh>
#include <dune/fufem/assemblers/assembler.hh>
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wsign-compare"
#include <dune/fufem/functionspacebases/p0basis.hh>
#pragma clang diagnostic pop
#include <dune/fufem/functionspacebases/p1nodalbasis.hh>
#include <dune/tectonic/globalnonlinearity.hh>
template <class GridView, class LocalVector, class Assembler>
void assembleNeumann(GridView const &gridView, Assembler const &assembler,
Dune::BitSetVector<1> const &neumannNodes,
Dune::BlockVector<LocalVector> &f,
Dune::VirtualFunction<double, double> const &neumann,
double relativeTime);
template <class GridView, class LocalVector, class Assembler>
Dune::shared_ptr<Dune::BlockVector<Dune::FieldVector<double, 1>>>
assembleFrictionWeightsal(GridView const &gridView, Assembler const &assembler,
Dune::BitSetVector<1> const &frictionalNodes);
template <class Matrix, class Vector>
Dune::shared_ptr<Dune::GlobalNonlinearity<Matrix, Vector>> assembleNonlinearity(
Dune::BitSetVector<1> const &frictionalNodes,
Dune::BlockVector<Dune::FieldVector<double, 1>> const &nodalIntegrals,
FrictionData const &fd);
#include <dune/tectonic/globalfriction.hh>
#include <dune/tectonic/globalfrictiondata.hh>
#include "enums.hh"
template <class GridView, int dimension> class MyAssembler {
public:
using ScalarMatrix = Dune::BCRSMatrix<Dune::FieldMatrix<double, 1, 1>>;
using Matrix =
Dune::BCRSMatrix<Dune::FieldMatrix<double, dimension, dimension>>;
using ScalarVector = Dune::BlockVector<Dune::FieldVector<double, 1>>;
using Vector = Dune::BlockVector<Dune::FieldVector<double, dimension>>;
using CellBasis = P0Basis<GridView, double>;
using VertexBasis = P1NodalBasis<GridView, double>;
CellBasis const cellBasis;
VertexBasis const vertexBasis;
GridView const &gridView;
private:
using Grid = typename GridView::Grid;
using LocalVector = typename Vector::block_type;
using LocalScalarVector = typename ScalarVector::block_type;
using LocalCellBasis = typename CellBasis::LocalFiniteElement;
using LocalVertexBasis = typename VertexBasis::LocalFiniteElement;
Assembler<CellBasis, CellBasis> cellAssembler;
Assembler<VertexBasis, VertexBasis> vertexAssembler;
public:
MyAssembler(GridView const &gridView);
void assembleFrictionalBoundaryMass(
BoundaryPatch<GridView> const &frictionalBoundary,
ScalarMatrix &frictionalBoundaryMass) const;
void assembleMass(Dune::VirtualFunction<
LocalVector, LocalScalarVector> const &densityFunction,
Matrix &M) const;
void assembleElasticity(double E, double nu, Matrix &A) const;
void assembleViscosity(
Dune::VirtualFunction<LocalVector, LocalScalarVector> const &
shearViscosity,
Dune::VirtualFunction<LocalVector, LocalScalarVector> const &
bulkViscosity,
Matrix &C) const;
void assembleBodyForce(
Dune::VirtualFunction<LocalVector, LocalVector> const &gravityField,
Vector &f) const;
void assembleNeumann(BoundaryPatch<GridView> const &neumannBoundary,
Vector &f,
Dune::VirtualFunction<double, double> const &neumann,
double relativeTime) const;
void assembleWeightedNormalStress(
BoundaryPatch<GridView> const &frictionalBoundary,
ScalarVector &weightedNormalStress, double youngModulus,
double poissonRatio, Vector const &displacement) const;
std::shared_ptr<GlobalFriction<Matrix, Vector>> assembleFrictionNonlinearity(
Config::FrictionModel frictionModel,
BoundaryPatch<GridView> const &frictionalBoundary,
GlobalFrictionData<dimension> const &frictionInfo,
ScalarVector const &weightedNormalStress) const;
void assembleVonMisesStress(double youngModulus, double poissonRatio,
Vector const &u, ScalarVector &stress) const;
};
#endif
#ifndef DIM
#error DIM unset
#ifndef MY_DIM
#error MY_DIM unset
#endif
#include <dune/common/fmatrix.hh>
#include <dune/common/fvector.hh>
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wignored-qualifiers"
#include <dune/grid/alugrid.hh>
#pragma clang diagnostic pop
#include <dune/istl/bvector.hh>
#include <dune/istl/bcrsmatrix.hh>
#include "explicitgrid.hh"
#include <dune/fufem/functionspacebases/p1nodalbasis.hh>
using SmallVector = Dune::FieldVector<double, DIM>;
using SmallMatrix = Dune::FieldMatrix<double, DIM, DIM>;
using Matrix = Dune::BCRSMatrix<SmallMatrix>;
using Vector = Dune::BlockVector<SmallVector>;
using Grid = Dune::ALUGrid<DIM, DIM, Dune::simplex, Dune::nonconforming>;
using GridView = Grid::LeafGridView;
using P1Basis = P1NodalBasis<GridView, double>;
using MyAssembler = Assembler<P1Basis, P1Basis>;
template void assembleNeumann<GridView, SmallVector, MyAssembler>(
GridView const &gridView, MyAssembler const &assembler,
Dune::BitSetVector<1> const &neumannNodes,
Dune::BlockVector<SmallVector> &f,
Dune::VirtualFunction<double, double> const &neumann, double relativeTime);
template Dune::shared_ptr<Dune::BlockVector<Dune::FieldVector<double, 1>>>
assembleFrictionWeightsal<GridView, SmallVector, MyAssembler>(
GridView const &gridView, MyAssembler const &assembler,
Dune::BitSetVector<1> const &frictionalNodes);
template Dune::shared_ptr<Dune::GlobalNonlinearity<Matrix, Vector>>
assembleNonlinearity<Matrix, Vector>(
Dune::BitSetVector<1> const &frictionalNodes,
Dune::BlockVector<Dune::FieldVector<double, 1>> const &nodalIntegrals,
FrictionData const &fd);
template class MyAssembler<GridView, MY_DIM>;