Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • podlesny/dune-tectonic
  • agnumpde/dune-tectonic
2 results
Show changes
Showing
with 435 additions and 359 deletions
#ifndef DUNE_TECTONIC_GEOCOORDINATE_HH
#define DUNE_TECTONIC_GEOCOORDINATE_HH
// tiny helper to make a common piece of code pleasanter to read
template <class Geometry>
typename Geometry::GlobalCoordinate geoToPoint(Geometry geo) {
assert(geo.corners() == 1);
return geo.corner(0);
}
#endif
#ifndef DUNE_TECTONIC_GLOBAL_NONLINEARITY_HH
#define DUNE_TECTONIC_GLOBAL_NONLINEARITY_HH
#ifndef DUNE_TECTONIC_GLOBALFRICTION_HH
#define DUNE_TECTONIC_GLOBALFRICTION_HH
#include <dune/common/fmatrix.hh>
#include <dune/common/fvector.hh>
......@@ -9,9 +9,9 @@
#include <dune/solvers/common/interval.hh>
#include "localfriction.hh"
#include <dune/tectonic/localfriction.hh>
template <class Matrix, class Vector> class GlobalNonlinearity {
template <class Matrix, class Vector> class GlobalFriction {
protected:
using ScalarVector = Dune::BlockVector<Dune::FieldVector<double, 1>>;
......@@ -22,13 +22,12 @@ template <class Matrix, class Vector> class GlobalNonlinearity {
using LocalMatrix = typename Matrix::block_type;
using LocalVectorType = typename Vector::block_type;
size_t static const block_size = LocalVectorType::dimension;
using Friction = LocalFriction<block_size>;
using LocalNonlinearity = LocalFriction<block_size>;
double operator()(Vector const &x) const {
double tmp = 0;
for (size_t i = 0; i < x.size(); ++i) {
auto const res = restriction(i);
tmp += (*res)(x[i]);
tmp += restriction(i)(x[i]);
}
return tmp;
}
......@@ -36,14 +35,11 @@ template <class Matrix, class Vector> class GlobalNonlinearity {
/*
Return a restriction of the outer function to the i'th node.
*/
std::shared_ptr<LocalFriction<block_size>> virtual restriction(size_t i)
const = 0;
LocalNonlinearity const virtual &restriction(size_t i) const = 0;
void addHessian(Vector const &v, Matrix &hessian) const {
for (size_t i = 0; i < v.size(); ++i) {
auto const res = restriction(i);
res->addHessian(v[i], hessian[i][i]);
}
for (size_t i = 0; i < v.size(); ++i)
restriction(i).addHessian(v[i], hessian[i][i]);
}
void directionalDomain(Vector const &, Vector const &,
......@@ -52,14 +48,13 @@ template <class Matrix, class Vector> class GlobalNonlinearity {
dom[1] = std::numeric_limits<double>::max();
}
void directionalSubDiff(Vector const &u, Vector const &v,
Dune::Solvers::Interval<double> &subdifferential)
const {
void directionalSubDiff(
Vector const &u, Vector const &v,
Dune::Solvers::Interval<double> &subdifferential) const {
subdifferential[0] = subdifferential[1] = 0;
for (size_t i = 0; i < u.size(); ++i) {
Dune::Solvers::Interval<double> D;
auto const res = restriction(i);
res->directionalSubDiff(u[i], v[i], D);
restriction(i).directionalSubDiff(u[i], v[i], D);
subdifferential[0] += D[0];
subdifferential[1] += D[1];
}
......@@ -71,17 +66,21 @@ template <class Matrix, class Vector> class GlobalNonlinearity {
}
void addGradient(Vector const &v, Vector &gradient) const {
for (size_t i = 0; i < v.size(); ++i) {
auto const res = restriction(i);
res->addGradient(v[i], gradient[i]);
}
for (size_t i = 0; i < v.size(); ++i)
restriction(i).addGradient(v[i], gradient[i]);
}
double regularity(size_t i, typename Vector::block_type const &x) const {
auto const res = restriction(i);
return res->regularity(x);
return restriction(i).regularity(x);
}
ScalarVector coefficientOfFriction(Vector const &x) const {
ScalarVector ret(x.size());
for (size_t i = 0; i < x.size(); ++i)
ret[i] = restriction(i).coefficientOfFriction(x[i]);
return ret;
}
void virtual updateLogState(ScalarVector const &logState) = 0;
void virtual updateAlpha(ScalarVector const &alpha) = 0;
};
#endif
#ifndef GLOBAL_FRICTION_DATA_HH
#define GLOBAL_FRICTION_DATA_HH
#ifndef DUNE_TECTONIC_GLOBALFRICTIONDATA_HH
#define DUNE_TECTONIC_GLOBALFRICTIONDATA_HH
#include <dune/common/function.hh>
#include <dune/common/fvector.hh>
......@@ -23,8 +23,9 @@ template <int dimension> class GlobalFrictionData {
}
protected:
using VirtualFunction = Dune::VirtualFunction<
Dune::FieldVector<double, dimension>, Dune::FieldVector<double, 1>>;
using VirtualFunction =
Dune::VirtualFunction<Dune::FieldVector<double, dimension>,
Dune::FieldVector<double, 1>>;
double virtual const &C() const = 0;
double virtual const &L() const = 0;
......@@ -33,5 +34,4 @@ template <int dimension> class GlobalFrictionData {
VirtualFunction virtual const &b() const = 0;
double virtual const &mu0() const = 0;
};
#endif
#ifndef DUNE_TECTONIC_GLOBAL_RUINA_NONLINEARITY_HH
#define DUNE_TECTONIC_GLOBAL_RUINA_NONLINEARITY_HH
#ifndef DUNE_TECTONIC_GLOBALRATESTATEFRICTION_HH
#define DUNE_TECTONIC_GLOBALRATESTATEFRICTION_HH
#include <vector>
......@@ -10,67 +10,62 @@
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/bvector.hh>
#include <dune/tectonic/geocoordinate.hh>
#include <dune/tectonic/globalfrictiondata.hh>
#include <dune/tectonic/globalfriction.hh>
#include <dune/tectonic/index-in-sorted-range.hh>
#include "globalnonlinearity.hh"
#include "frictionpotential.hh"
template <class Matrix, class Vector, class GridView>
class GlobalRuinaNonlinearity : public GlobalNonlinearity<Matrix, Vector> {
template <class Matrix, class Vector, class ScalarFriction, class GridView>
class GlobalRateStateFriction : public GlobalFriction<Matrix, Vector> {
public:
using GlobalNonlinearity<Matrix, Vector>::block_size;
using typename GlobalNonlinearity<Matrix, Vector>::Friction;
using GlobalFriction<Matrix, Vector>::block_size;
using typename GlobalFriction<Matrix, Vector>::LocalNonlinearity;
private:
using typename GlobalNonlinearity<Matrix, Vector>::ScalarVector;
using typename GlobalFriction<Matrix, Vector>::ScalarVector;
public:
GlobalRuinaNonlinearity(BoundaryPatch<GridView> const &frictionalBoundary,
GridView const &gridView,
GlobalRateStateFriction(BoundaryPatch<GridView> const &frictionalBoundary,
GlobalFrictionData<block_size> const &frictionInfo,
// Note: passing the following two makes no sense
ScalarVector const &weights,
ScalarVector const &normalStress)
: restrictions(normalStress.size()) {
auto trivialNonlinearity =
std::make_shared<Friction>(std::make_shared<TrivialFunction>());
ScalarVector const &weightedNormalStress)
: restrictions(), localToGlobal(), zeroFriction() {
auto const gridView = frictionalBoundary.gridView();
Dune::MultipleCodimMultipleGeomTypeMapper<
GridView, Dune::MCMGVertexLayout> const vertexMapper(gridView);
for (auto it = gridView.template begin<block_size>();
it != gridView.template end<block_size>(); ++it) {
auto const i = vertexMapper.map(*it);
auto const coordinate = it->geometry().corner(0);
if (not frictionalBoundary.containsVertex(i)) {
restrictions[i] = trivialNonlinearity;
auto const i = vertexMapper.index(*it);
if (not frictionalBoundary.containsVertex(i))
continue;
}
auto const fp = std::make_shared<FrictionPotential>(
weights[i], normalStress[i], frictionInfo(coordinate));
restrictions[i] = std::make_shared<Friction>(fp);
}
}
void updateLogState(ScalarVector const &logState) override {
for (size_t i = 0; i < restrictions.size(); ++i)
restrictions[i]->updateLogState(logState[i]);
localToGlobal.emplace_back(i);
restrictions.emplace_back(weights[i], weightedNormalStress[i],
frictionInfo(geoToPoint(it->geometry())));
}
assert(restrictions.size() == frictionalBoundary.numVertices());
assert(localToGlobal.size() == frictionalBoundary.numVertices());
}
void coefficientOfFriction(Vector const &x, ScalarVector &coefficient) {
assert(x.size() == restrictions.size());
coefficient.resize(restrictions.size());
for (size_t i = 0; i < restrictions.size(); ++i)
coefficient[i] = restrictions[i]->coefficientOfFriction(x[i]);
void updateAlpha(ScalarVector const &alpha) override {
for (size_t j = 0; j < restrictions.size(); ++j)
restrictions[j].updateAlpha(alpha[localToGlobal[j]]);
}
/*
Return a restriction of the outer function to the i'th node.
*/
std::shared_ptr<Friction> restriction(size_t i) const override {
return restrictions[i];
LocalNonlinearity const &restriction(size_t i) const override {
auto const index = indexInSortedRange(localToGlobal, i);
if (index == localToGlobal.size())
return zeroFriction;
return restrictions[index];
}
private:
std::vector<std::shared_ptr<Friction>> restrictions;
std::vector<WrappedScalarFriction<block_size, ScalarFriction>> restrictions;
std::vector<size_t> localToGlobal;
WrappedScalarFriction<block_size, ZeroFunction> const zeroFriction;
};
#endif
#ifndef GRAVITY_HH
#define GRAVITY_HH
#ifndef DUNE_TECTONIC_GRAVITY_HH
#define DUNE_TECTONIC_GRAVITY_HH
#include <dune/common/function.hh>
#include <dune/common/fvector.hh>
......
#ifndef DUNE_TECTONIC_INDEX_IN_SORTED_RANGE_HH
#define DUNE_TECTONIC_INDEX_IN_SORTED_RANGE_HH
#include <algorithm>
// returns v.size() if value does not exist
template <typename T>
size_t indexInSortedRange(std::vector<T> const &v, T value) {
size_t const specialReturnValue = v.size();
auto const b = std::begin(v);
auto const e = std::end(v);
auto const lb = std::lower_bound(b, e, value);
if (lb == e) // all elements are strictly smaller
return specialReturnValue;
if (value < *lb) // value falls between to elements
return specialReturnValue;
return std::distance(b, lb);
}
#endif
#ifndef DUNE_TECTONIC_LOCAL_FRICTION_HH
#define DUNE_TECTONIC_LOCAL_FRICTION_HH
#ifndef DUNE_TECTONIC_LOCALFRICTION_HH
#define DUNE_TECTONIC_LOCALFRICTION_HH
#include <cmath>
#include <limits>
......@@ -10,43 +10,63 @@
#include <dune/fufem/arithmetic.hh>
#include <dune/solvers/common/interval.hh>
#include "frictionpotential.hh"
#include <dune/tectonic/frictionpotential.hh>
template <size_t dimension> class LocalFriction {
public:
virtual ~LocalFriction() {}
using VectorType = Dune::FieldVector<double, dimension>;
using MatrixType = Dune::FieldMatrix<double, dimension, dimension>;
explicit LocalFriction(std::shared_ptr<FrictionPotentialWrapper> func)
: func(func) {}
void virtual updateAlpha(double alpha) = 0;
double virtual regularity(VectorType const &x) const = 0;
double virtual coefficientOfFriction(VectorType const &x) const = 0;
void virtual directionalSubDiff(VectorType const &x, VectorType const &v,
Dune::Solvers::Interval<double> &D) const = 0;
double operator()(VectorType const &x) const {
return func->evaluate(x.two_norm());
}
void virtual addHessian(VectorType const &x, MatrixType &A) const = 0;
void virtual addGradient(VectorType const &x, VectorType &y) const = 0;
void virtual directionalDomain(
VectorType const &, VectorType const &,
Dune::Solvers::Interval<double> &dom) const = 0;
};
template <size_t dimension, class ScalarFriction>
class WrappedScalarFriction : public LocalFriction<dimension> {
using VectorType = typename LocalFriction<dimension>::VectorType;
using MatrixType = typename LocalFriction<dimension>::MatrixType;
public:
template <typename... Args>
WrappedScalarFriction(Args... args)
: func_(args...) {}
void updateLogState(double logState) { func->updateLogState(logState); }
void updateAlpha(double alpha) override { func_.updateAlpha(alpha); }
double regularity(VectorType const &x) const {
double regularity(VectorType const &x) const override {
double const xnorm = x.two_norm();
if (xnorm <= 0.0)
return std::numeric_limits<double>::infinity();
return func->regularity(xnorm);
return func_.regularity(xnorm);
}
double coefficientOfFriction(VectorType const &x) const {
return func->coefficientOfFriction(x.two_norm());
double coefficientOfFriction(VectorType const &x) const override {
return func_.coefficientOfFriction(x.two_norm());
}
// directional subdifferential: at u on the line u + t*v
// u and v are assumed to be non-zero
void directionalSubDiff(VectorType const &x, VectorType const &v,
Dune::Solvers::Interval<double> &D) const {
Dune::Solvers::Interval<double> &D) const override {
double const xnorm = x.two_norm();
if (xnorm <= 0.0)
D[0] = D[1] = func->differential(0.0) * v.two_norm();
D[0] = D[1] = func_.differential(0.0) * v.two_norm();
else
D[0] = D[1] = func->differential(xnorm) * (x * v) / xnorm;
D[0] = D[1] = func_.differential(xnorm) * (x * v) / xnorm;
}
/** Formula for the derivative:
......@@ -65,14 +85,14 @@ template <size_t dimension> class LocalFriction {
+ \frac {H'(|z|)}{|z|} \operatorname{id}
\f}
*/
void addHessian(VectorType const &x, MatrixType &A) const {
void addHessian(VectorType const &x, MatrixType &A) const override {
double const xnorm2 = x.two_norm2();
double const xnorm = std::sqrt(xnorm2);
if (xnorm2 <= 0.0)
return;
double const H1 = func->differential(xnorm);
double const H2 = func->second_deriv(xnorm);
double const H1 = func_.differential(xnorm);
double const H2 = func_.second_deriv(xnorm);
double const tensorweight = (H2 - H1 / xnorm) / xnorm2;
double const idweight = H1 / xnorm;
......@@ -90,22 +110,22 @@ template <size_t dimension> class LocalFriction {
}
}
void addGradient(VectorType const &x, VectorType &y) const {
void addGradient(VectorType const &x, VectorType &y) const override {
double const xnorm = x.two_norm();
if (std::isinf(func->regularity(xnorm)))
if (std::isinf(func_.regularity(xnorm)))
return;
if (xnorm > 0.0)
Arithmetic::addProduct(y, func->differential(xnorm) / xnorm, x);
Arithmetic::addProduct(y, func_.differential(xnorm) / xnorm, x);
}
void directionalDomain(VectorType const &, VectorType const &,
Dune::Solvers::Interval<double> &dom) const {
Dune::Solvers::Interval<double> &dom) const override {
dom[0] = -std::numeric_limits<double>::max();
dom[1] = std::numeric_limits<double>::max();
}
private:
std::shared_ptr<FrictionPotentialWrapper> const func;
ScalarFriction func_;
};
#endif
#ifndef MINIMISATION_HH
#define MINIMISATION_HH
#ifndef DUNE_TECTONIC_MINIMISATION_HH
#define DUNE_TECTONIC_MINIMISATION_HH
#include <dune/common/fmatrix.hh>
#include <dune/common/fvector.hh>
......@@ -9,59 +9,33 @@
#include <dune/fufem/interval.hh>
#include <dune/tnnmg/problem-classes/bisection.hh>
#include "mydirectionalconvexfunction.hh"
#include <dune/tectonic/mydirectionalconvexfunction.hh>
// Warning: this exploits the property v*x = 0
template <class Functional>
double lineSearch(Functional const &J,
typename Functional::LocalVector const &x,
typename Functional::LocalVector const &v,
Bisection const &bisection) {
MyDirectionalConvexFunction<typename Functional::Nonlinearity> const JRest(
computeDirectionalA(J.A, v), computeDirectionalb(J.A, J.b, x, v), *J.phi,
x, v);
J.alpha * v.two_norm2(), J.b * v, J.phi, x, v);
int count;
return bisection.minimize(JRest, 0.0, 0.0, count);
}
/** Minimise a quadratic problem, for which both the quadratic and the
nonlinear term have gradients which point in the direction of
their arguments */
template <class Functional>
void minimise(Functional const &J, typename Functional::LocalVector &x,
size_t steps, Bisection const &bisection) {
using LocalVector = typename Functional::LocalVector;
auto const diff = [](LocalVector const &a, LocalVector const &b) {
LocalVector tmp = a;
tmp -= b;
return tmp.two_norm();
};
LocalVector x_initial = x;
LocalVector x_o = x;
for (size_t step = 0; step < steps; ++step) {
LocalVector v;
J.descentDirection(x, v);
double const vnorm = v.two_norm();
if (vnorm <= 0.0)
return;
v /= vnorm;
double const alpha = lineSearch(J, x, v, bisection);
Arithmetic::addProduct(x, alpha, v);
if (alpha < 1e-14) // TODO
break;
double const correction = diff(x, x_o);
double const overallCorrection = diff(x, x_initial);
if (overallCorrection <= 0.0)
return;
double const correctionQuotient = correction / overallCorrection;
if (correctionQuotient < 0.1) // enough descent; TODO
break;
x_o = x;
}
Bisection const &bisection) {
auto v = J.b;
double const vnorm = v.two_norm();
if (vnorm <= 0.0)
return;
v /= vnorm;
double const alpha = lineSearch(J, x, v, bisection);
Arithmetic::addProduct(x, alpha, v);
}
#endif
// Based on dune/tnnmg/problem-classes/blocknonlineartnnmgproblem.hh
#ifndef DUNE_TECTONIC_MYBLOCKPROBLEM_HH
#define DUNE_TECTONIC_MYBLOCKPROBLEM_HH
#ifndef MY_BLOCK_PROBLEM_HH
#define MY_BLOCK_PROBLEM_HH
// Based on dune/tnnmg/problem-classes/blocknonlineartnnmgproblem.hh
#include <dune/common/bitsetvector.hh>
#include <dune/common/nullptr.hh>
#include <dune/common/parametertree.hh>
#include <dune/common/fmatrixev.hh>
#include <dune/fufem/arithmetic.hh>
#include <dune/solvers/common/interval.hh>
......@@ -13,24 +13,24 @@
#include <dune/tnnmg/problem-classes/bisection.hh>
#include <dune/tnnmg/problem-classes/blocknonlineargsproblem.hh>
#include "ellipticenergy.hh"
#include "globalnonlinearity.hh"
#include "minimisation.hh"
#include "mydirectionalconvexfunction.hh"
#include <dune/tectonic/globalfriction.hh>
#include <dune/tectonic/minimisation.hh>
#include <dune/tectonic/mydirectionalconvexfunction.hh>
#include <dune/tectonic/quadraticenergy.hh>
/** \brief Base class for problems where each block can be solved with a
* modified gradient method */
template <class ConvexProblem>
class MyBlockProblem : /* NOT PUBLIC */ BlockNonlinearGSProblem<ConvexProblem> {
class MyBlockProblem : /* not public */ BlockNonlinearGSProblem<ConvexProblem> {
private:
typedef BlockNonlinearGSProblem<ConvexProblem> BNGSP;
typedef BlockNonlinearGSProblem<ConvexProblem> Base;
public:
using typename BNGSP::ConvexProblemType;
using typename BNGSP::LocalMatrixType;
using typename BNGSP::LocalVectorType;
using typename BNGSP::MatrixType;
using typename BNGSP::VectorType;
using typename Base::ConvexProblemType;
using typename Base::LocalMatrixType;
using typename Base::LocalVectorType;
using typename Base::MatrixType;
using typename Base::VectorType;
size_t static const block_size = ConvexProblem::block_size;
size_t static const coarse_block_size = block_size;
......@@ -55,9 +55,16 @@ class MyBlockProblem : /* NOT PUBLIC */ BlockNonlinearGSProblem<ConvexProblem> {
};
MyBlockProblem(Dune::ParameterTree const &parset, ConvexProblem &problem)
: BNGSP(parset, problem),
parset_(parset),
localBisection(0.0, 1.0, 1e-12, false) {}
: Base(parset, problem),
maxEigenvalues_(problem.f.size()),
localBisection(0.0, 1.0, 0.0, true, 0.0) {
for (size_t i = 0; i < problem.f.size(); ++i) {
LocalVectorType eigenvalues;
Dune::FMatrixHelp::eigenValues(problem.A[i][i], eigenvalues);
maxEigenvalues_[i] =
*std::max_element(std::begin(eigenvalues), std::end(eigenvalues));
}
}
std::string getOutput(bool header = false) const {
if (header) {
......@@ -96,15 +103,10 @@ class MyBlockProblem : /* NOT PUBLIC */ BlockNonlinearGSProblem<ConvexProblem> {
v /= vnorm; // Rescale for numerical stability
MyDirectionalConvexFunction<
GlobalNonlinearity<MatrixType, VectorType>> const
psi(computeDirectionalA(problem_.A, v),
computeDirectionalb(problem_.A, problem_.f, u, v), problem_.phi, u, v);
auto const psi = restrict(problem_.A, problem_.f, u, v, problem_.phi);
Dune::Solvers::Interval<double> D;
psi.subDiff(0, D);
// NOTE: Numerical instability can actually get us here
if (D[1] > 0)
if (D[1] > 0) // NOTE: Numerical instability can actually get us here
return 0;
int bisectionsteps = 0;
......@@ -142,8 +144,8 @@ class MyBlockProblem : /* NOT PUBLIC */ BlockNonlinearGSProblem<ConvexProblem> {
// compute quadratic part of hessian (linearization.A += problem_.A)
for (size_t i = 0; i < problem_.A.N(); ++i) {
auto const end = problem_.A[i].end();
for (auto it = problem_.A[i].begin(); it != end; ++it)
auto const end = std::end(problem_.A[i]);
for (auto it = std::begin(problem_.A[i]); it != end; ++it)
linearization.A[i][it.index()] += *it;
}
......@@ -163,39 +165,37 @@ class MyBlockProblem : /* NOT PUBLIC */ BlockNonlinearGSProblem<ConvexProblem> {
// apply truncation to stiffness matrix and rhs
for (size_t row = 0; row < linearization.A.N(); ++row) {
auto const col_end = linearization.A[row].end();
for (auto col_it = linearization.A[row].begin(); col_it != col_end;
auto const col_end = std::end(linearization.A[row]);
for (auto col_it = std::begin(linearization.A[row]); col_it != col_end;
++col_it) {
size_t const col = col_it.index();
for (size_t i = 0; i < col_it->N(); ++i) {
auto const blockEnd = (*col_it)[i].end();
for (auto blockIt = (*col_it)[i].begin(); blockIt != blockEnd;
auto const blockEnd = std::end((*col_it)[i]);
for (auto blockIt = std::begin((*col_it)[i]); blockIt != blockEnd;
++blockIt)
if (linearization.truncation[row][i] ||
if (linearization.truncation[row][i] or
linearization.truncation[col][blockIt.index()])
*blockIt = 0.0;
}
}
for (size_t j = 0; j < block_size; ++j)
if (linearization.truncation[row][j])
linearization.b[row][j] = 0.0;
}
for (size_t j = 0; j < block_size; ++j)
outStream << std::setw(9) << linearization.truncation.countmasked(j);
}
/** \brief Constructs and returns an iterate object */
IterateObject getIterateObject() {
return IterateObject(parset_, localBisection, problem_);
return IterateObject(localBisection, problem_, maxEigenvalues_);
}
private:
Dune::ParameterTree const &parset_;
std::vector<double> maxEigenvalues_;
// problem data
using BNGSP::problem_;
using Base::problem_;
Bisection const localBisection;
......@@ -212,11 +212,11 @@ class MyBlockProblem<ConvexProblem>::IterateObject {
* \param bisection The class used to do a scalar bisection
* \param problem The problem including quadratic part and nonlinear part
*/
IterateObject(Dune::ParameterTree const &parset, Bisection const &bisection,
ConvexProblem const &problem)
IterateObject(Bisection const &bisection, ConvexProblem const &problem,
std::vector<double> const &maxEigenvalues)
: problem(problem),
bisection_(bisection),
localsteps(parset.get<size_t>("localsolver.steps")) {}
maxEigenvalues_(maxEigenvalues),
bisection_(bisection) {}
public:
/** \brief Set the current iterate */
......@@ -240,36 +240,34 @@ class MyBlockProblem<ConvexProblem>::IterateObject {
LocalVectorType &ui, size_t m,
typename Dune::BitSetVector<block_size>::const_reference ignore) {
{
LocalMatrixType const *localA = nullptr;
LocalVectorType localb(problem.f[m]);
auto const end = problem.A[m].end();
for (auto it = problem.A[m].begin(); it != end; ++it) {
LocalVectorType localb = problem.f[m];
auto const end = std::end(problem.A[m]);
for (auto it = std::begin(problem.A[m]); it != end; ++it) {
size_t const j = it.index();
if (j == m)
localA = &(*it); // localA = A[m][m]
else
Arithmetic::subtractProduct(localb, *it, u[j]);
Arithmetic::subtractProduct(localb, *it, u[j]); // also the diagonal!
}
assert(localA != nullptr);
Arithmetic::addProduct(localb, maxEigenvalues_[m], u[m]);
auto const phi = problem.phi.restriction(m);
EllipticEnergy<block_size> localJ(*localA, localb, phi, ignore);
minimise(localJ, ui, localsteps, bisection_);
// We minimise over an affine subspace
for (size_t j = 0; j < block_size; ++j)
if (ignore[j])
localb[j] = 0;
else
ui[j] = 0;
QuadraticEnergy<
typename ConvexProblem::NonlinearityType::LocalNonlinearity>
localJ(maxEigenvalues_[m], localb, problem.phi.restriction(m));
minimise(localJ, ui, bisection_);
}
}
private:
// problem data
ConvexProblem const &problem;
std::vector<double> maxEigenvalues_;
Bisection const bisection_;
// state data for smoothing procedure used by:
// setIterate, updateIterate, solveLocalProblem
VectorType u;
size_t const localsteps;
};
#endif
#ifndef DUNE_TECTONIC_MYDIRECTIONALCONVEXFUNCTION_HH
#define DUNE_TECTONIC_MYDIRECTIONALCONVEXFUNCTION_HH
// Copied from dune/tnnmg/problem-classes/directionalconvexfunction.hh
// Allows phi to be const
#ifndef MY_DIRECTIONAL_CONVEX_FUNCTION_HH
#define MY_DIRECTIONAL_CONVEX_FUNCTION_HH
#include <dune/fufem/arithmetic.hh>
#include <dune/solvers/common/interval.hh>
/*
1/2 <A(u + hv),u + hv> - <b, u + hv>
= 1/2 <Av,v> h^2 - <b - Au, v> h + const.
localA = <Av,v>
localb = <b - Au, v>
*/
template <class Matrix, class Vector>
double computeDirectionalA(Matrix const &A, Vector const &v) {
return Arithmetic::Axy(A, v, v);
}
template <class Matrix, class Vector>
double computeDirectionalb(Matrix const &A, Vector const &b, Vector const &u,
Vector const &v) {
return Arithmetic::bmAxy(A, b, u, v);
}
template <class Nonlinearity> class MyDirectionalConvexFunction {
public:
using Vector = typename Nonlinearity::VectorType;
......@@ -45,8 +26,9 @@ template <class Nonlinearity> class MyDirectionalConvexFunction {
Vector uxv = u;
Arithmetic::addProduct(uxv, x, v);
phi.directionalSubDiff(uxv, v, D);
D[0] += A * x - b;
D[1] += A * x - b;
auto const Axmb = A * x - b;
D[0] += Axmb;
D[1] += Axmb;
}
void domain(Dune::Solvers::Interval<double> &domain) const {
......@@ -65,4 +47,22 @@ template <class Nonlinearity> class MyDirectionalConvexFunction {
Dune::Solvers::Interval<double> dom;
};
/*
1/2 <A(u + hv),u + hv> - <b, u + hv>
= 1/2 <Av,v> h^2 - <b - Au, v> h + const.
localA = <Av,v>
localb = <b - Au, v>
*/
template <class Matrix, class Vector, class Nonlinearity>
MyDirectionalConvexFunction<Nonlinearity> restrict(Matrix const &A,
Vector const &b,
Vector const &u,
Vector const &v,
Nonlinearity const &phi) {
return MyDirectionalConvexFunction<Nonlinearity>(
Arithmetic::Axy(A, v, v), Arithmetic::bmAxy(A, b, u, v), phi, u, v);
}
#endif
#ifndef DUNE_TECTONIC_QUADRATICENERGY_HH
#define DUNE_TECTONIC_QUADRATICENERGY_HH
#include <memory>
template <class NonlinearityTEMPLATE> class QuadraticEnergy {
public:
using Nonlinearity = NonlinearityTEMPLATE;
using LocalVector = typename Nonlinearity::VectorType;
QuadraticEnergy(double alpha, LocalVector const &b, Nonlinearity const &phi)
: alpha(alpha), b(b), phi(phi) {}
double const alpha;
LocalVector const &b;
Nonlinearity const &phi;
};
#endif
#ifndef DUNE_tectonic.hh
#define DUNE_tectonic .hh
#ifndef DUNE_TECTONIC_TECTONIC_HH
#define DUNE_TECTONIC_TECTONIC_HH
// add your classes here
#endif // DUNE_tectonic.hh
#endif
M4FILES = dune-tectonic.m4
aclocaldir = $(datadir)/aclocal
aclocal_DATA = $(M4FILES)
EXTRA_DIST = $(M4FILES)
include $(top_srcdir)/am/global-rules
dnl -*- autoconf -*-
# Macros needed to find dune-tectonic and dependent libraries. They are called by
# the macros in ${top_src_dir}/dependencies.m4, which is generated by
# "dunecontrol autogen"
# Additional checks needed to build dune-tectonic
# This macro should be invoked by every module which depends on dune-tectonic, as
# well as by dune-tectonic itself
AC_DEFUN([DUNE_TECTONIC_CHECKS])
# Additional checks needed to find dune-tectonic
# This macro should be invoked by every module which depends on dune-tectonic, but
# not by dune-tectonic itself
AC_DEFUN([DUNE_TECTONIC_CHECK_MODULE],
[
DUNE_CHECK_MODULES([dune-tectonic],[tectonic/tectonic.hh])
])
set(SW_SOURCE_FILES
assemblers.cc
enumparser.cc
hdf5/frictionalboundary-writer.cc
hdf5/iteration-writer.cc
hdf5/patchinfo-writer.cc
hdf5/restart-io.cc
hdf5/surface-writer.cc
hdf5/time-writer.cc
one-body-problem-data/mygeometry.cc
one-body-problem-data/mygrid.cc
one-body-problem.cc
spatial-solving/fixedpointiterator.cc
spatial-solving/solverfactory.cc
time-stepping/adaptivetimestepper.cc
time-stepping/coupledtimestepper.cc
time-stepping/rate.cc
time-stepping/rate/rateupdater.cc
time-stepping/state.cc
vtk.cc
)
set(UGW_SOURCE_FILES
assemblers.cc # FIXME
one-body-problem-data/mygrid.cc
uniform-grid-writer.cc
vtk.cc
)
foreach(_dim 2 3)
set(_sw_target one-body-problem-${_dim}D)
set(_ugw_target uniform-grid-writer-${_dim}D)
add_executable(${_sw_target} ${SW_SOURCE_FILES})
add_executable(${_ugw_target} ${UGW_SOURCE_FILES})
add_dune_ug_flags(${_sw_target})
add_dune_ug_flags(${_ugw_target})
add_dune_hdf5_flags(${_sw_target})
set_property(TARGET ${_sw_target} APPEND PROPERTY COMPILE_DEFINITIONS "MY_DIM=${_dim}")
set_property(TARGET ${_ugw_target} APPEND PROPERTY COMPILE_DEFINITIONS "MY_DIM=${_dim}")
endforeach()
bin_PROGRAMS = sliding-block-2D
common_sources = \
assemblers.cc \
boundary_writer.cc \
friction_writer.cc \
solverfactory.cc \
timestepping.cc \
vtk.cc
sliding_block_2D_SOURCES = $(common_sources) sliding-block.cc
sliding_block_2D_CPPFLAGS = \
$(AM_CPPFLAGS) \
-Ddatadir=\"$(abs_srcdir)/sliding-block-data/\" -DDIM=2
# Some are for clang, others are for gcc
AM_CXXFLAGS = \
-Wall \
-Wextra \
-Wno-unused-parameter \
-Wno-overloaded-virtual \
-Wno-new-returns-null \
-Wno-unknown-warning-option \
-Wno-unknown-pragmas
AM_CPPFLAGS = \
-DDUNE_FMatrix_WITH_CHECKING \
$(DUNE_CPPFLAGS) \
$(PYTHON_CPPFLAGS) \
$(ALUGRID_CPPFLAGS) \
-I$(top_srcdir)
# The libraries have to be given in reverse order (most basic libraries
# last).
LDADD = \
$(DUNE_LDFLAGS) $(DUNE_LIBS) \
$(ALUGRID_LIBS) \
$(PYTHON_LIBS)
AM_LDFLAGS = \
$(DUNE_LDFLAGS) \
$(ALUGRID_LDFLAGS) \
$(PYTHON_LDFLAGS)
include $(top_srcdir)/am/global-rules
......@@ -7,16 +7,20 @@
#include <dune/fufem/assemblers/localassemblers/boundarymassassembler.hh>
#include <dune/fufem/assemblers/localassemblers/l2functionalassembler.hh>
#include <dune/fufem/assemblers/localassemblers/neumannboundaryassembler.hh>
#include <dune/fufem/assemblers/localassemblers/normalstressboundaryassembler.hh>
#include <dune/fufem/assemblers/localassemblers/stvenantkirchhoffassembler.hh>
#include <dune/fufem/assemblers/localassemblers/variablecoefficientviscosityassembler.hh>
#include <dune/fufem/assemblers/localassemblers/vonmisesstressassembler.hh>
#include <dune/fufem/assemblers/localassemblers/weightedmassassembler.hh>
#include <dune/fufem/boundarypatch.hh>
#include <dune/fufem/computestress.hh>
#include <dune/fufem/functions/basisgridfunction.hh>
#include <dune/fufem/functions/constantfunction.hh>
#include <dune/fufem/functiontools/p0p1interpolation.hh>
#include <dune/fufem/quadraturerules/quadraturerulecache.hh>
#include <dune/tectonic/frictionpotential.hh>
#include <dune/tectonic/globalratestatefriction.hh>
#include "assemblers.hh"
template <class GridView, int dimension>
......@@ -30,10 +34,10 @@ MyAssembler<GridView, dimension>::MyAssembler(GridView const &_gridView)
template <class GridView, int dimension>
void MyAssembler<GridView, dimension>::assembleFrictionalBoundaryMass(
BoundaryPatch<GridView> const &frictionalBoundary,
ScalarMatrix &frictionalBoundaryMass) {
ScalarMatrix &frictionalBoundaryMass) const {
BoundaryMassAssembler<Grid, BoundaryPatch<GridView>, LocalVertexBasis,
LocalVertexBasis, Dune::FieldMatrix<double, 1, 1>> const
frictionalBoundaryMassAssembler(frictionalBoundary);
frictionalBoundaryMassAssembler(frictionalBoundary);
vertexAssembler.assembleOperator(frictionalBoundaryMassAssembler,
frictionalBoundaryMass);
}
......@@ -42,22 +46,22 @@ template <class GridView, int dimension>
void MyAssembler<GridView, dimension>::assembleMass(
Dune::VirtualFunction<LocalVector, LocalScalarVector> const &
densityFunction,
Matrix &M) {
Matrix &M) const {
// NOTE: We treat the weight as a constant function
QuadratureRuleKey quadKey(dimension, 0);
WeightedMassAssembler<Grid, LocalVertexBasis, LocalVertexBasis,
Dune::VirtualFunction<LocalVector, LocalScalarVector>,
Dune::ScaledIdentityMatrix<double, dimension>>
localWeightedMass(gridView.grid(), densityFunction, quadKey);
localWeightedMass(gridView.grid(), densityFunction, quadKey);
vertexAssembler.assembleOperator(localWeightedMass, M);
}
template <class GridView, int dimension>
void MyAssembler<GridView, dimension>::assembleElasticity(double E, double nu,
Matrix &A) {
Matrix &A) const {
StVenantKirchhoffAssembler<Grid, LocalVertexBasis, LocalVertexBasis> const
localStiffness(E, nu);
localStiffness(E, nu);
vertexAssembler.assembleOperator(localStiffness, A);
}
......@@ -65,82 +69,108 @@ template <class GridView, int dimension>
void MyAssembler<GridView, dimension>::assembleViscosity(
Dune::VirtualFunction<LocalVector, LocalScalarVector> const &shearViscosity,
Dune::VirtualFunction<LocalVector, LocalScalarVector> const &bulkViscosity,
Matrix &C) {
Matrix &C) const {
// NOTE: We treat the weights as constant functions
QuadratureRuleKey shearViscosityKey(dimension, 0);
QuadratureRuleKey bulkViscosityKey(dimension, 0);
VariableCoefficientViscosityAssembler<
Grid, LocalVertexBasis, LocalVertexBasis,
Dune::VirtualFunction<LocalVector, LocalScalarVector>> const
localViscosity(gridView.grid(), shearViscosity, bulkViscosity,
shearViscosityKey, bulkViscosityKey);
localViscosity(gridView.grid(), shearViscosity, bulkViscosity,
shearViscosityKey, bulkViscosityKey);
vertexAssembler.assembleOperator(localViscosity, C);
}
template <class GridView, int dimension>
void MyAssembler<GridView, dimension>::assembleBodyForce(
Dune::VirtualFunction<LocalVector, LocalVector> const &gravityField,
Vector &f) {
Vector &f) const {
L2FunctionalAssembler<Grid, LocalVertexBasis, LocalVector>
gravityFunctionalAssembler(gravityField);
gravityFunctionalAssembler(gravityField);
vertexAssembler.assembleFunctional(gravityFunctionalAssembler, f);
}
template <class GridView, int dimension>
void MyAssembler<GridView, dimension>::assembleNeumann(
BoundaryPatch<GridView> const &neumannBoundary, Vector &f,
Dune::VirtualFunction<double, double> const &neumann, double relativeTime) {
Dune::VirtualFunction<double, double> const &neumann,
double relativeTime) const {
LocalVector localNeumann(0);
neumann.evaluate(relativeTime, localNeumann[0]);
ConstantFunction<LocalVector, LocalVector> const fNeumann(localNeumann);
NeumannBoundaryAssembler<Grid, LocalVector> neumannBoundaryAssembler(
fNeumann);
std::make_shared<ConstantFunction<LocalVector, LocalVector>>(
localNeumann));
vertexAssembler.assembleBoundaryFunctional(neumannBoundaryAssembler, f,
neumannBoundary);
}
template <class GridView, int dimension>
void MyAssembler<GridView, dimension>::assembleNormalStress(
void MyAssembler<GridView, dimension>::assembleWeightedNormalStress(
BoundaryPatch<GridView> const &frictionalBoundary,
ScalarVector &normalStress, double youngModulus, double poissonRatio,
Vector const &displacement) {
Vector traction;
Stress<GridView>::getElasticSurfaceNormalStress // misnomer(!)
(frictionalBoundary, displacement, traction, youngModulus, poissonRatio);
std::vector<typename Vector::block_type> normals;
frictionalBoundary.getNormals(normals);
for (size_t i = 0; i < traction.size(); ++i) {
normalStress[i] = normals[i] * traction[i];
assert(normalStress[i] <= 0.0);
ScalarVector &weightedNormalStress, double youngModulus,
double poissonRatio, Vector const &displacement) const {
BasisGridFunction<VertexBasis, Vector> displacementFunction(vertexBasis,
displacement);
Vector traction(cellBasis.size());
NormalStressBoundaryAssembler<Grid> tractionBoundaryAssembler(
youngModulus, poissonRatio, &displacementFunction, 1);
cellAssembler.assembleBoundaryFunctional(tractionBoundaryAssembler, traction,
frictionalBoundary);
auto const nodalTractionAverage =
interpolateP0ToP1(frictionalBoundary, traction);
ScalarVector weights;
{
NeumannBoundaryAssembler<Grid, typename ScalarVector::block_type>
frictionalBoundaryAssembler(
std::make_shared<ConstantFunction<
LocalVector, typename ScalarVector::block_type>>(1));
vertexAssembler.assembleBoundaryFunctional(frictionalBoundaryAssembler,
weights, frictionalBoundary);
}
auto const normals = frictionalBoundary.getNormals();
for (size_t i = 0; i < vertexBasis.size(); ++i)
weightedNormalStress[i] =
std::fmin(normals[i] * nodalTractionAverage[i], 0) * weights[i];
}
template <class GridView, int dimension>
auto MyAssembler<GridView, dimension>::assembleFrictionNonlinearity(
Config::FrictionModel frictionModel,
BoundaryPatch<GridView> const &frictionalBoundary,
GlobalFrictionData<dimension> const &frictionInfo,
ScalarVector const &normalStress)
-> std::shared_ptr<GlobalRuinaNonlinearity<Matrix, Vector, GridView>> {
// Lump negative normal stress (kludge)
ScalarVector const &weightedNormalStress) const
-> std::shared_ptr<GlobalFriction<Matrix, Vector>> {
// Lumping of the nonlinearity
ScalarVector weights;
{
ConstantFunction<LocalVector, typename ScalarVector::block_type> const
constantOneFunction(1);
NeumannBoundaryAssembler<Grid, typename ScalarVector::block_type>
frictionalBoundaryAssembler(constantOneFunction);
frictionalBoundaryAssembler(std::make_shared<
ConstantFunction<LocalVector, typename ScalarVector::block_type>>(
1));
vertexAssembler.assembleBoundaryFunctional(frictionalBoundaryAssembler,
weights, frictionalBoundary);
}
return std::make_shared<GlobalRuinaNonlinearity<Matrix, Vector, GridView>>(
frictionalBoundary, gridView, frictionInfo, weights, normalStress);
switch (frictionModel) {
case Config::Truncated:
return std::make_shared<GlobalRateStateFriction<
Matrix, Vector, TruncatedRateState, GridView>>(
frictionalBoundary, frictionInfo, weights, weightedNormalStress);
case Config::Regularised:
return std::make_shared<GlobalRateStateFriction<
Matrix, Vector, RegularisedRateState, GridView>>(
frictionalBoundary, frictionInfo, weights, weightedNormalStress);
default:
assert(false);
}
}
template <class GridView, int dimension>
void MyAssembler<GridView, dimension>::assembleVonMisesStress(
double youngModulus, double poissonRatio, Vector const &u,
ScalarVector &stress) {
ScalarVector &stress) const {
auto const gridDisplacement =
std::make_shared<BasisGridFunction<VertexBasis, Vector> const>(
vertexBasis, u);
......
#ifndef ASSEMBLERS_HH
#define ASSEMBLERS_HH
#ifndef SRC_ASSEMBLERS_HH
#define SRC_ASSEMBLERS_HH
#include <dune/common/bitsetvector.hh>
#include <dune/common/function.hh>
......@@ -13,8 +13,10 @@
#pragma clang diagnostic pop
#include <dune/fufem/functionspacebases/p1nodalbasis.hh>
#include <dune/tectonic/globalfriction.hh>
#include <dune/tectonic/globalfrictiondata.hh>
#include <dune/tectonic/globalruinanonlinearity.hh>
#include "enums.hh"
template <class GridView, int dimension> class MyAssembler {
public:
......@@ -27,8 +29,9 @@ template <class GridView, int dimension> class MyAssembler {
using CellBasis = P0Basis<GridView, double>;
using VertexBasis = P1NodalBasis<GridView, double>;
CellBasis cellBasis;
VertexBasis vertexBasis;
CellBasis const cellBasis;
VertexBasis const vertexBasis;
GridView const &gridView;
private:
using Grid = typename GridView::Grid;
......@@ -38,7 +41,6 @@ template <class GridView, int dimension> class MyAssembler {
using LocalCellBasis = typename CellBasis::LocalFiniteElement;
using LocalVertexBasis = typename VertexBasis::LocalFiniteElement;
GridView const &gridView;
Assembler<CellBasis, CellBasis> cellAssembler;
Assembler<VertexBasis, VertexBasis> vertexAssembler;
......@@ -47,42 +49,42 @@ template <class GridView, int dimension> class MyAssembler {
void assembleFrictionalBoundaryMass(
BoundaryPatch<GridView> const &frictionalBoundary,
ScalarMatrix &frictionalBoundaryMass);
ScalarMatrix &frictionalBoundaryMass) const;
void assembleMass(Dune::VirtualFunction<
LocalVector, LocalScalarVector> const &densityFunction,
Matrix &M);
Matrix &M) const;
void assembleElasticity(double E, double nu, Matrix &A);
void assembleElasticity(double E, double nu, Matrix &A) const;
void assembleViscosity(
Dune::VirtualFunction<LocalVector, LocalScalarVector> const &
shearViscosity,
Dune::VirtualFunction<LocalVector, LocalScalarVector> const &
bulkViscosity,
Matrix &C);
Matrix &C) const;
void assembleBodyForce(
Dune::VirtualFunction<LocalVector, LocalVector> const &gravityField,
Vector &f);
Vector &f) const;
void assembleNeumann(BoundaryPatch<GridView> const &neumannBoundary,
Vector &f,
Dune::VirtualFunction<double, double> const &neumann,
double relativeTime);
double relativeTime) const;
void assembleNormalStress(BoundaryPatch<GridView> const &frictionalBoundary,
ScalarVector &normalStress, double youngModulus,
double poissonRatio, Vector const &displacement);
void assembleWeightedNormalStress(
BoundaryPatch<GridView> const &frictionalBoundary,
ScalarVector &weightedNormalStress, double youngModulus,
double poissonRatio, Vector const &displacement) const;
std::shared_ptr<GlobalRuinaNonlinearity<Matrix, Vector, GridView>>
assembleFrictionNonlinearity(
std::shared_ptr<GlobalFriction<Matrix, Vector>> assembleFrictionNonlinearity(
Config::FrictionModel frictionModel,
BoundaryPatch<GridView> const &frictionalBoundary,
GlobalFrictionData<dimension> const &frictionInfo,
ScalarVector const &normalStress);
ScalarVector const &weightedNormalStress) const;
void assembleVonMisesStress(double youngModulus, double poissonRatio,
Vector const &u, ScalarVector &stress);
Vector const &u, ScalarVector &stress) const;
};
#endif
#ifndef DIM
#error DIM unset
#ifndef MY_DIM
#error MY_DIM unset
#endif
#include "explicitgrid.hh"
template class MyAssembler<GridView, DIM>;
template class MyAssembler<GridView, MY_DIM>;
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "boundary_writer.hh"
template <class ScalarVector, class Vector>
BoundaryWriter<ScalarVector, Vector>::BoundaryWriter(
Vector const &vertexCoordinates,
Dune::BitSetVector<1> const &_boundaryNodes, Projector projector)
: displacementWriter("displacements", std::fstream::out),
velocityWriter("velocities", std::fstream::out),
boundaryNodes(_boundaryNodes),
projector_(projector) {
std::fstream vertexCoordinateWriter("coordinates", std::fstream::out);
for (size_t i = 0; i < boundaryNodes.size(); ++i)
if (boundaryNodes[i][0])
vertexCoordinateWriter << vertexCoordinates[i] << std::endl;
vertexCoordinateWriter.close();
}
template <class ScalarVector, class Vector>
BoundaryWriter<ScalarVector, Vector>::~BoundaryWriter() {
displacementWriter.close();
velocityWriter.close();
}
template <class ScalarVector, class Vector>
void BoundaryWriter<ScalarVector, Vector>::writeKinetics(Vector const &u,
Vector const &v) {
for (size_t i = 0; i < boundaryNodes.size(); ++i) {
if (!boundaryNodes[i][0])
continue;
displacementWriter << projector_(u[i]) << " ";
velocityWriter << projector_(v[i]) << " ";
}
displacementWriter << std::endl;
velocityWriter << std::endl;
}
#include "boundary_writer_tmpl.cc"