Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
library(readr)
library(data.table)
library(GEOquery)
library(dplyr)
#require(hta20transcriptcluster.db)
###############miRNA1##########################################
#read the top significant genes found by using GEO2R tool:
GSE43732_top_table <- read_delim("GSE43732.top.table.tsv",
delim = "\t", escape_double = FALSE,
trim_ws = TRUE)
#filter with the help of padj. values
resFilt_GSE43732 <- GSE43732_top_table[which(GSE43732_top_table$adj.P.Val < 0.05 & abs(GSE43732_top_table$logFC) > 0.263), ]
# load series and platform data from GEO
gset1 <- getGEO("GSE43732", GSEMatrix =TRUE, AnnotGPL=TRUE,getGPL= T)
# choose the index
if (length(gset1) > 1) idx <- grep("GPL6480", attr(gset1, "names")) else idx <- 1
gset1 <- gset1[[idx]]
#load the expression data.
t0<- gset1@assayData[["exprs"]]
# extract the information of cancer/normal/adenoma from the metadata.
title0<- gset1@phenoData@data[["characteristics_ch1"]]
#extract the sample names from the expression data.
clname<- colnames(t0)
# make dataframe of the sample names and their corresponding information about cancer/non cancer/adema
d_col<- as.data.frame(title0,clname)
# get metadata out of S4 object
gene_data_frame = fData(gset1)
d<-merge(t0,gene_data_frame, by.x=0, by.y= "ID")
d_f<- merge(d,resFilt_GSE43732, by.x="Row.names", by.y= "ID")
duplicated_genes <- d_f$Row.names[duplicated(d_f$Row.names)]
d_f1<- d_f %>% distinct(`Row.names`, .keep_all = T)
###############miRNA2####this was just a try(not included in the project)######################################
#read the top significant genes found by using GEO2R tool:
GSE67269_top_table <- read_delim("GSE67269.top.table.tsv",
delim = "\t", escape_double = FALSE,
trim_ws = TRUE)
#filter with the help of padj. values
resFilt_GSE67269 <- GSE67269_top_table[which(GSE67269_top_table$adj.P.Val < 0.05 & abs(GSE67269_top_table$logFC) > 0.263), ]
# load series and platform data from GEO
gset1 <- getGEO("GSE67269", GSEMatrix =TRUE, AnnotGPL=TRUE,getGPL= T)
# choose the index
if (length(gset1) > 1) idx <- grep("GPL19823 ", attr(gset1, "names")) else idx <- 1
gset1 <- gset1[[1]]
mi_ids<- as.data.frame(gset1@featureData@data[["miRNA_ID"]])
#load the expression data.
t0<- gset1@assayData[["exprs"]]
h_exprs<- merge(mi_ids,t0,by=0)
h_exprs["Row.names"]<- NULL
head (h_exprs,20)
colnames(h_exprs)[1] <- "miRNA_ID"
h_exprs$miRNA_ID <- gsub("\\*", "", h_exprs$miRNA_ID)
# Aggregate the data by miRNA_ID and take maximum values
aggregated_data <- aggregate(. ~ miRNA_ID, h_exprs, max)
# extract the information of cancer/normal/adenoma from the metadata.
title0<- gset1@phenoData@data[["characteristics_ch1"]]
#extract the sample names from the expression data.
clname<- colnames(aggregated_data[,-1])
# make dataframe of the sample names and their corresponding information about cancer/non cancer/adema
h_col<- as.data.frame(title0,clname)
# get metadata out of S4 object
gene_data_frame = fData(gset1)
h<-aggregated_data
h_f<- merge(h,resFilt_GSE67269, by.x="miRNA_ID", by.y= "miRNA_ID")
duplicated_genes <- h_f$Row.names[duplicated(h_f$Row.names)]
h_f1<- h_f %>% distinct(`miRNA_ID`, .keep_all = T)
#merge all the data with the help of genesymbols.
#ab<- merge(d_f1,h_f1,by.x="Row.names",by.y="miRNA_ID")
####################################################
#clean any duplicate gene symbols:
occurrenceClean <- d_f1[!duplicated(d_f1$Row.names),]
cleany<- occurrenceClean[ , colSums(is.na(occurrenceClean))==0]# remove columns with NA
# remove unnecessary columns
cleanyed<- cleany[, grep("GSM|Row.names", colnames(cleany))]
#again remove more columns
last_cleany<- na.omit(cleanyed)# remove any rows with NA.
#save the data
fwrite(d_col, file = "miRNA_DS_metadata_col_info.csv", sep = ",",row.names = TRUE)
fwrite(last_cleany, file = "miRNA_DS_preprocessed_data.csv",sep= ",")
######################mRNA############################################################
GSE70409_top_table <- read_delim("GSE70409.top.table.tsv",
delim = "\t", escape_double = FALSE,
trim_ws = TRUE)
#filter with the help of padj. values
resFilt_GSE70409 <- GSE70409_top_table[which(GSE70409_top_table$adj.P.Val < 0.05 & abs(GSE70409_top_table$logFC) > 0.263), ]
# load series and platform data from GEO
gset1 <- getGEO("GSE70409", GSEMatrix =TRUE, AnnotGPL=TRUE,getGPL= T)
# choose the index
if (length(gset1) > 1) idx <- grep("GPL6480", attr(gset1, "names")) else idx <- 1
gset1 <- gset1[[idx]]
#load the expression data.
t0<- gset1@assayData[["exprs"]]
# extract the information of cancer/normal/adenoma from the metadata.
title0<- gset1@phenoData@data[["characteristics_ch1"]]
#extract the sample names from the expression data.
clname<- colnames(t0)
# make dataframe of the sample names and their corresponding information about cancer/non cancer/adema
a_col<- as.data.frame(title0,clname)
#pull out the gene information from metadata of GEO
gene_data_frame = fData(gset1)
#make the data ready:
a<-merge(t0,gene_data_frame, by.x=0, by.y= "ID")
a_f<- merge(a,resFilt_GSE70409, by.x="Row.names", by.y= "ID")
a_f1<- a_f %>% distinct(`Gene_symbol`, .keep_all = T)
####################do the same for another data##########################################################
GSE20347_top_table <- read_delim("GSE20347.top.table.tsv",
delim = "\t", escape_double = FALSE,
trim_ws = TRUE)
#filter with the help of padj. values
resFilt_GSE20347 <- GSE20347_top_table[which(GSE20347_top_table$adj.P.Val < 0.05 & abs(GSE20347_top_table$logFC) > 0.263), ]
# load series and platform data from GEO
gset1 <- getGEO("GSE20347", GSEMatrix =TRUE, AnnotGPL=TRUE,getGPL= T)
# choose the index
if (length(gset1) > 1) idx <- grep("GPL6480", attr(gset1, "names")) else idx <- 1
gset1 <- gset1[[idx]]
#load the expression data.
t0<- gset1@assayData[["exprs"]]
# extract the information of cancer/normal/adenoma from the metadata.
title0<- gset1@phenoData@data[["characteristics_ch1"]]
#extract the sample names from the expression data.
clname<- colnames(t0)
# make dataframe of the sample names and their corresponding information about cancer/non cancer/adema
c_col<- as.data.frame(title0,clname)
gene_data_frame = fData(gset1)
cc<-merge(t0,gene_data_frame, by.x=0, by.y= "ID")
c_f<- merge(cc,resFilt_GSE20347, by.x="Row.names", by.y= "ID")
c_f1<- c_f %>% distinct(`Gene symbol`, .keep_all = T)
#################do the same for another data##############################################
GSE29001_top_table <- read_delim("GSE29001.top.table.tsv",
delim = "\t", escape_double = FALSE,
trim_ws = TRUE)
resFilt_GSE29001 <- GSE29001_top_table[which(GSE29001_top_table$adj.P.Val < 0.05 & abs(GSE29001_top_table$logFC) > 0.263), ]
gset1 <- getGEO("GSE29001", GSEMatrix =TRUE, AnnotGPL=TRUE,getGPL= T)
if (length(gset1) > 1) idx <- grep("GPL6480", attr(gset1, "names")) else idx <- 1
gset1 <- gset1[[idx]]
t0<- gset1@assayData[["exprs"]]
gene_data_frame = fData(gset1)
title0<- gset1@phenoData@data[["characteristics_ch1.1"]]
clname<- colnames(t0)
b_col<- as.data.frame(title0,clname)
b<-merge(t0,gene_data_frame, by.x=0, by.y= "ID")
b_f<- merge(b,resFilt_GSE29001, by.x="Row.names", by.y= "ID")
b_f1<- b_f %>% distinct(`Gene symbol`, .keep_all = T)
#############################################
#################do the same for another data##############################################
GSE23400_top_table <- read_delim("GSE23400.top.table.tsv",
delim = "\t", escape_double = FALSE,
trim_ws = TRUE)
resFilt_GSE23400 <- GSE23400_top_table[which(GSE23400_top_table$adj.P.Val < 0.05 & abs(GSE23400_top_table$logFC) > 0.263), ]
gset1 <- getGEO("GSE23400", GSEMatrix =TRUE, AnnotGPL=TRUE,getGPL= T)
if (length(gset1) > 1) idx <- grep("GPL6480", attr(gset1, "names")) else idx <- 1
gset1 <- gset1[[1]]
t0<- gset1@assayData[["exprs"]]
gene_data_frame = fData(gset1)
title0<- gset1@phenoData@data[["source_name_ch1"]]
clname<- colnames(t0)
g_col<- as.data.frame(title0,clname)
g<-merge(t0,gene_data_frame, by.x=0, by.y= "ID")
g_f<- merge(g,resFilt_GSE23400, by.x="Row.names", by.y= "ID")
g_f1<- g_f %>% distinct(`Gene symbol`, .keep_all = T)
###############################################################################
#merge all the data with the help of genesymbols.
ab<- merge(a_f1,b_f1,by.x="Gene_symbol",by.y="Gene symbol")
abc<- merge(ab,c_f1,by.x = "Gene_symbol", by.y= "Gene.symbol")
abcd<- merge(abc,g_f1,by.x = "Gene_symbol", by.y= "Gene.symbol")
############################################################
#order the genesymbol with help of a column:
occurrence <- abcd[order(abcd$Gene_symbol, abcd$GSM1727130, decreasing=TRUE),]
#clean any duplicate gene symbols:
occurrenceClean <- occurrence[!duplicated(occurrence$Gene_symbol),]
cleany<- occurrenceClean[ , colSums(is.na(occurrenceClean))==0]# remove columns with NA
# remove unnecessary columns
cleanyed<- cleany[, grep("GSM|Gene_symbol", colnames(cleany))]
#again remove more columns
last_cleany<- na.omit(cleanyed)# remove any rows with NA.
#bind all metadata cols
binded_col<- rbind(a_col,b_col,c_col,g_col)
#write it and save:
fwrite(binded_col, file = "mRNA_DS_metadata_col_info.csv", sep = ",",row.names = TRUE)
library("readxl")
#merge with the results of multimir(just a try)
multi<- read_excel("multimir_results_final.xlsx")
mer<- merge(last_cleany,multi,by.x="Gene_symbol",by.y="target_symbol")
mer1<- mer %>% distinct(`Gene_symbol`, .keep_all = T)
mer1<- mer1[, grep("GSM|Gene_symbol", colnames(mer1))]
#############test_data############################
#GSE38129
GSE38129_top_table <- read_delim("GSE38129.top.table.tsv",
delim = "\t", escape_double = FALSE,
trim_ws = TRUE)
resFilt_GSE38129 <- GSE38129_top_table[which(GSE38129_top_table$adj.P.Val < 0.05 & abs(GSE38129_top_table$logFC) > 0.263), ]
gset1 <- getGEO("GSE38129", GSEMatrix =TRUE, AnnotGPL=TRUE,getGPL= T)
if (length(gset1) > 1) idx <- grep("GPL6480", attr(gset1, "names")) else idx <- 1
gset1 <- gset1[[1]]
t0<- gset1@assayData[["exprs"]]
gene_data_frame = fData(gset1)
title0<- gset1@phenoData@data[["source_name_ch1"]]
clname<- colnames(t0)
t_col<- as.data.frame(title0,clname)
t<-merge(t0,gene_data_frame, by.x=0, by.y= "ID")
t_f<- merge(t,resFilt_GSE38129, by.x="Row.names", by.y= "ID")
t_f1<- t_f %>% distinct(`Gene symbol`, .keep_all = T)
mer11<- t_f1[, grep("GSM|Gene symbol", colnames(t_f1))]
mer11 <- mer11 [1: ncol(mer11)-1 ]
mer11<-na.omit(mer11)
fwrite(t_col, file = "mRNA_DS_metadata_col_test_info.csv", sep = ",",row.names = TRUE)
fwrite(mer11, file = "mRNA_DS_test_data.csv",sep= ",")
mer12<- merge(x =mer1 , y = mer11, by.x = "Gene_symbol", by.y="Gene symbol", all.y = TRUE)
merged_data <- mer12[, names(mer1)]
merged_data<-na.omit(merged_data)
fwrite(merged_data, file = "mRNA_DS_preprocessed_training_data.csv",sep= ",")