Skip to content
Snippets Groups Projects
Commit 489a0d5f authored by aakan96's avatar aakan96
Browse files

Neue Datei hochladen

parent e5a79653
No related branches found
No related tags found
No related merge requests found
---
title: "Survival_analysis"
output: pdf_document
---
```{r setup, include=FALSE}
# Load required packages
#install.packages("BiocManager")
#BiocManager::install("TCGAbiolinks")
library(TCGAbiolinks)
library(survminer)
library(survival)
library(SummarizedExperiment)
library(DESeq2)
library(dplyr)
library(tidyr)
library(tibble)
# Query and retrieve clinical data for esophageal cancer (ESCC)
clinical_data_escc <- GDCquery_clinic("TCGA-ESCA")
```
```{r}
# Check for relevant columns in clinical data
colnames_to_check <- c("vital_status", "days_to_last_follow_up", "days_to_death")
has_relevant_columns <- any(colnames(clinical_data_escc) %in% colnames_to_check)
relevant_columns_indices <- which(colnames(clinical_data_escc) %in% colnames_to_check)
relevant_columns <- clinical_data_escc[, relevant_columns_indices]
```
```{r}
# Print summary of vital status
table(clinical_data_escc$vital_status)
```
```{r}
# Create a new variable "deceased" based on vital status
clinical_data_escc$deceased <- ifelse(clinical_data_escc$vital_status == "Alive", FALSE, TRUE)
```
```{r}
# Create an "overall_survival" variable that considers days_to_death for deceased patients and days_to_last_follow_up for alive patients
clinical_data_escc$overall_survival <- ifelse(clinical_data_escc$vital_status == "Alive",
clinical_data_escc$days_to_last_follow_up,
clinical_data_escc$days_to_death)
```
```{r}
# Build a query to retrieve gene expression data for the entire cohort
query_escc_all <- GDCquery(
project = "TCGA-ESCA",
data.category = "Transcriptome Profiling",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
data.type = "Gene Expression Quantification",
access = "open"
)
output_escc <- getResults(query_escc_all)
tumor <- output_escc$cases
```
```{r}
# Build a query to retrieve gene expression data for 20 primary tumors and solid tissue normal samples
query_escc <- GDCquery(
project = "TCGA-ESCA",
data.category = "Transcriptome Profiling",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
data.type = "Gene Expression Quantification",
sample.type = c("Primary Tumor", "Solid Tissue Normal"),
access = "open",
barcode = tumor
)
```
```{r}
# Download the data
GDCdownload(query_escc)
library(SummarizedExperiment)
```
```{r}
# Prepare the gene expression data
tcga_escc_data <- GDCprepare(query_escc, summarizedExperiment = TRUE)
escc_matrix <- assay(tcga_escc_data)
```
```{r}
# Extract gene and sample metadata from the summarizedExperiment object
gene_metadata <- as.data.frame(rowData(tcga_escc_data))
coldata <- as.data.frame(colData(tcga_escc_data))
```
```{r}
# Merge gene expression data with gene metadata using gene_id
merged_data <- merge(escc_matrix, gene_metadata, by.x = 0, by.y = "gene_id")
test_gene <-merged_data
# Extract gene expression data for TCGA samples
sample_ids <- colnames(test_gene)
```
```{r}
# Extract gene expression data for TCGA samples
sample_ids <- colnames(test_gene)
# Function to assign groups based on TCGA IDs
assign_group <- function(tcga_id) {
group <- ""
parts <- unlist(strsplit(tcga_id, "-"))
if (length(parts) >= 4) {
fourth_part <- parts[4]
if (grepl("\\d{2}", fourth_part)) {
num <- as.numeric(substr(fourth_part, 1, 2))
if (num >= 10 & num <= 29) {
group <- "Control"
} else if (num >= 1 & num <= 9) {
group <- "Cancer"
}
}
}
return(group)
}
```
```{r}
# Assign groups to TCGA IDs
group_assignments <- sapply(sample_ids, assign_group)
# Combine group assignments with the sample data
combined_data <- as.data.frame(group_assignments)
# VST transform counts for use in survival analysis
library(DESeq2)
# Setting up countData object
dds <- DESeqDataSetFromMatrix(countData = escc_matrix,
colData = coldata,
design = ~ 1)
```
```{r}
# Removing genes with a sum total of 10 reads across all samples
keep <- rowSums(counts(dds)) >= 10
dds <- dds[keep,]
# VST transformation
vsd <- vst(dds, blind = FALSE)
escc_matrix_vst <- assay(vsd)
# Get data for the RUVBL1 gene and add gene metadata information to it
gene_named <- escc_matrix %>%
as.data.frame() %>%
rownames_to_column(var = 'gene_id') %>%
gather(key = 'case_id', value = 'counts', -gene_id) %>%
left_join(., gene_metadata, by = "gene_id") %>%
filter(gene_name == "ATP6V1D")
# Calculate the median value
median_value <- median(gene_named$counts)
# Assign strata based on median count
gene_named$strata <- ifelse(gene_named$counts >= median_value, "HIGH", "LOW")
# Merge clinical information with gene expression data
gene_named$case_id <- gsub('-01.*', '', gene_named$case_id)
gene_named <- merge(gene_named, clinical_data_escc, by.x = 'case_id', by.y = 'submitter_id')
# Convert days to months for overall_survival variable
gene_named$overall_survival <- gene_named$overall_survival / 30
```
```{r}
# Fitting survival curve
fit <- survfit(Surv(overall_survival, deceased) ~ strata, data = gene_named)
# Plotting survival curves
ggsurvplot(fit,
data = gene_named,
pval = TRUE,
risk.table = FALSE)
```
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment