Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
Datascience-SS2023
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
aakan96
Datascience-SS2023
Commits
489a0d5f
Commit
489a0d5f
authored
1 year ago
by
aakan96
Browse files
Options
Downloads
Patches
Plain Diff
Neue Datei hochladen
parent
e5a79653
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
06_Survival_Analysis/TCGA_survival_analysis_described.Rmd
+179
-0
179 additions, 0 deletions
06_Survival_Analysis/TCGA_survival_analysis_described.Rmd
with
179 additions
and
0 deletions
06_Survival_Analysis/TCGA_survival_analysis_described.Rmd
0 → 100644
+
179
−
0
View file @
489a0d5f
---
title: "Survival_analysis"
output: pdf_document
---
```{r setup, include=FALSE}
# Load required packages
#install.packages("BiocManager")
#BiocManager::install("TCGAbiolinks")
library(TCGAbiolinks)
library(survminer)
library(survival)
library(SummarizedExperiment)
library(DESeq2)
library(dplyr)
library(tidyr)
library(tibble)
# Query and retrieve clinical data for esophageal cancer (ESCC)
clinical_data_escc <- GDCquery_clinic("TCGA-ESCA")
```
```{r}
# Check for relevant columns in clinical data
colnames_to_check <- c("vital_status", "days_to_last_follow_up", "days_to_death")
has_relevant_columns <- any(colnames(clinical_data_escc) %in% colnames_to_check)
relevant_columns_indices <- which(colnames(clinical_data_escc) %in% colnames_to_check)
relevant_columns <- clinical_data_escc[, relevant_columns_indices]
```
```{r}
# Print summary of vital status
table(clinical_data_escc$vital_status)
```
```{r}
# Create a new variable "deceased" based on vital status
clinical_data_escc$deceased <- ifelse(clinical_data_escc$vital_status == "Alive", FALSE, TRUE)
```
```{r}
# Create an "overall_survival" variable that considers days_to_death for deceased patients and days_to_last_follow_up for alive patients
clinical_data_escc$overall_survival <- ifelse(clinical_data_escc$vital_status == "Alive",
clinical_data_escc$days_to_last_follow_up,
clinical_data_escc$days_to_death)
```
```{r}
# Build a query to retrieve gene expression data for the entire cohort
query_escc_all <- GDCquery(
project = "TCGA-ESCA",
data.category = "Transcriptome Profiling",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
data.type = "Gene Expression Quantification",
access = "open"
)
output_escc <- getResults(query_escc_all)
tumor <- output_escc$cases
```
```{r}
# Build a query to retrieve gene expression data for 20 primary tumors and solid tissue normal samples
query_escc <- GDCquery(
project = "TCGA-ESCA",
data.category = "Transcriptome Profiling",
experimental.strategy = "RNA-Seq",
workflow.type = "STAR - Counts",
data.type = "Gene Expression Quantification",
sample.type = c("Primary Tumor", "Solid Tissue Normal"),
access = "open",
barcode = tumor
)
```
```{r}
# Download the data
GDCdownload(query_escc)
library(SummarizedExperiment)
```
```{r}
# Prepare the gene expression data
tcga_escc_data <- GDCprepare(query_escc, summarizedExperiment = TRUE)
escc_matrix <- assay(tcga_escc_data)
```
```{r}
# Extract gene and sample metadata from the summarizedExperiment object
gene_metadata <- as.data.frame(rowData(tcga_escc_data))
coldata <- as.data.frame(colData(tcga_escc_data))
```
```{r}
# Merge gene expression data with gene metadata using gene_id
merged_data <- merge(escc_matrix, gene_metadata, by.x = 0, by.y = "gene_id")
test_gene <-merged_data
# Extract gene expression data for TCGA samples
sample_ids <- colnames(test_gene)
```
```{r}
# Extract gene expression data for TCGA samples
sample_ids <- colnames(test_gene)
# Function to assign groups based on TCGA IDs
assign_group <- function(tcga_id) {
group <- ""
parts <- unlist(strsplit(tcga_id, "-"))
if (length(parts) >= 4) {
fourth_part <- parts[4]
if (grepl("\\d{2}", fourth_part)) {
num <- as.numeric(substr(fourth_part, 1, 2))
if (num >= 10 & num <= 29) {
group <- "Control"
} else if (num >= 1 & num <= 9) {
group <- "Cancer"
}
}
}
return(group)
}
```
```{r}
# Assign groups to TCGA IDs
group_assignments <- sapply(sample_ids, assign_group)
# Combine group assignments with the sample data
combined_data <- as.data.frame(group_assignments)
# VST transform counts for use in survival analysis
library(DESeq2)
# Setting up countData object
dds <- DESeqDataSetFromMatrix(countData = escc_matrix,
colData = coldata,
design = ~ 1)
```
```{r}
# Removing genes with a sum total of 10 reads across all samples
keep <- rowSums(counts(dds)) >= 10
dds <- dds[keep,]
# VST transformation
vsd <- vst(dds, blind = FALSE)
escc_matrix_vst <- assay(vsd)
# Get data for the RUVBL1 gene and add gene metadata information to it
gene_named <- escc_matrix %>%
as.data.frame() %>%
rownames_to_column(var = 'gene_id') %>%
gather(key = 'case_id', value = 'counts', -gene_id) %>%
left_join(., gene_metadata, by = "gene_id") %>%
filter(gene_name == "ATP6V1D")
# Calculate the median value
median_value <- median(gene_named$counts)
# Assign strata based on median count
gene_named$strata <- ifelse(gene_named$counts >= median_value, "HIGH", "LOW")
# Merge clinical information with gene expression data
gene_named$case_id <- gsub('-01.*', '', gene_named$case_id)
gene_named <- merge(gene_named, clinical_data_escc, by.x = 'case_id', by.y = 'submitter_id')
# Convert days to months for overall_survival variable
gene_named$overall_survival <- gene_named$overall_survival / 30
```
```{r}
# Fitting survival curve
fit <- survfit(Surv(overall_survival, deceased) ~ strata, data = gene_named)
# Plotting survival curves
ggsurvplot(fit,
data = gene_named,
pval = TRUE,
risk.table = FALSE)
```
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment