Skip to content
Snippets Groups Projects
Commit 7b957d36 authored by Jonathan Youett's avatar Jonathan Youett
Browse files

Remove trailing white spaces

parent 9665eecb
No related branches found
No related tags found
No related merge requests found
...@@ -140,7 +140,7 @@ namespace Dune { ...@@ -140,7 +140,7 @@ namespace Dune {
- (Delta<(p+1)%3,(q-1)%3>::delta+u[(p+1)%3][(q-1)%3]) - (Delta<(p+1)%3,(q-1)%3>::delta+u[(p+1)%3][(q-1)%3])
* (Delta<(p+2)%3,(q-2)%3>::delta+u[(p+2)%3][(q-2)%3]); * (Delta<(p+2)%3,(q-2)%3>::delta+u[(p+2)%3][(q-2)%3]);
} }
/** \brief Compute linearization of the determinant of a deformation gradient. Multiplication with a test function(scalar) gradient, gives the linearization in the direction of the test function. /** \brief Compute linearization of the determinant of a deformation gradient. Multiplication with a test function(scalar) gradient, gives the linearization in the direction of the test function.
* *
* \param u The displacement gradient(!) at which the determinant is evaluated * \param u The displacement gradient(!) at which the determinant is evaluated
...@@ -148,18 +148,18 @@ namespace Dune { ...@@ -148,18 +148,18 @@ namespace Dune {
void linearisedDefDet(const Dune::FieldMatrix<double,3,3>& u, Dune::FieldMatrix<double,3,3>& linDet) { void linearisedDefDet(const Dune::FieldMatrix<double,3,3>& u, Dune::FieldMatrix<double,3,3>& linDet) {
linDet = 0; linDet = 0;
for (int i=0; i<2; i++) for (int i=0; i<2; i++)
for (int j=i+1; j<3; j++) { for (int j=i+1; j<3; j++) {
int k=(3-(i+j))%3; int k=(3-(i+j))%3;
linDet[i][j] = u[j][k]*u[k][i] - u[j][i]*(1+u[k][k]); linDet[i][j] = u[j][k]*u[k][i] - u[j][i]*(1+u[k][k]);
linDet[j][i] = u[k][j]*u[i][k] - u[i][j]*(1+u[k][k]); linDet[j][i] = u[k][j]*u[i][k] - u[i][j]*(1+u[k][k]);
} }
// the diagonal parts // the diagonal parts
for (int i=0; i<3; i++) for (int i=0; i<3; i++)
linDet[i][i] = (u[(i+1)%3][(i+1)%3]+1)*(u[(i+2)%3][(i+2)%3]+1)-u[(i+1)%3][(i+2)%3]*u[(i+2)%3][(i+1)%3]; linDet[i][i] = (u[(i+1)%3][(i+1)%3]+1)*(u[(i+2)%3][(i+2)%3]+1)-u[(i+1)%3][(i+2)%3]*u[(i+2)%3][(i+1)%3];
} }
/** \brief Compute linearization of the determinant of a deformation gradient. Multiplication with a test function(scalar) gradient, gives the linearization in the direction of the test function. /** \brief Compute linearization of the determinant of a deformation gradient. Multiplication with a test function(scalar) gradient, gives the linearization in the direction of the test function.
* *
* \param u The displacement gradient(!) at which the determinant is evaluated * \param u The displacement gradient(!) at which the determinant is evaluated
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment