Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-elasticity
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
Show more breadcrumbs
agnumpde
dune-elasticity
Commits
c0eca190
Commit
c0eca190
authored
12 years ago
by
akbib
Committed by
akbib@FU-BERLIN.DE
12 years ago
Browse files
Options
Downloads
Patches
Plain Diff
local assembler for the second derivative of a neo-hookean energy
[[Imported from SVN: r11294]]
parent
c538116d
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
dune/elasticity/assemblers/neohookeoperatorassembler.hh
+224
-0
224 additions, 0 deletions
dune/elasticity/assemblers/neohookeoperatorassembler.hh
with
224 additions
and
0 deletions
dune/elasticity/assemblers/neohookeoperatorassembler.hh
0 → 100644
+
224
−
0
View file @
c0eca190
#ifndef NEO_HOOKE_OPERATOR_ASSEMBLER_HH
#define NEO_HOOKE_OPERATOR_ASSEMBLER_HH
#include
<dune/common/fvector.hh>
#include
<dune/common/fmatrix.hh>
#include
<dune/istl/matrix.hh>
#include
<dune/fufem/quadraturerules/quadraturerulecache.hh>
#include
<dune/fufem/assemblers/localoperatorassembler.hh>
#include
<dune/fufem/staticmatrixtools.hh>
#include
<dune/fufem/symmetrictensor.hh>
#include
<dune/fufem/functions/virtualgridfunction.hh>
#include
<dune/elasticity/common/elasticityhelpers.hh>
/** \brief Assemble the second derivative of a neo-hookean material.
*
* Laursen:
* \f[
* W(u)= \frac{\lambda}4(J^2-1)-(\frac{\lambda}2+\mu)log(J)+\mu tr(E(u))
* \f]
*
* Fischer/Wriggers:
* \f[
* W(u)= \frac{\lambda}2(J-1)^2-2\mu)log(J)+\mu tr(E(u))
* \f]
*
*
* - \f$D\varphi\f$: the deformation gradient
* - \f$E\f$: the nonlinear strain tensor
* - \f$E'_u(v)\f$: the linearized strain tensor at the point u in direction v
* - \f$\sigma(u) = C:E(u)\f$: the second Piola-Kirchhoff stress tensor
* - \f$C\f$: the Hooke tensor
* - \f$Dv\f$: the gradient of the test function
*
*/
template
<
class
GridType
,
class
TrialLocalFE
,
class
AnsatzLocalFE
>
class
NeoHookeOperatorAssembler
:
public
LocalOperatorAssembler
<
GridType
,
TrialLocalFE
,
AnsatzLocalFE
,
Dune
::
FieldMatrix
<
typename
GridType
::
ctype
,
GridType
::
dimension
,
GridType
::
dimension
>
>
{
static
const
int
dim
=
GridType
::
dimension
;
typedef
typename
GridType
::
ctype
ctype
;
typedef
VirtualGridFunction
<
GridType
,
Dune
::
FieldVector
<
ctype
,
GridType
::
dimension
>
>
GridFunction
;
public:
typedef
typename
Dune
::
FieldMatrix
<
ctype
,
GridType
::
dimension
,
GridType
::
dimension
>
T
;
typedef
typename
LocalOperatorAssembler
<
GridType
,
TrialLocalFE
,
AnsatzLocalFE
,
T
>::
Element
Element
;
typedef
typename
LocalOperatorAssembler
<
GridType
,
TrialLocalFE
,
AnsatzLocalFE
,
T
>::
BoolMatrix
BoolMatrix
;
typedef
typename
LocalOperatorAssembler
<
GridType
,
TrialLocalFE
,
AnsatzLocalFE
,
T
>::
LocalMatrix
LocalMatrix
;
NeoHookeOperatorAssembler
(
ctype
lambda
,
ctype
mu
,
const
Dune
::
shared_ptr
<
GridFunction
>
displacement
)
:
lambda_
(
lambda
),
mu_
(
mu
),
displacement_
(
displacement
)
{}
NeoHookeOperatorAssembler
(
ctype
lambda
,
ctype
mu
)
:
lambda_
(
lambda
),
mu_
(
mu
)
{}
void
indices
(
const
Element
&
element
,
BoolMatrix
&
isNonZero
,
const
TrialLocalFE
&
tFE
,
const
AnsatzLocalFE
&
aFE
)
const
{
isNonZero
=
true
;
}
void
assemble
(
const
Element
&
element
,
LocalMatrix
&
localMatrix
,
const
TrialLocalFE
&
tFE
,
const
AnsatzLocalFE
&
aFE
)
const
{
typedef
Dune
::
FieldVector
<
ctype
,
dim
>
FVdim
;
typedef
Dune
::
FieldMatrix
<
ctype
,
dim
,
dim
>
FMdimdim
;
typedef
typename
TrialLocalFE
::
Traits
::
LocalBasisType
::
Traits
::
JacobianType
JacobianType
;
int
rows
=
tFE
.
localBasis
().
size
();
int
cols
=
aFE
.
localBasis
().
size
();
localMatrix
.
setSize
(
rows
,
cols
);
localMatrix
=
0.0
;
// get quadrature rule
const
int
order
=
(
element
.
type
().
isSimplex
())
?
4
*
(
tFE
.
localBasis
().
order
())
:
4
*
(
tFE
.
localBasis
().
order
()
*
dim
);
const
Dune
::
template
QuadratureRule
<
ctype
,
dim
>
&
quad
=
QuadratureRuleCache
<
ctype
,
dim
>::
rule
(
element
.
type
(),
order
,
IsRefinedLocalFiniteElement
<
TrialLocalFE
>::
value
(
tFE
)
);
// store gradients of shape functions and base functions
std
::
vector
<
JacobianType
>
referenceGradients
(
tFE
.
localBasis
().
size
());
std
::
vector
<
FVdim
>
gradients
(
tFE
.
localBasis
().
size
());
// store entity geometry mapping
const
typename
Element
::
Geometry
geometry
=
element
.
geometry
();
// loop over quadrature points
for
(
size_t
pt
=
0
;
pt
<
quad
.
size
();
++
pt
)
{
// get quadrature point
const
FVdim
&
quadPos
=
quad
[
pt
].
position
();
// get transposed inverse of Jacobian of transformation
const
FMdimdim
&
invJacobian
=
geometry
.
jacobianInverseTransposed
(
quadPos
);
// get integration factor
const
ctype
integrationElement
=
geometry
.
integrationElement
(
quadPos
);
// get gradients of shape functions
tFE
.
localBasis
().
evaluateJacobian
(
quadPos
,
referenceGradients
);
// compute gradients of base functions
for
(
size_t
i
=
0
;
i
<
gradients
.
size
();
++
i
)
{
// transform gradients
gradients
[
i
]
=
0.0
;
invJacobian
.
umv
(
referenceGradients
[
i
][
0
],
gradients
[
i
]);
}
// evaluate displacement gradients the configuration at the quadrature point
typename
GridFunction
::
DerivativeType
localConfGrad
;
if
(
displacement_
->
isDefinedOn
(
element
))
displacement_
->
evaluateDerivativeLocal
(
element
,
quadPos
,
localConfGrad
);
else
displacement_
->
evaluateDerivative
(
geometry
.
global
(
quadPos
),
localConfGrad
);
// compute linearization of the determinante of the deformation gradient
FMdimdim
linDefDet
;
Dune
::
Elasticity
::
linearisedDefDet
(
localConfGrad
,
linDefDet
);
// compute deformation gradient of the configuration
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
localConfGrad
[
i
][
i
]
+=
1
;
// evaluate the derminante of the deformation gradient
const
ctype
J
=
localConfGrad
.
determinant
();
// /////////////////////////////////////////////////
// Assemble matrix
// /////////////////////////////////////////////////
ctype
z
=
quad
[
pt
].
weight
()
*
integrationElement
;
ctype
coeff
,
coeff2
;
#ifdef LAURSEN
coeff
=
(
0.5
*
lambda_
*
J
-
(
lambda_
*
0.5
+
mu_
)
/
J
);
coeff2
=
(
0.5
*
lambda_
+
(
lambda_
*
0.5
+
mu_
)
/
(
J
*
J
));
#else
coeff
=
lambda_
*
(
J
-
1
)
-
2
*
mu_
/
J
;
coeff2
=
lambda_
+
2
*
mu_
/
(
J
*
J
);
#endif
for
(
int
row
=
0
;
row
<
rows
;
row
++
)
for
(
int
col
=
0
;
col
<
cols
;
col
++
)
{
// second derivative of the determinat term
localMatrix
[
row
][
col
].
axpy
(
z
*
coeff
,
hessDefDet
(
localConfGrad
,
gradients
[
row
],
gradients
[
col
]));
FVdim
rowTerm
(
0
),
colTerm
(
0
);
linDefDet
.
mv
(
gradients
[
row
],
rowTerm
);
linDefDet
.
mv
(
gradients
[
col
],
colTerm
);
// derivative of the coefficient term
for
(
int
rcomp
=
0
;
rcomp
<
dim
;
rcomp
++
)
localMatrix
[
row
][
col
][
rcomp
].
axpy
(
coeff2
*
z
*
rowTerm
[
rcomp
],
colTerm
);
// second derivative of the trace term
StaticMatrix
::
addToDiagonal
(
localMatrix
[
row
][
col
],
z
*
mu_
*
((
gradients
[
row
]
*
gradients
[
col
])));
}
}
}
/** \brief Set new configuration to be assembled at. Needed e.g. during Newton iteration.*/
void
setConfiguration
(
Dune
::
shared_ptr
<
GridFunction
>
newConfig
)
{
displacement_
=
newConfig
;
}
private
:
/** \brief Lame constant */
ctype
lambda_
;
/** \brief Lame constant */
ctype
mu_
;
/** \brief The configuration at which the linearized operator is evaluated.*/
Dune
::
shared_ptr
<
GridFunction
>
displacement_
;
/** \brief Compute the matrix entry that arises from the second derivative of the determinant.
* Note that it is assumed the defGrad is the deformation gradient and not the displacement gradient
*/
Dune
::
FieldMatrix
<
ctype
,
dim
,
dim
>
hessDefDet
(
const
Dune
::
FieldMatrix
<
ctype
,
dim
,
dim
>&
defGrad
,
const
Dune
::
FieldVector
<
ctype
,
dim
>&
testGrad
,
const
Dune
::
FieldVector
<
ctype
,
dim
>&
ansatzGrad
)
{
Dune
::
FieldMatrix
<
ctype
,
dim
,
dim
>
res
(
0
);
if
(
dim
==
2
)
{
res
[
0
][
1
]
=
testGrad
[
0
]
*
ansatzGrad
[
1
]
-
ansatzGrad
[
0
]
*
testGrad
[
1
];
res
[
1
][
0
]
=
-
res
[
0
][
1
];
return
res
;
}
//compute the cross product
Dune
::
FieldVector
<
ctype
,
dim
>
cross
(
0
);
for
(
int
k
=
0
;
k
<
dim
;
k
++
)
cross
[
k
]
=
testGrad
[(
k
+
1
)
%
dim
]
*
ansatzGrad
[(
k
+
2
)
%
dim
]
-
testGrad
[(
k
+
2
)
%
dim
]
*
ansatzGrad
[(
k
+
1
)
%
dim
];
// the resulting matrix is skew symmetric with entries <cross,degGrad[i]>
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
for
(
int
j
=
i
+
1
;
j
<
dim
;
j
++
)
{
int
k
=
(
-
(
i
+
j
))
%
dim
;
res
[
i
][
j
]
=
(
cross
*
defGrad
[
k
])
*
std
::
pow
(
-
1
,
k
);
res
[
j
][
i
]
=
-
res
[
i
][
j
];
}
return
res
;
}
};
#endif
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment