Skip to content
Snippets Groups Projects
Commit eed053f2 authored by oliver.sander_at_tu-dresden.de's avatar oliver.sander_at_tu-dresden.de
Browse files

Implementation of a relaxed linear micromorphic continuum

The static case of this model is discussed in

  Neff, Ghiba, Lazar, Madeo

  "The relaxed linear micromorphic continuum:
   Well-posedness of the static problem and relations to the
   gauge theory of dislocations"

   DOI: 10.1093/qjmam/hbu027
parent 5147054d
No related branches found
No related tags found
No related merge requests found
Pipeline #33354 failed
*.aux
*.bbl
*.bcf
*.blg
*.log
*.out
*.run.xml
*.synctex.gz
*.toc
relaxed-micromorphic-continuum.pdf
@Article{neff_ghiba_lazar_madeo:2015,
author = {Patrizio Neff and I.D. Ghiba and M. Lazar and Angela Madeo},
title = {The relaxed linear micromorphic continuum: Well-posedness of the static problem and relations to the gauge theory of dislocations},
journal = {Quarterly Journal of Mechanics and Applied Mathematics},
year = {2015},
volume = {68},
number = {1},
pages = {53--84},
doi = {10.1093/qjmam/hbu027}
}
\documentclass[a4paper,10pt]{scrartcl}
\usepackage[utf8]{inputenc}
\usepackage[defernumbers=true,
maxbibnames=99, % Never write 'et al.' in a bibliography
giveninits=true, % Abbreviate first names
sortcites=true, % Sort citations when there are more than one
natbib=true, % Allow commands like \citet and \citep
backend=biber]{biblatex}
\addbibresource{relaxed-micromorphic-continuum.bib}
%%% PACKAGES
\usepackage{amssymb, amsmath, amsthm}
\usepackage{graphicx}
\usepackage{colonequals}
\usepackage{lmodern}
\usepackage{microtype}
\usepackage{todonotes}
\newcommand{\todosander}[1]{\todo[inline,color=green,author=OS]{#1}}
\usepackage{tikz}
\usepackage{hyperref}
\newcommand{\R}{\mathbb R}
\newcommand{\N}{\mathbb N}
\renewcommand{\skew}{\operatorname{skew}}
\newcommand{\sym}{\operatorname{sym}}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\dev}{\operatorname{dev}}
\newcommand{\Curl}{\operatorname{Curl}}
\newcommand{\bu}{\mathbf{u}}
\newcommand{\bP}{\mathbf{P}}
\newcommand{\abs}[1]{\lvert #1 \rvert}
\newcommand{\norm}[1]{\lVert #1 \rVert}
\newcommand{\tnorm}[1]{||| #1 |||}
\DeclareMathOperator{\dist}{dist}
\DeclareMathOperator*{\argmin}{arg\,min}
\newtheorem{definition}{Definition}
\newtheorem{theorem}[definition]{Theorem}
\newtheorem{cor}[definition]{Corollary}
\newtheorem{lemma}[definition]{Lemma}
\newtheorem{remark}[definition]{Remark}
\newtheorem{problem}[definition]{Problem}
\theoremstyle{remark}
%% All graphics files may be in this subdirectory
\graphicspath{{gfx/}}
% Title Page
\title{Simulating the relaxed linear micromorphic continuum}
\author{Oliver Sander}
\begin{document}
\maketitle
\begin{abstract}
We investigate finite element discretizations of the relaxed linear micromorphic continuum.
\end{abstract}
\tableofcontents
\section{The static relaxed linear micromorphic continuum}
Let $\Omega$ be a domain in $\R^d$ with $d=2$ or $d=3$. On $\Omega$ we consider two fields:
First, a displacement field
\begin{equation*}
\bu \in H^1(\Omega,\R^d),
\end{equation*}
and secondly a micro-distortion density tensor
\begin{equation*}
\bP \in H(\Curl; \Omega, \R^{d \times d}).
\end{equation*}
Note that the $\bP$ are not necessarily symmetric. The matrix curl is defined row-wise,
i.e., for a matrix field $\bP : \R^3 \subset \Omega \to \R^{3 \times 3}$ we define the
matrix curl as
\begin{equation*}
(\Curl P)_i
\colonequals
\Big( \frac{\partial P_{i3}}{\partial x_2} - \frac{\partial P_{i2}}{\partial x_3}, \quad
\frac{\partial P_{i3}}{\partial x_2} - \frac{\partial P_{i3}}{\partial x_2}, \quad
\frac{\partial P_{i3}}{\partial x_2} - \frac{\partial P_{i3}}{\partial x_2} \Big).
\end{equation*}
\todosander{Wie würde das Modell in 2d aussehen?}
We define the quantities
\begin{alignat*}{2}
e & \colonequals \nabla \bu - \bP & \qquad & \text{(elastic distortion)} \\
\varepsilon_p & \colonequals \sym \bP & & \text{(micro-strain)} \\
\alpha & \colonequals \Curl e = - \Curl \bP & & \text{(micro-dislocation)}
\end{alignat*}
We consider the minimization of the energy functional
\begin{align*}
\mathcal{E}(e,\varepsilon_p,\alpha)
& =
\mu_e \norm{\sym(\nabla u - P)}^2 + \mu_c \norm{\skew(\nabla u - P)}^2 + \frac{\lambda_e}{2} \abs{\tr(\nabla u - P)}^2 \\
& \quad
+ \mu_h \norm{\sym P}^2 + \frac{\lambda_h}{2}\abs{\tr P}^2 \\
& \quad
+ \frac{\alpha_1}{2} \norm{\dev \sym \Curl P}^2
+ \frac{\alpha_2}{2} \norm{\skew \Curl P}^2
+ \frac{\alpha_3}{2} \abs{\tr \Curl P}^2
\end{align*}
where $\mu_e$, $\mu_c$, $\lambda_e$, $\mu_h$, $\lambda_h$, $\alpha_1$, $\alpha_2$, $\alpha_3$
are material parameters subject to
\begin{align*}
\mu_e > 0 \qquad 2\mu_e + 3\lambda_e > 0, \qquad \mu_h > 0, \qquad 2\mu_h + 3\lambda_h > 0,\\
\alpha_1 > 0, \qquad \alpha_2 > 0, \qquad \alpha_3 > 0.
\end{align*}
% The weak formulation of the problem is: Find $(u,P) \in H^1 \times H_0(\Curl)$ such that
% \begin{equation}
% \label{eq:weak_formulation}
% a((u,P),(v,Q)) = \ell(v,Q)
% \qquad
% \text{for all $(v,Q) \in H^1 \times H_0(\Curl)$}.
% \end{equation}
% Here, the bilinear form $a(\cdot,\cdot)$ is
% \begin{multline*}
% \label{eq:bilinear_form}
% a((u_1,P_1),(u_2,P_2))
% \colonequals
% \int_\Omega \bigg( \langle \mathbb{C} : \sym(\nabla u_1 - P_1),\sym(\nabla u_2 - P_2) \rangle
% + \langle \mathbb{H} \sym P_1, \sym P_2 \rangle \\
% + \langle \mathbb{L}_c \Curl P_1, \Curl P_2 \rangle \bigg)\,dx.
% \end{multline*}
When the material is isotropic, this reduces to
\todosander{Prüfen!}
\begin{multline*}
\label{eq:bilinear_form_isotropic}
a((u_1,P_1),(u_2,P_2))
\colonequals
\int_\Omega \bigg( \mu_e \langle \sym(\nabla u_1 - P_1), \sym(\nabla u_2 - P_2) \rangle \\
+ \mu_c \langle \skew(\nabla u_1 - P_1), \skew(\nabla u_2 - P_2) \rangle
+ \frac{\lambda_e}{2} (\tr (\nabla u_1 - P_1) \cdot \tr(\nabla u_2 - P_2) \\
+ \mu_h \langle \sym P_1, \sym P_2 \rangle + \frac{\lambda_h}{2} \tr P_1 \tr P_2 \\
+ \frac{\alpha_1}{2} \langle \dev \sym \Curl P_1, \dev \sym \Curl P_2 \rangle \\
+ \frac{\alpha_2}{2} \langle \skew \Curl P_1, \skew \Curl P_2 \rangle
+ \frac{\alpha_3}{2} \langle \tr \Curl P_1, \tr \Curl P_2 \rangle
\bigg)\,dx.
\end{multline*}
\subsection{Well-posedness}
To investigate well-posedness of the problem, \cite{von_Neff_zitierte_Quelle}
introduced
\begin{equation*}
\tnorm{P}^2 \colonequals \norm{\sym P}^2_{L^2(\Omega)} + \norm{\Curl P}^2_{L^2(\Omega)}.
\end{equation*}
This is only a semi-norm on $H(\Curl)$---all skew-symmetric curl-free matrix fields
map to zero. It is, however, a norm on
\begin{equation*}
H_0(\Curl)
\colonequals
\Big\{ P \in H(\Curl) \; : \; \text{$P(x)\tau = 0$ for almost all $x$ on $\partial \Omega$
and $\tau$ tangent to $\partial \Omega$} \Big\}.
\end{equation*}
Even more, it is equivalent there to the canonical $H(\Curl)$-norm.
\todosander{Vermutung: Wir brauchen diese ungewöhnliche Norm, um den Fall $\mu_c = 0$
abdecken zu können. Für $\mu_c > 0$ könnte man vielleicht Elliptizität in der
$H(\Curl)$-norm zeigen.}
Using this particular norm, \citet{neff_ghiba_lazar_madeo:2015} showed ellipticity
of the bilinear form~\eqref{eq:bilinear_form} on $H_0(\Curl)$. For this, define
the norm
\begin{equation*}
\tnorm{(u,P)}^2_{\mathcal{X}} \colonequals \norm{u}^2_{H^1(\Omega)} + \tnorm{P}^2.
\end{equation*}
\begin{theorem}[Thm.\,3.2 in~\cite{neff_ghiba_lazar_madeo:2015}]
\label{thm:ellipticity}
Assume that (i) the constitutive coefficients satisfy the symmetry relations~\eqref{}
and the inequalities~\eqref{}; and (ii) the loads satisfy the regularity conditions~\eqref{}.
Then the bilinear form $a(\cdot,\cdot)$ defined in~\eqref{eq:bilinear_form}
is continuous and coercive on $H^1 \times H_0(\Curl)$ with respect to the $\tnorm{\cdot}_{\mathcal{X}}$-norm.
\end{theorem}
\todosander{Bei Neff ist immer $\mu_c = 0$, aber in der Darstellung hier
soll auch der Fall $\mu_c > 0$ behandelt werden.}
Cauchy--Schwarz- and Poincaré inequalities imply that the linear operator $\ell$
is bounded. Hence existence of a unique solution of \eqref{eq:weak_formulation}
follows by the Lax--Milgram lemma.
\section{Discretization by finite elements}
We now consider a finite element discretization of the relaxed linear micromorphic model.
As the natural spaces for the weak formulation~\eqref{eq:weak_formulation} are
$H^1$ for the displacements and $H(\Curl)$ for the micro-distortion, we select
first-order Lagrange finite elements $V_h^\text{La}$ for the displacements, and
\begin{multline*}
V_h^\text{}
\colonequals
\Big\{ P \in H(\Curl) \; : \; \text{$P_i$ is a first-order Nédélec function of the first kind} \\
\text{for $i=1,\dots,3$} \Big\}.
\end{multline*}
As this is a conforming discretization for the pair of spaces $H^1 \times H(\Curl)$,
from Theorem~\eqref{thm:ellipticity} we immediately get coercivity and continuity
of $a(\cdot,\cdot)$ on $V_h^\text{La} \times V_h^\text{}$ with respect to the
norm $\tnorm{\cdot}_\mathcal{X}$.
\todosander{Diskutiere den Fall $\mu_c > 0$!}
\begin{theorem}
{[ASSUMPTIONS]} the finite element discretization of the relaxed micromorphic
model has a unique solution.
\end{theorem}
\section{The dynamic case}
\printbibliography
\end{document}
if(ADOLC_FOUND AND IPOPT_FOUND AND PYTHONLIBS_FOUND AND dune-uggrid_FOUND)
set(programs finite-strain-elasticity
linear-elasticity)
linear-elasticity
relaxed-micromorphic-continuum)
foreach(_program ${programs})
add_executable(${_program} ${_program}.cc)
......
This diff is collapsed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment