-
Carsten Gräser authoredCarsten Gräser authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
algorithm.hh 18.57 KiB
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_SOLVERS_COMMON_ALGORITHM_HH
#define DUNE_SOLVERS_COMMON_ALGORITHM_HH
#include <dune/common/indices.hh>
#include <dune/common/typeutilities.hh>
#include <dune/common/typetraits.hh>
#include <dune/istl/multitypeblockvector.hh>
namespace Dune {
namespace Solvers {
namespace Hybrid {
namespace Imp {
// Try if tuple_size is implemented for class
template<class T, int i>
constexpr auto size(const Dune::FieldVector<T, i>*, const PriorityTag<5>&)
-> decltype(std::integral_constant<std::size_t,i>())
{
return {};
}
// Try if we have an instance of std::integer_sequence
template<class T, T... t, class Index>
constexpr auto size(std::integer_sequence<T, t...>, PriorityTag<4>)
{
using sizeAsType = std::tuple_size<decltype(std::make_tuple(t...))>;
return std::integral_constant<std::size_t, sizeAsType::value>();
}
// Try if tuple_size is implemented for class
template<class T>
constexpr auto size(const T*, const PriorityTag<3>&)
-> decltype(std::integral_constant<std::size_t,std::tuple_size<T>::value>())
{
return {};
}
// Try if there's a static constexpr size()
template<class T>
constexpr auto size(const T*, const PriorityTag<1>&)
-> decltype(std::integral_constant<std::size_t,T::size()>())
{
return {};
}
// As a last resort try if there's a static constexpr size()
template<class T>
constexpr auto size(const T* t, const PriorityTag<0>&)
{
return t->size();
}
} // namespace Imp
/**
* \brief Size query
*
* \tparam T Type of container whose size is queried
*
* \param t Container whose size is queried
*
* \return Size of t
*
* If the size of t is known at compile type the size is
* returned as std::integral_constant<std::size_t, size>.
* Otherwise the result of t.size() is returned.
*
* Supported types for deriving the size at compile time are:
* * instances of std::integer_sequence
* * all types std::tuple_size is implemented for
* * all typed that have a static method ::size()
* * instances of Dune::FieldVector
*/
template<class T>
constexpr auto size(const T& t)
{
return Imp::size(&t, PriorityTag<42>());
}
namespace Imp {
template<class Container, class Index,
std::enable_if_t<IsTuple<std::decay_t<Container>>::value, int> = 0>
constexpr decltype(auto) elementAt(Container&& c, Index&&, PriorityTag<2>)
{
return std::get<Index::value>(c);
}
template<class T, T... t, class Index>
constexpr decltype(auto) elementAt(std::integer_sequence<T, t...> c, Index&&, PriorityTag<1>)
{
return std::get<Index::value>(std::make_tuple(std::integral_constant<T, t>()...));
}
template<class Container, class Index>
constexpr decltype(auto) elementAt(Container&& c, Index&& i, PriorityTag<0>)
{
return c[i];
}
} // namespace Imp
/**
* \brief Get element at given position from container
*
* \tparam Container Type of given container
* \tparam Index Type of index
*
* \param c Given container
* \param i Index of element to obtain
*
* \return The element at position i, i.e. c[i]
*
* If this returns the i-th entry of c. It supports the following
* containers
* * Containers providing dynamic access via operator[]
* * Heterogenous containers providing access via operator[](integral_constant<...>)
* * std::tuple<...>
* * std::integer_sequence
*/
template<class Container, class Index>
constexpr decltype(auto) elementAt(Container&& c, Index&& i)
{
return Imp::elementAt(std::forward<Container>(c), std::forward<Index>(i), PriorityTag<42>());
}
namespace Imp {
template<class Begin, class End>
class StaticIntegralRange
{
public:
template<std::size_t i>
constexpr auto operator[](Dune::index_constant<i>) const
{
return Dune::index_constant<Begin::value+i>();
}
static constexpr auto size()
{
return std::integral_constant<typename Begin::value_type, End::value - Begin::value>();
}
};
template<class T>
class DynamicIntegralRange
{
public:
constexpr DynamicIntegralRange(const T& begin, const T& end):
begin_(begin),
end_(end)
{}
const T& begin() const
{ return begin_; }
const T& end() const
{ return end_; }
constexpr auto size() const
{
return end() - begin();
}
constexpr T operator[](const T&i) const
{ return begin()+i; }
private:
T begin_;
T end_;
};
template<class Begin, class End,
std::enable_if_t<IsIntegralConstant<Begin>::value and IsIntegralConstant<End>::value, int> = 0>
constexpr auto integralRange(const Begin& begin, const End& end, const PriorityTag<1>&)
{
static_assert(Begin::value <= End::value, "You cannot create an integralRange where end<begin");
return Imp::StaticIntegralRange<Begin,End>();
}
template<class Begin, class End>
constexpr auto integralRange(const Begin& begin, const End& end, const PriorityTag<0>&)
{
assert(begin <= end);
return Imp::DynamicIntegralRange<End>(begin, end);
}
} // namespace Imp
/**
* \brief Create an integral range
*
* \tparam Begin Type of begin entry of the range
* \tparam End Type of end entry of the range
*
* \param begin First entry of the range
* \param end One past the last entry of the range
*
* \returns An object encoding the given range
*
* If Begin and End are both instances of type
* std::integral_constant, the returnes range
* encodes begin and end statically.
*/
template<class Begin, class End>
constexpr auto integralRange(const Begin& begin, const End& end)
{
return Imp::integralRange(begin, end, PriorityTag<42>());
}
/**
* \brief Create an integral range starting from 0
*
* \tparam End Type of end entry of the range
*
* \param end One past the last entry of the range
*
* \returns An object encoding the given range
*
* This is a short cut for integralRange(_0, end).
*/
template<class End>
constexpr auto integralRange(const End& end)
{
return Imp::integralRange(Dune::Indices::_0, end, PriorityTag<42>());
}
namespace Imp {
template<class Range, class F, class Index, Index... i>
constexpr void forEachIndex(Range&& range, F&& f, std::integer_sequence<Index, i...>)
{
std::initializer_list<int>{(f(Hybrid::elementAt(range, std::integral_constant<Index,i>())), 0)...};
}
template<class Range, class F,
std::enable_if_t<IsIntegralConstant<decltype(Hybrid::size(std::declval<Range>()))>::value, int> = 0>
constexpr void forEach(Range&& range, F&& f, PriorityTag<1>)
{
auto size = Hybrid::size(range);
auto indices = std::make_index_sequence<size>();
forEachIndex(std::forward<Range>(range), std::forward<F>(f), indices);
}
template<class Range, class F>
constexpr void forEach(Range&& range, F&& f, PriorityTag<0>)
{
for(std::size_t i=0; i<range.size(); ++i)
f(range[i]);
// \ToDo Why does the following not compile?
// for(auto e : range)
// f(e);
}
} // namespace Imp
/**
* \brief Range based for loop
*
* \tparam Range Type of given range
* \tparam F Type of given predicate
*
* \param range The range to loop over
* \param f A predicate that will be called with each entry of the range
*
* This supports looping over the following ranges
* * ranges obtained from integralRange()
* * all ranges that provide Hybrid::size() and Hybrid::elementAt()
*
* This especially included instances of std::integer_sequence,
* std::tuple, Dune::TupleVector, and Dune::MultiTypeBlockVector.
*/
template<class Range, class F>
constexpr void forEach(Range&& range, F&& f)
{
Imp::forEach(std::forward<Range>(range), std::forward<F>(f), PriorityTag<42>());
}
namespace Imp {
template<class IfFunc, class ElseFunc>
constexpr void ifElse(std::true_type, IfFunc&& ifFunc, ElseFunc&& elseFunc)
{
ifFunc([](auto&& x) { return std::forward<decltype(x)>(x);});
}
template<class IfFunc, class ElseFunc>
constexpr void ifElse(std::false_type, IfFunc&& ifFunc, ElseFunc&& elseFunc)
{
elseFunc([](auto&& x) { return std::forward<decltype(x)>(x);});
}
template<class IfFunc, class ElseFunc>
constexpr void ifElse(const bool& condition, IfFunc&& ifFunc, ElseFunc&& elseFunc)
{
if (condition)
ifFunc([](auto&& x) { return std::forward<decltype(x)>(x);});
else
elseFunc([](auto&& x) { return std::forward<decltype(x)>(x);});
}
} // namespace Imp
/**
* \brief A conditional expression
*
* This will call either ifFunc or elseFunc depending
* on the condition. In any case a single argument
* will be passed to the called function. This will always
* be the indentity function. Passing an expression through
* this function will lead to lazy evaluation. This way both
* 'branches' can contain expressions that are only valid
* within this branch if the condition is a std::integral_constant<bool,*>.
*
* In order to do this, the passed functors must have a single
* argument of type auto.
*
* Due to the lazy evaluation mechanism and support for
* std::integral_constant<bool,*> this allows to emulate
* a static if statement.
*/
template<class Condition, class IfFunc, class ElseFunc>
constexpr void ifElse(const Condition& condition, IfFunc&& ifFunc, ElseFunc&& elseFunc)
{
Imp::ifElse(condition, std::forward<IfFunc>(ifFunc), std::forward<ElseFunc>(elseFunc));
}
/**
* \brief A conditional expression
*
* This provides an ifElse conditional with empty else clause.
*/
template<class Condition, class IfFunc>
constexpr void ifElse(const Condition& condition, IfFunc&& ifFunc)
{
ifElse(condition, std::forward<IfFunc>(ifFunc), [](auto&& i) {});
}
namespace Imp {
template<class T1, class T2>
constexpr auto equals(const T1& t1, const T2& t2, PriorityTag<1>) -> decltype(T1::value, T2::value, std::integral_constant<bool,T1::value == T2::value>())
{ return {}; }
template<class T1, class T2>
constexpr auto equals(const T1& t1, const T2& t2, PriorityTag<0>)
{
return t1==t2;
}
} // namespace Imp
/**
* \brief Equality comparison
*
* If both types have a static member value, the result of comparing
* these is returned as std::integral_constant<bool, *>. Otherwise
* the result of a runtime comparison of t1 and t2 is directly returned.
*/
template<class T1, class T2>
constexpr auto equals(T1&& t1, T2&& t2)
{
return Imp::equals(std::forward<T1>(t1), std::forward<T2>(t2), PriorityTag<1>());
}
} // namespace Hybrid
// Implementation of integralRangeFor
namespace Imp {
template<class ST, ST begin, ST end>
struct StaticForLoop
{
template<class F, class...Args>
static void apply(F&& f, Args&&... args)
{
f(std::integral_constant<ST, begin>(), std::forward<Args>(args)...);
StaticForLoop<ST, begin+1, end>::apply(std::forward<F>(f), std::forward<Args>(args)...);
}
};
template<class ST, ST end>
struct StaticForLoop<ST, end, end>
{
template<class F, class...Args>
static void apply(F&& f, Args&&...)
{}
};
// Overload for static ranges
template<class Index, class Begin, class End, class F, class... Args,
std::enable_if_t<IsIntegralConstant<Begin>::value and IsIntegralConstant<End>::value, int> = 0>
void integralRangeFor(Begin&& begin, End&& end, F&& f, Args&&... args)
{
static const Index begin_t = begin;
static const Index end_t = end;
StaticForLoop<Index, begin_t, end_t>::apply(std::forward<F>(f), std::forward<Args>(args)...);
}
// Overload for dynamic ranges
template<class Index, class Begin, class End, class F, class... Args,
std::enable_if_t<not(IsIntegralConstant<Begin>::value and IsIntegralConstant<End>::value), int> = 0>
void integralRangeFor(Begin&& begin, End&& end, F&& f, Args&&... args)
{
for(Index i=begin; i != end; ++i)
f(i, std::forward<Args>(args)...);
}
}
/**
* \brief Hybrid for loop over integral range
*
* \tparam Index Raw type of used indices
* \tparam Begin Type of begin index
* \tparam End Type of end index
* \tparam F Type of functor containing the loop body
* \tparam Args Types of further arguments to the loop body
*
* \param begin Initial index
* \param end One past last index
* \param f Functor to call in each loop instance
* \param args Additional arguments to be passed to the functor
*
* This is a hybrid for loop that can work on statically and dynamically
* sized containers. The functor is called with index as first argument
* and all additional arguments. If begin and end are both of type
* std::integral_constant<*,*> than the loop is static with indices
* of the form std::integral_constant<Index, *>, otherwise the loop
* is dynamic with indices type Index.
*/
template<class Index, class Begin, class End, class F, class... Args>
void integralRangeFor(Begin&& begin, End&& end, F&& f, Args&&... args)
{
Imp::integralRangeFor<Index>(std::forward<Begin>(begin), std::forward<End>(end), std::forward<F>(f), std::forward<Args>(args)...);
}
// Implementation of hybridEquals
namespace Imp {
// Compute t1==t2 either statically or dynamically
template<class T1, class T2>
constexpr auto hybridEquals(const T1& t1, const T2& t2, PriorityTag<1>) -> decltype(T1::value, T2::value, std::integral_constant<bool,T1::value == T2::value>())
{ return {}; }
template<class T1, class T2>
constexpr auto hybridEquals(const T1& t1, const T2& t2, PriorityTag<0>)
{
return t1==t2;
}
} //end namespace Imp
/**
* \brief Hybrid equality comparison
*
* If both types have a static member value, the result of comparing
* these is returned as std::integral_constant<bool, *>. Otherwise
* the result of a runtime comparison of t1 and t2 is directly returned.
*/
template<class T1, class T2>
constexpr auto hybridEquals(const T1& t1, const T2& t2)
{
return Imp::hybridEquals(t1, t2, PriorityTag<1>());
}
// Implementation of hybridIf
namespace Imp {
template<class IfFunc, class ElseFunc>
constexpr void hybridIf(std::true_type, IfFunc&& ifFunc, ElseFunc&& elseFunc)
{
ifFunc([](auto&& x) { return std::forward<decltype(x)>(x);});
}
template<class IfFunc, class ElseFunc>
constexpr void hybridIf(std::false_type, IfFunc&& ifFunc, ElseFunc&& elseFunc)
{
elseFunc([](auto&& x) { return std::forward<decltype(x)>(x);});
}
template<class IfFunc, class ElseFunc>
constexpr void hybridIf(const bool& condition, IfFunc&& ifFunc, ElseFunc&& elseFunc)
{
if (condition)
ifFunc([](auto&& x) { return std::forward<decltype(x)>(x);});
else
elseFunc([](auto&& x) { return std::forward<decltype(x)>(x);});
}
} //end namespace Imp
/**
* \brief Hybrid if
*
* This will call either ifFunc or elseFunc depending
* on the condition. In any case a single argument
* will be passed to the called function. This will always
* be the indentity function. Passing an expression through
* this function will lead to lazy evaluation. This way both
* 'branches' can contain expressions that are only valid
* within this branch if the condition is a std::integral_constant<bool,*>.
*
* In order to do this, the passed functors must have a single
* argument of type auto.
*/
template<class Condition, class IfFunc, class ElseFunc>
constexpr void hybridIf(const Condition& condition, IfFunc&& ifFunc, ElseFunc&& elseFunc)
{
Imp::hybridIf(condition, std::forward<IfFunc>(ifFunc), std::forward<ElseFunc>(elseFunc));
}
/**
* \brief Hybrid if
*
* This provides a hybridIf with empty else clause.
*/
template<class Condition, class IfFunc>
constexpr void hybridIf(const Condition& condition, IfFunc&& ifFunc)
{
hybridIf(condition, std::forward<IfFunc>(ifFunc), [](auto&& i) {});
}
// Everything in the next namespace block is just used to implement StaticSize, HasStaticSize, hybridSize
namespace Imp {
// As a last resort try if there's a static constexpr size()
template<class T>
constexpr auto staticSize(const T*, const PriorityTag<0>&)
-> decltype(std::integral_constant<std::size_t,T::size()>())
{
return {};
}
// Try if tuple_size is implemented for class
template<class T>
constexpr auto staticSize(const T*, const PriorityTag<2>&)
-> decltype(std::integral_constant<std::size_t,std::tuple_size<T>::value>())
{
return {};
}
// Try if tuple_size is implemented for class
template<class T, int i>
constexpr auto staticSize(const Dune::FieldVector<T, i>*, const PriorityTag<3>&)
-> decltype(std::integral_constant<std::size_t,i>())
{
return {};
}
template<class T>
constexpr std::false_type hasStaticSize(const T* t, const PriorityTag<0>& p)
{
return {};
}
template<class T>
constexpr auto hasStaticSize(const T* t, const PriorityTag<1>& p)
-> decltype(staticSize(t ,PriorityTag<42>()), std::true_type())
{
return {};
}
}
/**
* \brief Check if type is a statically sized container
*
* \ingroup Utility
*
* Derives from std::true_type or std::false_type
*/
template<class T>
struct HasStaticSize :
public decltype(Imp::hasStaticSize((typename std::decay<T>::type*)(nullptr), PriorityTag<42>()))
{};
/**
* \brief Obtain size of statically sized container
*
* \ingroup Utility
*
* Derives from std::integral_constant<std::size_t, size>
*/
template<class T>
struct StaticSize :
public decltype(Imp::staticSize((typename std::decay<T>::type*)(nullptr), PriorityTag<42>()))
{};
/**
* \brief Hybrid size query
*
* \tparam T Type of container whose size is queried
*
* \param t Container whose size is queried
*
* This function is hybrid in the sense that it returns a statically
* encoded size, i.e., an integral_constant if possible and the
* dynamic result of the t.size() method otherwise.
*
* This is the static-size overload which returns the size i
* as std::integral_constant<std::size_t, i>.
*/
template<class T,
std::enable_if_t<HasStaticSize<T>::value, int> = 0>
constexpr auto hybridSize(const T& t)
{
return Imp::staticSize((T*)(nullptr), PriorityTag<42>());
}
/**
* \brief Hybrid size query
*
* \tparam T Type of container whose size is queried
*
* \param t Container whose size is queried
*
* This function is hybrid in the sense that it returns a statically
* encoded size, i.e., an integral_constant if possible and the
* dynamic result of the *.size() method otherwise.
*
* This is the dynamic-size overload which returns the result
* of t.size().
*/
template<class T,
std::enable_if_t<not HasStaticSize<T>::value, int> = 0>
constexpr auto hybridSize(const T& t)
{
return t.size();
}
/**
* \brief Hybrid for loop over sparse range
*/
template<class... T, class F>
void sparseRangeFor(const Dune::MultiTypeBlockVector<T...>& range, F&& f)
{
integralRangeFor<std::size_t>(Indices::_0, hybridSize(range), [&](auto&& i) {
f(range[i], i);
});
}
/**
* \brief Hybrid for loop over sparse range
*/
template<class Range, class F>
void sparseRangeFor(Range&& range, F&& f)
{
auto it = range.begin();
auto end = range.end();
for(; it!=end; ++it)
f(*it, it.index());
}
} // namespace Solvers
} // namespace Dune
#endif// DUNE_SOLVERS_COMMON_FORLOOP_HH