Skip to content
Snippets Groups Projects
Commit 65a885f0 authored by Carsten Gräser's avatar Carsten Gräser
Browse files

[cleanup] Remove Dune::Solvers::Hybrid::*

This was moved to Dune::Hybrid::* which lives in
dune/common/hybridutilities.hh
parent 874eab6c
No related branches found
No related tags found
No related merge requests found
Pipeline #
......@@ -13,392 +13,6 @@
namespace Dune {
namespace Solvers {
namespace Hybrid {
namespace Imp {
// Try if tuple_size is implemented for class
template<class T, int i>
constexpr auto size(const Dune::FieldVector<T, i>*, const PriorityTag<5>&)
-> decltype(std::integral_constant<std::size_t,i>())
{
return {};
}
// Try if we have an instance of std::integer_sequence
template<class T, T... t, class Index>
constexpr auto size(std::integer_sequence<T, t...>, PriorityTag<4>)
{
using sizeAsType = std::tuple_size<decltype(std::make_tuple(t...))>;
return std::integral_constant<std::size_t, sizeAsType::value>();
}
// Try if tuple_size is implemented for class
template<class T>
constexpr auto size(const T*, const PriorityTag<3>&)
-> decltype(std::integral_constant<std::size_t,std::tuple_size<T>::value>())
{
return {};
}
// Try if there's a static constexpr size()
template<class T>
constexpr auto size(const T*, const PriorityTag<1>&)
-> decltype(std::integral_constant<std::size_t,T::size()>())
{
return {};
}
// As a last resort try if there's a static constexpr size()
template<class T>
constexpr auto size(const T* t, const PriorityTag<0>&)
{
return t->size();
}
} // namespace Imp
/**
* \brief Size query
*
* \tparam T Type of container whose size is queried
*
* \param t Container whose size is queried
*
* \return Size of t
*
* If the size of t is known at compile type the size is
* returned as std::integral_constant<std::size_t, size>.
* Otherwise the result of t.size() is returned.
*
* Supported types for deriving the size at compile time are:
* * instances of std::integer_sequence
* * all types std::tuple_size is implemented for
* * all typed that have a static method ::size()
* * instances of Dune::FieldVector
*/
template<class T>
constexpr auto size(const T& t)
{
return Imp::size(&t, PriorityTag<42>());
}
namespace Imp {
template<class Container, class Index,
std::enable_if_t<IsTuple<std::decay_t<Container>>::value, int> = 0>
constexpr decltype(auto) elementAt(Container&& c, Index&&, PriorityTag<2>)
{
return std::get<Index::value>(c);
}
template<class T, T... t, class Index>
constexpr decltype(auto) elementAt(std::integer_sequence<T, t...> c, Index&&, PriorityTag<1>)
{
return std::get<Index::value>(std::make_tuple(std::integral_constant<T, t>()...));
}
template<class Container, class Index>
constexpr decltype(auto) elementAt(Container&& c, Index&& i, PriorityTag<0>)
{
return c[i];
}
} // namespace Imp
/**
* \brief Get element at given position from container
*
* \tparam Container Type of given container
* \tparam Index Type of index
*
* \param c Given container
* \param i Index of element to obtain
*
* \return The element at position i, i.e. c[i]
*
* If this returns the i-th entry of c. It supports the following
* containers
* * Containers providing dynamic access via operator[]
* * Heterogenous containers providing access via operator[](integral_constant<...>)
* * std::tuple<...>
* * std::integer_sequence
*/
template<class Container, class Index>
constexpr decltype(auto) elementAt(Container&& c, Index&& i)
{
return Imp::elementAt(std::forward<Container>(c), std::forward<Index>(i), PriorityTag<42>());
}
namespace Imp {
template<class Begin, class End>
class StaticIntegralRange
{
public:
template<std::size_t i>
constexpr auto operator[](Dune::index_constant<i>) const
{
return Dune::index_constant<Begin::value+i>();
}
static constexpr auto size()
{
return std::integral_constant<typename Begin::value_type, End::value - Begin::value>();
}
};
template<class T>
class DynamicIntegralRange
{
public:
constexpr DynamicIntegralRange(const T& begin, const T& end):
begin_(begin),
end_(end)
{}
constexpr auto size() const
{
return end_ - begin_;
}
constexpr T operator[](const T&i) const
{ return begin_+i; }
private:
T begin_;
T end_;
};
template<class Begin, class End,
std::enable_if_t<IsIntegralConstant<Begin>::value and IsIntegralConstant<End>::value, int> = 0>
constexpr auto integralRange(const Begin& begin, const End& end, const PriorityTag<1>&)
{
static_assert(Begin::value <= End::value, "You cannot create an integralRange where end<begin");
return Imp::StaticIntegralRange<Begin,End>();
}
template<class Begin, class End>
constexpr auto integralRange(const Begin& begin, const End& end, const PriorityTag<0>&)
{
assert(begin <= end);
return Imp::DynamicIntegralRange<End>(begin, end);
}
} // namespace Imp
/**
* \brief Create an integral range
*
* \tparam Begin Type of begin entry of the range
* \tparam End Type of end entry of the range
*
* \param begin First entry of the range
* \param end One past the last entry of the range
*
* \returns An object encoding the given range
*
* If Begin and End are both instances of type
* std::integral_constant, the returnes range
* encodes begin and end statically.
*/
template<class Begin, class End>
constexpr auto integralRange(const Begin& begin, const End& end)
{
return Imp::integralRange(begin, end, PriorityTag<42>());
}
/**
* \brief Create an integral range starting from 0
*
* \tparam End Type of end entry of the range
*
* \param end One past the last entry of the range
*
* \returns An object encoding the given range
*
* This is a short cut for integralRange(_0, end).
*/
template<class End>
constexpr auto integralRange(const End& end)
{
return Imp::integralRange(Dune::Indices::_0, end, PriorityTag<42>());
}
namespace Imp {
template<class T>
void evaluateFoldExpression(std::initializer_list<T>&&)
{}
template<class Range, class F, class Index, Index... i>
constexpr void forEachIndex(Range&& range, F&& f, std::integer_sequence<Index, i...>)
{
evaluateFoldExpression({(f(Hybrid::elementAt(range, std::integral_constant<Index,i>())), 0)...});
}
template<class Range, class F,
std::enable_if_t<IsIntegralConstant<decltype(Hybrid::size(std::declval<Range>()))>::value, int> = 0>
constexpr void forEach(Range&& range, F&& f, PriorityTag<1>)
{
auto size = Hybrid::size(range);
auto indices = std::make_index_sequence<size>();
forEachIndex(std::forward<Range>(range), std::forward<F>(f), indices);
}
template<class Range, class F>
constexpr void forEach(Range&& range, F&& f, PriorityTag<0>)
{
for(std::size_t i=0; i<range.size(); ++i)
f(range[i]);
// \ToDo Why does the following not compile?
// for(auto e : range)
// f(e);
}
} // namespace Imp
/**
* \brief Range based for loop
*
* \tparam Range Type of given range
* \tparam F Type of given predicate
*
* \param range The range to loop over
* \param f A predicate that will be called with each entry of the range
*
* This supports looping over the following ranges
* * ranges obtained from integralRange()
* * all ranges that provide Hybrid::size() and Hybrid::elementAt()
*
* This especially included instances of std::integer_sequence,
* std::tuple, Dune::TupleVector, and Dune::MultiTypeBlockVector.
*/
template<class Range, class F>
constexpr void forEach(Range&& range, F&& f)
{
Imp::forEach(std::forward<Range>(range), std::forward<F>(f), PriorityTag<42>());
}
namespace Imp {
template<class IfFunc, class ElseFunc>
constexpr void ifElse(std::true_type, IfFunc&& ifFunc, ElseFunc&& elseFunc)
{
ifFunc([](auto&& x) -> decltype(auto) { return std::forward<decltype(x)>(x);});
}
template<class IfFunc, class ElseFunc>
constexpr void ifElse(std::false_type, IfFunc&& ifFunc, ElseFunc&& elseFunc)
{
elseFunc([](auto&& x) -> decltype(auto) { return std::forward<decltype(x)>(x);});
}
template<class IfFunc, class ElseFunc>
constexpr void ifElse(const bool& condition, IfFunc&& ifFunc, ElseFunc&& elseFunc)
{
if (condition)
ifFunc([](auto&& x) -> decltype(auto) { return std::forward<decltype(x)>(x);});
else
elseFunc([](auto&& x) -> decltype(auto) { return std::forward<decltype(x)>(x);});
}
} // namespace Imp
/**
* \brief A conditional expression
*
* This will call either ifFunc or elseFunc depending
* on the condition. In any case a single argument
* will be passed to the called function. This will always
* be the indentity function. Passing an expression through
* this function will lead to lazy evaluation. This way both
* 'branches' can contain expressions that are only valid
* within this branch if the condition is a std::integral_constant<bool,*>.
*
* In order to do this, the passed functors must have a single
* argument of type auto.
*
* Due to the lazy evaluation mechanism and support for
* std::integral_constant<bool,*> this allows to emulate
* a static if statement.
*/
template<class Condition, class IfFunc, class ElseFunc>
constexpr void ifElse(const Condition& condition, IfFunc&& ifFunc, ElseFunc&& elseFunc)
{
Imp::ifElse(condition, std::forward<IfFunc>(ifFunc), std::forward<ElseFunc>(elseFunc));
}
/**
* \brief A conditional expression
*
* This provides an ifElse conditional with empty else clause.
*/
template<class Condition, class IfFunc>
constexpr void ifElse(const Condition& condition, IfFunc&& ifFunc)
{
ifElse(condition, std::forward<IfFunc>(ifFunc), [](auto&& i) {});
}
namespace Imp {
template<class T1, class T2>
constexpr auto equals(const T1& t1, const T2& t2, PriorityTag<1>) -> decltype(T1::value, T2::value, std::integral_constant<bool,T1::value == T2::value>())
{ return {}; }
template<class T1, class T2>
constexpr auto equals(const T1& t1, const T2& t2, PriorityTag<0>)
{
return t1==t2;
}
} // namespace Imp
/**
* \brief Equality comparison
*
* If both types have a static member value, the result of comparing
* these is returned as std::integral_constant<bool, *>. Otherwise
* the result of a runtime comparison of t1 and t2 is directly returned.
*/
template<class T1, class T2>
constexpr auto equals(T1&& t1, T2&& t2)
{
return Imp::equals(std::forward<T1>(t1), std::forward<T2>(t2), PriorityTag<1>());
}
} // namespace Hybrid
// Implementation of integralRangeFor
namespace Imp {
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment