Select Git revision
assemblers.hh
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
oop_ciss_plots.nb 175.40 KiB
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 0, 0]
NotebookDataLength[ 179606, 3796]
NotebookOptionsPosition[ 176417, 3729]
NotebookOutlinePosition[ 176864, 3746]
CellTagsIndexPosition[ 176821, 3743]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["OOP CISS Rotation of the initial density matrix", "Title",
CellChangeTimes->{{3.914311699624792*^9, 3.9143117041847153`*^9}, {
3.9143117554887047`*^9, 3.914311784171706*^9}, {3.91440789704177*^9,
3.914407916825613*^9}, {3.915077245485093*^9, 3.915077266723887*^9}, {
3.9150826619804087`*^9,
3.915082736084443*^9}},ExpressionUUID->"bb41c43f-e470-4d10-9fa6-\
596602959a8a"],
Cell[CellGroupData[{
Cell["Utilities", "Section",
CellChangeTimes->{{3.9140467501507998`*^9, 3.914046753070725*^9}, {
3.914046817262865*^9, 3.914046818374938*^9}, 3.914311774730667*^9,
3.9143907688025827`*^9,
3.914407934324038*^9},ExpressionUUID->"df6c81dc-2e23-4c97-ab9d-\
3affe9d5ec54"],
Cell[CellGroupData[{
Cell["Spin operators (product basis)", "Subsection",
CellChangeTimes->{{3.91404682590431*^9, 3.914046845830752*^9},
3.914311774730754*^9, {3.914311816792757*^9, 3.914311826512706*^9},
3.914390768802659*^9, 3.914407934324171*^9, {3.914492176443132*^9,
3.914492186035274*^9}},ExpressionUUID->"fbee9677-a13b-4e44-9619-\
dcbfd673cc4f"],
Cell[BoxData[{
RowBox[{
RowBox[{"sx", " ", "=", " ",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", " ", "1"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"1", ",", " ", "0"}], "}"}]}], "}"}], "/", "2"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"sy", " ", "=", " ",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", " ",
RowBox[{"-", "I"}]}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"I", ",", " ", "0"}], "}"}]}], "}"}], "/", "2"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"sz", " ", "=", " ",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", " ", "0"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"0", ",", " ",
RowBox[{"-", "1"}]}], "}"}]}], "}"}], "/", "2"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ee2x2", " ", "=", " ",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", " ", "0"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"0", ",", " ", "1"}], "}"}]}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"zz2x2", " ", "=", " ",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", " ", "0"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"0", ",", " ", "0"}], "}"}]}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ee", "=",
RowBox[{
RowBox[{
RowBox[{"1", "/", "2"}], "*",
RowBox[{"TensorProduct", "[",
RowBox[{"ee2x2", ",", " ", "ee2x2"}], "]"}]}], "//", "ArrayFlatten"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"sxa", "=",
RowBox[{
RowBox[{"TensorProduct", "[",
RowBox[{"sx", ",", " ", "ee2x2"}], "]"}], "//", "ArrayFlatten"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"sya", "=",
RowBox[{
RowBox[{"TensorProduct", "[",
RowBox[{"sy", ",", " ", "ee2x2"}], "]"}], "//", "ArrayFlatten"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"sza", "=",
RowBox[{
RowBox[{"TensorProduct", "[",
RowBox[{"sz", ",", " ", "ee2x2"}], "]"}], "//", "ArrayFlatten"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"sxb", "=",
RowBox[{
RowBox[{"TensorProduct", "[",
RowBox[{"ee2x2", ",", " ", "sx"}], "]"}], "//", "ArrayFlatten"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"syb", "=",
RowBox[{
RowBox[{"TensorProduct", "[",
RowBox[{"ee2x2", ",", " ", "sy"}], "]"}], "//", "ArrayFlatten"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"szb", "=",
RowBox[{
RowBox[{"TensorProduct", "[",
RowBox[{"ee2x2", ",", " ", "sz"}], "]"}], "//", "ArrayFlatten"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"sxx", "=",
RowBox[{
RowBox[{"2", "*",
RowBox[{"TensorProduct", "[",
RowBox[{"sx", ",", " ", "sx"}], "]"}]}], "//", "ArrayFlatten"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"sxy", "=",
RowBox[{
RowBox[{"2", "*",
RowBox[{"TensorProduct", "[",
RowBox[{"sx", ",", " ", "sy"}], "]"}]}], "//", "ArrayFlatten"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"sxz", "=",
RowBox[{
RowBox[{"2", "*",
RowBox[{"TensorProduct", "[",
RowBox[{"sx", ",", " ", "sz"}], "]"}]}], "//", "ArrayFlatten"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"syx", "=",
RowBox[{
RowBox[{"2", "*",
RowBox[{"TensorProduct", "[",
RowBox[{"sy", ",", " ", "sx"}], "]"}]}], "//", "ArrayFlatten"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"syy", "=",
RowBox[{
RowBox[{"2", "*",
RowBox[{"TensorProduct", "[",
RowBox[{"sy", ",", " ", "sy"}], "]"}]}], "//", "ArrayFlatten"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"syz", "=",
RowBox[{
RowBox[{"2", "*",
RowBox[{"TensorProduct", "[",
RowBox[{"sy", ",", " ", "sz"}], "]"}]}], "//", "ArrayFlatten"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"szx", "=",
RowBox[{
RowBox[{"2", "*",
RowBox[{"TensorProduct", "[",
RowBox[{"sz", ",", " ", "sx"}], "]"}]}], "//", "ArrayFlatten"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"szy", "=",
RowBox[{
RowBox[{"2", "*",
RowBox[{"TensorProduct", "[",
RowBox[{"sz", ",", " ", "sy"}], "]"}]}], "//", "ArrayFlatten"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"szz", "=",
RowBox[{
RowBox[{"2", "*",
RowBox[{"TensorProduct", "[",
RowBox[{"sz", ",", " ", "sz"}], "]"}]}], "//", "ArrayFlatten"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"zz", " ", "=", " ",
RowBox[{
RowBox[{"TensorProduct", "[",
RowBox[{"zz2x2", ",", " ", "zz2x2"}], "]"}], "//", "ArrayFlatten"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"productBasis", " ", "=", " ",
RowBox[{"{",
RowBox[{
"ee", ",", " ", "sxa", ",", " ", "sya", ",", " ", "sza", ",", " ", "sxb",
",", " ", "syb", ",", " ", "szb", ",", " ", "sxx", ",", "sxy", ",",
"sxz", ",", "syx", ",", "syy", ",", "syz", ",", " ", "szx", ",", " ",
"szy", ",", " ", "szz"}], "}"}]}], ";"}], "\n",
RowBox[{
RowBox[{"productBasisAlpha", " ", "=", " ",
RowBox[{"{",
RowBox[{
"\"\<II/2\>\"", ",", " ", "\"\<Sxa\>\"", ",", "\"\<Sya\>\"", ",",
"\"\<Sza\>\"", ",", "\"\<Sxb\>\"", ",", "\"\<Syb\>\"", ",",
"\"\<Szb\>\"", ",", "\"\<Sxx\>\"", ",", "\"\<Sxy\>\"", ",",
"\"\<Sxz\>\"", ",", "\"\<Syx\>\"", ",", "\"\<Syy\>\"", ",",
"\"\<Syz\>\"", ",", "\"\<Szx\>\"", ",", "\"\<Szy\>\"", ",",
"\"\<Szz\>\""}], "}"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.913979250751594*^9, 3.913979297040536*^9}, {
3.913979448535398*^9, 3.9139794505593443`*^9}, {3.9139797490872726`*^9,
3.9139797599352303`*^9}, {3.9140455660448427`*^9,
3.9140456039740562`*^9}, {3.914045815449317*^9, 3.91404585876832*^9},
3.9140468943944283`*^9, 3.9143117747309017`*^9, {3.914311836793522*^9,
3.914311872833024*^9}, {3.914311906241247*^9, 3.914311907761244*^9}, {
3.914311950617594*^9, 3.914312199945692*^9}, {3.914312242033663*^9,
3.9143123362736807`*^9}, {3.914312837585828*^9, 3.914312839425907*^9}, {
3.914320113449356*^9, 3.914320114906459*^9}, 3.914384657502391*^9, {
3.914390576456943*^9, 3.914390577968225*^9}, 3.914390768802987*^9,
3.914407934324538*^9, {3.914408510141594*^9, 3.914408653707704*^9}, {
3.914409235207014*^9, 3.914409246266473*^9}, {3.9144093117647448`*^9,
3.914409327666987*^9}, {3.9144920408221827`*^9, 3.9144920452767572`*^9}, {
3.914664686331321*^9, 3.914664722935767*^9}, {3.914664764364892*^9,
3.9146648018091307`*^9}, {3.914664841170643*^9, 3.914664851074287*^9}, {
3.914990036483665*^9, 3.914990045667059*^9}, {3.916203320167837*^9,
3.916203343719863*^9}},
CellLabel->"In[39]:=",ExpressionUUID->"c41d3c71-ee28-4bc6-9e85-2bd1421c5b58"]
}, Open ]],
Cell[CellGroupData[{
Cell["Functions", "Subsection",
CellChangeTimes->{{3.914492049626965*^9,
3.914492057507057*^9}},ExpressionUUID->"72667dd0-4e61-4cc6-a18d-\
8acd56165994"],
Cell[BoxData[{
RowBox[{
RowBox[{"commutator", "[",
RowBox[{"a_", ",", " ", "b_"}], "]"}], " ", ":=", " ",
RowBox[{
RowBox[{"a", ".", "b"}], " ", "-", " ",
RowBox[{"b", ".", "a"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"propagator", "[",
RowBox[{"a_", ",", " ", "b_", ",", " ", "\[Xi]_"}], "]"}], " ", ":=", " ",
RowBox[{"TrigReduce", "[",
RowBox[{"ExpToTrig", "[",
RowBox[{
RowBox[{"MatrixExp", "[",
RowBox[{
RowBox[{"-", "I"}], "*", "\[Xi]", "*", "b"}], "]"}], ".", "a", ".",
RowBox[{"MatrixExp", "[",
RowBox[{"I", "*", "\[Xi]", "*", "b"}], "]"}]}], "]"}], "]"}]}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"projectionScalarProd", "[",
RowBox[{"a_", ",", " ", "basis_"}], "]"}], " ", ":=", " ",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"out", " ", "=", " ",
RowBox[{"Table", "[",
RowBox[{"0", ",", " ",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"Length", "[", "basis", "]"}]}], "}"}]}], "]"}]}]}], "}"}],
",", " ",
RowBox[{
RowBox[{"For", "[",
RowBox[{
RowBox[{"i", " ", "=", " ", "1"}], ",", " ",
RowBox[{"i", " ", "<=", " ",
RowBox[{"Length", "[", "basis", "]"}]}], ",", " ",
RowBox[{"i", "++"}], ",", " ",
RowBox[{
RowBox[{"out", "[",
RowBox[{"[", "i", "]"}], "]"}], " ", "=", " ",
RowBox[{
RowBox[{"basis", "[",
RowBox[{"[", "i", "]"}], "]"}], ".", "a"}]}]}], "]"}], ";", " ",
"\[IndentingNewLine]", "out"}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"projectionTrace", "[",
RowBox[{"a_", ",", " ", "basis_"}], "]"}], " ", ":=", " ",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"out", " ", "=", " ",
RowBox[{"Table", "[",
RowBox[{"0", ",", " ",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"Length", "[", "basis", "]"}]}], "}"}]}], "]"}]}]}], "}"}],
",", " ",
RowBox[{
RowBox[{"For", "[",
RowBox[{
RowBox[{"i", " ", "=", " ", "1"}], ",", " ",
RowBox[{"i", " ", "<=", " ",
RowBox[{"Length", "[", "basis", "]"}]}], ",", " ",
RowBox[{"i", "++"}], ",", " ",
RowBox[{
RowBox[{"out", "[",
RowBox[{"[", "i", "]"}], "]"}], " ", "=", " ",
RowBox[{"Tr", "[",
RowBox[{
RowBox[{"basis", "[",
RowBox[{"[", "i", "]"}], "]"}], ".", "a"}], "]"}]}]}], "]"}], ";",
" ", "\[IndentingNewLine]", "out"}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"basisProject", "[", "a_", "]"}], " ", ":=", " ",
RowBox[{"projectionTrace", "[",
RowBox[{"a", ",", " ", "productBasis"}], "]"}]}], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"eprSignal", " ", "does", " ", "not", " ", "take", " ", "into", " ",
"consideration", " ", "the", " ", "proportionality", " ", "factor", " ",
"\"\<-g_e mu_B\>\""}], " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"basisProjectAlpha", "[", "a_", "]"}], " ", ":=",
RowBox[{"Simplify", "[", " ",
RowBox[{
RowBox[{"basisProject", "[", "a", "]"}], ".", "productBasisAlpha"}],
"]"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.913979250751594*^9, 3.913979297040536*^9}, {
3.913979448535398*^9, 3.9139794505593443`*^9}, {3.9139797490872726`*^9,
3.9139797599352303`*^9}, {3.9140455660448427`*^9,
3.9140456039740562`*^9}, {3.914045815449317*^9, 3.914045873991543*^9}, {
3.914045998031766*^9, 3.914045999487475*^9}, {3.914046043248569*^9,
3.9140460444794283`*^9}, {3.9140462869133883`*^9, 3.914046316656398*^9}, {
3.914046880240789*^9, 3.914046894394932*^9}, {3.9140470968408203`*^9,
3.914047097000463*^9}, {3.9140471298403*^9, 3.914047135607019*^9}, {
3.914052658041665*^9, 3.9140526627849483`*^9}, {3.914052694521141*^9,
3.914052699544218*^9}, 3.9143117747310457`*^9, {3.914312385107686*^9,
3.914312454987467*^9}, {3.914312577803604*^9, 3.914312586683424*^9}, {
3.914312617944931*^9, 3.914312660179669*^9}, {3.914312742171968*^9,
3.914312748131661*^9}, {3.914312939044117*^9, 3.9143129435877533`*^9}, {
3.914313130914446*^9, 3.914313142033545*^9}, {3.914313488219523*^9,
3.91431348983517*^9}, 3.914313707267811*^9, {3.9143147793579206`*^9,
3.914314783811417*^9}, {3.91431492168989*^9, 3.914314955329571*^9}, {
3.9143205124808407`*^9, 3.914320534586583*^9}, {3.914321475081019*^9,
3.914321503232678*^9}, {3.914321541664485*^9, 3.9143215898808537`*^9}, {
3.9143217856413813`*^9, 3.9143218530887938`*^9}, {3.914323089880479*^9,
3.9143231335286818`*^9}, 3.9143907688039722`*^9, {3.914398827460499*^9,
3.914398831460205*^9}, 3.9144079343247747`*^9, {3.914408060003405*^9,
3.914408064034966*^9}, {3.9144082130546417`*^9, 3.914408242402445*^9}, {
3.914408283597144*^9, 3.914408326005582*^9}, {3.914408367674637*^9,
3.9144084782215557`*^9}, {3.914408666048129*^9, 3.9144086669256163`*^9}, {
3.914408713685326*^9, 3.9144087169973097`*^9}, {3.914409093680798*^9,
3.9144091352276163`*^9}, {3.914409339346715*^9, 3.9144093491898193`*^9}, {
3.914409640824751*^9, 3.914409663549906*^9}, {3.914411179967836*^9,
3.914411198044911*^9}, {3.9144122053687763`*^9, 3.9144122194698668`*^9}, {
3.914491339959771*^9, 3.914491381142777*^9}, {3.9144920037827263`*^9,
3.9144920769424047`*^9}, {3.914492127622266*^9, 3.91449213783605*^9}, {
3.914556569427844*^9, 3.914556570668991*^9}, {3.9146647082992363`*^9,
3.91466472293882*^9}, 3.914664764368381*^9, {3.914665232654337*^9,
3.914665237818141*^9}, {3.9146693273879213`*^9, 3.914669329235523*^9}, {
3.914904245669544*^9, 3.9149042460142317`*^9}},
CellLabel->"In[63]:=",ExpressionUUID->"75e85bec-ac70-421b-a913-e5aa75ccda82"]
}, Open ]],
Cell[CellGroupData[{
Cell["States and density matrices", "Subsection",
CellChangeTimes->{{3.914492212011105*^9, 3.9144922172829447`*^9}, {
3.9161990961411543`*^9,
3.916199116157524*^9}},ExpressionUUID->"e8465a77-e541-4dfd-bb01-\
d24813cf3807"],
Cell[BoxData[{
RowBox[{
RowBox[{"tripletStatePlus", " ", "=", " ",
RowBox[{"{",
RowBox[{"1", ",", " ", "0", ",", " ", "0", ",", " ", "0"}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"tripletState0", "=", " ",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", " ", "1", ",", " ", "1", ",", " ", "0"}], "}"}], "/",
RowBox[{"Sqrt", "[", "2", "]"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"singletState", " ", "=", " ",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", " ", "1", ",", " ", "1", ",", " ", "0"}], "}"}], "/",
RowBox[{"Sqrt", "[", "2", "]"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"tripletStateMinus", " ", "=", " ",
RowBox[{"{",
RowBox[{"0", ",", " ", "0", ",", " ", "0", ",", " ", "1"}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"udState", " ", "=", " ",
RowBox[{"{",
RowBox[{"0", ",", " ", "1", ",", " ", "0", ",", " ", "0"}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"duState", " ", "=", " ",
RowBox[{"{",
RowBox[{"0", ",", " ", "0", ",", " ", "1", ",", " ", "0"}], "}"}]}],
";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Sigma]Tp", " ", "=", " ",
RowBox[{"TensorProduct", "[",
RowBox[{"tripletStatePlus", ",", " ", "tripletStatePlus"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Sigma]Tm", " ", "=", " ",
RowBox[{"TensorProduct", "[",
RowBox[{"tripletStateMinus", ",", " ", "tripletStateMinus"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Sigma]T0", " ", "=", " ",
RowBox[{"TensorProduct", "[",
RowBox[{"tripletState0", ",", " ", "tripletState0"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Sigma]S0", " ", "=", " ",
RowBox[{"TensorProduct", "[",
RowBox[{"singletState", ",", " ", "singletState"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Sigma]ud", " ", "=", " ",
RowBox[{"TensorProduct", "[",
RowBox[{"udState", ",", " ", "udState"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Sigma]du", " ", "=", " ",
RowBox[{"TensorProduct", "[",
RowBox[{"duState", ",", " ", "duState"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Sigma]du", " ", "//", " ", "basisProjectAlpha"}],
";"}]}], "Input",
CellChangeTimes->{{3.9144898199798098`*^9, 3.9144898508283463`*^9}, {
3.9144900958460007`*^9, 3.914490115996195*^9}, {3.914490166236169*^9,
3.914490187764154*^9}, {3.9144902251962557`*^9, 3.914490268731421*^9}, {
3.914490303226717*^9, 3.914490335027492*^9}, {3.914490449534762*^9,
3.9144906649014053`*^9}, {3.914490733174185*^9, 3.9144907358850718`*^9}, {
3.9144909331340857`*^9, 3.9144909543641367`*^9}, {3.9144909951831417`*^9,
3.914491020926239*^9}, {3.914491078315731*^9, 3.914491217291029*^9}, {
3.91449126385229*^9, 3.9144913183796463`*^9}, {3.9144913858778963`*^9,
3.9144913867964993`*^9}, {3.914491524597599*^9, 3.914491735564732*^9}, {
3.9144917741319*^9, 3.914491798979287*^9}, 3.9144918317078333`*^9, {
3.914491870331946*^9, 3.914491894476125*^9}, {3.9144919253078623`*^9,
3.914491981980496*^9}, {3.91449208771076*^9, 3.914492090596633*^9}, {
3.914492324668494*^9, 3.9144923593186693`*^9}, {3.914492402500966*^9,
3.914492468948224*^9}, {3.9144925803328667`*^9, 3.914492582644146*^9}, {
3.914492729276569*^9, 3.914492905253446*^9}, {3.914493651805101*^9,
3.914493673636791*^9}, 3.9144938622051773`*^9, {3.9145610849250793`*^9,
3.914561099140614*^9}, {3.914928054480741*^9, 3.914928060160678*^9}, {
3.914928185056425*^9, 3.914928198000663*^9}, {3.9149315548321867`*^9,
3.914931560577272*^9}, {3.914931590752198*^9, 3.914931637415353*^9}, {
3.914931733513541*^9, 3.914931830631445*^9}, {3.914989927739451*^9,
3.9149899823157682`*^9}, 3.915006016262205*^9, {3.915006159251061*^9,
3.9150062852189283`*^9}, {3.915006382628858*^9, 3.915006534699786*^9}, {
3.915006565428484*^9, 3.9150065702908897`*^9}, {3.915006787488841*^9,
3.915006795379196*^9}, {3.915007079147399*^9, 3.91500709211659*^9}, {
3.915007137139215*^9, 3.915007138738654*^9}, {3.915077280552112*^9,
3.91507728794174*^9}, {3.915617726574294*^9, 3.915617726735032*^9}, {
3.916199487544379*^9, 3.9161996351581697`*^9}, {3.916817086872414*^9,
3.916817104752458*^9}, 3.916993602287758*^9},
CellLabel->"In[69]:=",ExpressionUUID->"1ea62398-7f4d-44c3-8434-d71c110d66c1"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["OOP-ESEEM", "Section",
CellChangeTimes->{{3.914928235958913*^9, 3.9149282438227577`*^9}, {
3.9169935961902227`*^9,
3.916993598822319*^9}},ExpressionUUID->"7f67e21e-e3fa-4d7d-86e8-\
5118b3890d45"],
Cell[CellGroupData[{
Cell["Definitions", "Subsection",
CellChangeTimes->{{3.9170891479429293`*^9,
3.91708915190077*^9}},ExpressionUUID->"8fba53ba-2aac-4b5f-a03c-\
b3cbea2f5663"],
Cell[BoxData[{
RowBox[{"Clear", "[", "d\[CapitalOmega]", "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"rDA", " ", "=", " ", "2.48"}], ";"}], " ",
RowBox[{"(*", " ", "nm", " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dd", " ", "=", " ",
RowBox[{
RowBox[{"-", "52"}], "/",
RowBox[{"rDA", "^", "3"}]}]}], ";", " ",
RowBox[{"(*", " ",
RowBox[{"MHz", " ",
RowBox[{"nm", "^", "3"}]}], "*)"}], "\[IndentingNewLine]",
RowBox[{"J", " ", "=", " ",
RowBox[{"-", " ", "0.2"}]}], ";",
RowBox[{"(*", " ", "MHz", " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"\[Mu]B", " ", "=", " ",
RowBox[{"9.27", "*",
RowBox[{"10", "^",
RowBox[{"(",
RowBox[{"-", "24"}], ")"}]}]}]}], ";", " ",
RowBox[{"(*", " ",
RowBox[{"Joule", " ", "/", " ", "T"}], "*)"}], "\[IndentingNewLine]",
RowBox[{"hbar", " ", "=", " ",
RowBox[{"1.05", "*",
RowBox[{"10", "^",
RowBox[{"(",
RowBox[{"-", "34"}], ")"}]}]}]}], ";", " ",
RowBox[{"(*", " ",
RowBox[{"Joule", " ", "Hz"}], "*)"}], "\[IndentingNewLine]",
RowBox[{"B0", " ", "=", " ", "0.35"}], ";", " ",
RowBox[{"(*", " ", "T", " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"muBh", " ", "=", " ",
RowBox[{
RowBox[{"(",
RowBox[{"\[Mu]B", " ",
RowBox[{"B0", "/", "hbar"}]}], ")"}],
RowBox[{"10", "^",
RowBox[{"(",
RowBox[{"-", "6"}], ")"}]}]}]}], ";", " ",
RowBox[{"(*", " ", "MHz", " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"g1", " ", "=", " ",
RowBox[{"{",
RowBox[{"2.0034", ",", "2.0041", ",", "2.0043"}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"g2", " ", "=", " ",
RowBox[{"{",
RowBox[{"2.0031", ",", " ", "2.0044", ",", " ", "2.0046"}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"nVersor", "[",
RowBox[{"\[Theta]_", ",", " ", "\[Phi]_"}], "]"}], " ", "=", " ",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"Sin", "[", "\[Theta]", "]"}],
RowBox[{"Cos", "[", "\[Phi]", "]"}]}], ",", " ",
RowBox[{
RowBox[{"Sin", "[", "\[Theta]", "]"}],
RowBox[{"Sin", "[", "\[Phi]", "]"}]}], ",", " ",
RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"d\[CapitalOmega]", "[",
RowBox[{
"g1_", ",", " ", "g2_", ",", " ", "\[Theta]_", ",", " ", "\[Phi]_"}],
"]"}], " ", ":=", " ",
RowBox[{
RowBox[{"(",
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"(",
RowBox[{"g1", "^", "2"}], ")"}], ".",
RowBox[{"(",
RowBox[{
RowBox[{"nVersor", "[",
RowBox[{"\[Theta]", ",", " ", "\[Phi]"}], "]"}], "^", "2"}],
")"}]}]], " ", "-", " ",
SqrtBox[
RowBox[{
RowBox[{"(",
RowBox[{"g2", "^", "2"}], ")"}], ".",
RowBox[{"(",
RowBox[{
RowBox[{"nVersor", "[",
RowBox[{"\[Theta]", ",", " ", "\[Phi]"}], "]"}], "^", "2"}],
")"}]}]]}], ")"}], "*", "muBh"}]}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Tau]", " ", "=", " ", "2"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"dmJUd", " ", "=", " ",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "0", "]"}], "^", "2"}]}]}], ")"}]}], " ", "-",
" ", "J"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"d\[CapitalOmega]0", " ", "=", " ",
RowBox[{"0.0003", " ", "muBh"}]}], ";", " ",
RowBox[{"(*", " ",
RowBox[{
RowBox[{
"d\[CapitalOmega]", " ", "for", " ", "single", " ", "orientation", " ",
"\[Theta]"}], " ", "=", " ", "0"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"\[Xi]Ud", " ", "=", " ",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "0", "]"}], "^", "2"}]}]}], ")"}]}], " ", "+",
" ",
RowBox[{"2", "J"}]}], ")"}], "/", "d\[CapitalOmega]0"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"xSignalUd", "[",
RowBox[{"\[Beta]_", ",", " ", "\[Xi]_"}], "]"}], " ", ":=", " ",
RowBox[{
RowBox[{"1", "/", "2"}],
RowBox[{"Sin", "[",
RowBox[{"2", " ", "dmJUd", " ", "\[Tau]"}], "]"}],
SuperscriptBox[
RowBox[{"Cos", "[", "\[Xi]", "]"}], "2"],
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"Sin", "[", "\[Beta]", "]"}],
RowBox[{"Sin", "[",
RowBox[{"2", "\[Xi]"}], "]"}]}], "-",
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"2", "\[Beta]"}], "]"}],
RowBox[{
RowBox[{"(",
RowBox[{"2", "+",
RowBox[{"Sin", "[",
RowBox[{"2", "\[Xi]"}], "]"}]}], ")"}], "/", "2"}]}]}], ")"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"xSignalS0", "[",
RowBox[{"\[Beta]_", ",", " ", "\[Xi]_"}], "]"}], " ", ":=", " ",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "/", "2"}],
RowBox[{"Sin", "[",
RowBox[{"2", " ", "dmJUd", " ", "\[Tau]"}], "]"}],
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"1", "/", "2"}],
RowBox[{"Sin", "[", "\[Beta]", "]"}],
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"2", "\[Xi]"}], "]"}], "^", "2"}]}], "+",
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"2", "\[Beta]"}], "]"}],
RowBox[{
RowBox[{"Cos", "[", "\[Xi]", "]"}], "^", "4"}]}]}], ")"}]}]}],
";"}]}], "Input",
CellChangeTimes->{{3.9163937302684803`*^9, 3.916393789539342*^9}, {
3.916395457000986*^9, 3.916395666472385*^9}, {3.916395737945644*^9,
3.916395897386197*^9}, {3.916395945688806*^9, 3.916395978096415*^9}, {
3.916396055721607*^9, 3.916396056113295*^9}, {3.916396089539307*^9,
3.916396102855833*^9}, {3.916396400469493*^9, 3.9163964404088306`*^9},
3.916396496024024*^9, 3.916396892306131*^9, {3.9163970212385283`*^9,
3.9163970233346863`*^9}, {3.916397155793157*^9, 3.916397185095731*^9}, {
3.916397223665463*^9, 3.916397223927697*^9}, {3.916397259064118*^9,
3.916397260088785*^9}, {3.916399005583267*^9, 3.916399008724667*^9}, {
3.9163990408465652`*^9, 3.916399048264076*^9}, {3.916399091964438*^9,
3.91639925496462*^9}, {3.916399336390561*^9, 3.916399337476449*^9}, {
3.916399564900099*^9, 3.9163996196361322`*^9}, {3.916399650332074*^9,
3.916399696524806*^9}, {3.916399729741062*^9, 3.9163997323889313`*^9}, {
3.916399861733108*^9, 3.91639986193314*^9}, {3.916459339998846*^9,
3.9164594261381273`*^9}, {3.916459481687921*^9, 3.916459920088002*^9}, {
3.916459957366891*^9, 3.916459965662881*^9}, {3.916460001527783*^9,
3.916460047086892*^9}, {3.916460114278419*^9, 3.9164601155253277`*^9}, {
3.916460151551512*^9, 3.916460211938319*^9}, {3.916460268142315*^9,
3.9164605026140747`*^9}, {3.9164611705112677`*^9, 3.91646122986865*^9}, {
3.9164612838081303`*^9, 3.916461283894438*^9}, {3.9164613352890387`*^9,
3.916461337638524*^9}, {3.916461476086728*^9, 3.916461525229425*^9}, {
3.916461790301509*^9, 3.9164618508224573`*^9}, {3.916461918750992*^9,
3.916461926078661*^9}, {3.9164619865834503`*^9, 3.916462015670877*^9}, {
3.916462068855147*^9, 3.916462135525106*^9}, {3.91646218312778*^9,
3.916462189670607*^9}, {3.916462346454254*^9, 3.916462409190194*^9}, {
3.916462535346735*^9, 3.9164625541754932`*^9}, {3.916463033773225*^9,
3.916463252751165*^9}, {3.916463327006172*^9, 3.91646332911684*^9}, {
3.916463381588971*^9, 3.9164633889006433`*^9}, {3.916463588216133*^9,
3.9164635883025923`*^9}, {3.916463825312687*^9, 3.9164638356214848`*^9}, {
3.9167417118658524`*^9, 3.9167417845846653`*^9}, {3.916741823928142*^9,
3.916741855983509*^9}, {3.91674190796159*^9, 3.9167419458324127`*^9}, {
3.9168044618145*^9, 3.916804918788116*^9}, {3.916804977625128*^9,
3.916804992702217*^9}, 3.9169176255793953`*^9, {3.916921214682989*^9,
3.916921294891244*^9}, {3.9169213495429077`*^9, 3.916921349995915*^9}, {
3.916921400115958*^9, 3.916921644474424*^9}, {3.9169217152039557`*^9,
3.916921717994781*^9}, {3.9169217702988234`*^9, 3.916921909994605*^9}, {
3.91692199838879*^9, 3.916922121417528*^9}, {3.91692217292935*^9,
3.916922419354519*^9}, 3.9169780033662853`*^9, {3.916978140634848*^9,
3.916978251504733*^9}, {3.9169783878167667`*^9, 3.916978392624208*^9},
3.9169784541508007`*^9, {3.916978660312846*^9, 3.91697868807203*^9}, {
3.9169787643044567`*^9, 3.916978775016548*^9}, {3.916978851712983*^9,
3.916978866038184*^9}, {3.916978918882639*^9, 3.916978940216015*^9}, {
3.916979161838489*^9, 3.916979168108508*^9}, {3.916992944874515*^9,
3.916993059407528*^9}, {3.916993109275483*^9, 3.916993111552355*^9}, {
3.9169931483204727`*^9, 3.916993350441084*^9}, {3.916993813057001*^9,
3.9169938546642303`*^9}, {3.91699397367304*^9, 3.916994034672371*^9}, {
3.9169946760155773`*^9, 3.916994678617371*^9}, 3.9169947539937477`*^9, {
3.916995214962222*^9, 3.916995215696632*^9}, {3.91699524637354*^9,
3.916995268776944*^9}, 3.916996345745707*^9, {3.917000684267418*^9,
3.917000684529488*^9}, {3.917080852483149*^9, 3.917080867437921*^9}, {
3.917080928286187*^9, 3.9170810101501637`*^9}, {3.917081285823888*^9,
3.9170814306388607`*^9}, {3.917081492952283*^9, 3.9170815317674427`*^9}, {
3.917081732430093*^9, 3.917081746828898*^9}, {3.917081784461227*^9,
3.9170819427847137`*^9}, {3.917082042588502*^9, 3.917082088608952*^9}, {
3.917082122912458*^9, 3.917082129227632*^9}, {3.917082751292272*^9,
3.917082937855699*^9}, 3.917082991525301*^9, {3.917083026151189*^9,
3.917083040965802*^9}, 3.9170831689817677`*^9, {3.917083291606894*^9,
3.9170833197187443`*^9}, {3.9170836452001257`*^9, 3.917083693267619*^9}, {
3.917083726257503*^9, 3.917083726719248*^9}, {3.917083761313854*^9,
3.917083770275614*^9}, {3.917084388897684*^9, 3.917084396768778*^9}, {
3.917084439216658*^9, 3.917084548810131*^9}, {3.91708458451401*^9,
3.917084670002634*^9}, {3.9170875511786337`*^9, 3.917087627817471*^9}, {
3.917087685437559*^9, 3.917087730449567*^9}, {3.9170877763825703`*^9,
3.9170878786845303`*^9}, 3.917087989220323*^9, {3.917088030110725*^9,
3.9170880382101316`*^9}, {3.9170883999443274`*^9,
3.9170884359087667`*^9}, {3.917088480636065*^9, 3.917088482497657*^9}, {
3.91708855187601*^9, 3.917088608176709*^9}, {3.9170886864064503`*^9,
3.917088721072529*^9}, {3.917089019557981*^9, 3.917089066336769*^9},
3.917089158035212*^9, 3.917089819103862*^9},
CellLabel->
"In[355]:=",ExpressionUUID->"c337890b-d1c7-4370-8e97-6da577e088c4"],
Cell[BoxData[
RowBox[{"(*",
RowBox[{
RowBox[{"nTheta", " ", "=", "8000"}], ";", "\[IndentingNewLine]",
RowBox[{"d\[CapitalOmega]", " ", "=", " ",
RowBox[{"0.0003", " ", "\[Mu]B", " ",
RowBox[{"B0", "/", "hbar"}], " ", "*", " ",
RowBox[{"10", "^",
RowBox[{"(",
RowBox[{"-", "6"}], ")"}]}]}]}], ";", " ",
RowBox[{"(*", " ", "MHz", " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"\[Theta]s", " ", "=", " ",
RowBox[{"Array", "[",
RowBox[{
RowBox[{"#", "&"}], ",", "nTheta", ",",
RowBox[{"{",
RowBox[{"0", ",", "\[Pi]"}], "}"}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{"\[Theta]s", " ", "=", " ",
RowBox[{"Array", "[",
RowBox[{
RowBox[{"#", "&"}], ",", "nTheta", ",",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}], "]"}]}], ";"}], "*)"}],
"\[IndentingNewLine]",
RowBox[{"t1", " ", "=", " ",
RowBox[{"Plus", " ", "@@", " ",
RowBox[{"Table", "[", " ",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Sin", "[",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}],
")"}]}], " ", "-", " ", "J"}], ")"}], "\[Tau]"}], "]"}]}], "*",
RowBox[{
RowBox[{"Sin", "[", "\[Theta]", "]"}], "^", "2"}], "*",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"Cos", "[",
RowBox[{"ArcTan", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}],
")"}]}], " ", "+", " ",
RowBox[{"2", "J"}]}], ")"}], "/", "d\[CapitalOmega]0"}], "]"}],
"]"}], "^", "2"}], "*", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"ArcTan", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}],
")"}]}], " ", "+", " ",
RowBox[{"2", "J"}]}], ")"}], "/", "d\[CapitalOmega]0"}], "]"}],
"]"}], "^", "2"}]}], ",", " ",
RowBox[{"{",
RowBox[{"\[Theta]", ",", " ", "\[Theta]s"}], "}"}]}], "]"}]}]}], ";",
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{"t2", " ", "=", " ",
RowBox[{"Plus", " ", "@@", " ",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"2", " ",
RowBox[{"Sin", "[",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}],
")"}]}], " ", "-", " ", "J"}], ")"}], "\[Tau]"}], "]"}], "*",
RowBox[{"Cos", "[", "\[Theta]", "]"}], "*", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Cos", "[",
RowBox[{"ArcTan", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}],
")"}]}], " ", "+", " ",
RowBox[{"2", "J"}]}], ")"}], "/", "d\[CapitalOmega]0"}],
"]"}], "]"}], "^", "3"}], " ", "*", "\[IndentingNewLine]",
RowBox[{"Sin", "[",
RowBox[{"ArcTan", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}],
")"}]}], " ", "+", " ",
RowBox[{"2", "J"}]}], ")"}], "/", "d\[CapitalOmega]0"}], "]"}],
"]"}]}], ",", " ",
RowBox[{"{",
RowBox[{"\[Theta]", ",", " ", "\[Theta]s"}], "}"}]}], "]"}]}]}],
";"}], "*)"}], "\[IndentingNewLine]",
RowBox[{"t2", " ", "=", " ", "0"}], ";", " ",
RowBox[{"(*",
RowBox[{
RowBox[{"Because", " ", "of", " ",
RowBox[{"symmetry", ":", " ",
RowBox[{"\[Integral]",
RowBox[{"cos",
RowBox[{"(", "\[Theta]", ")"}]}]}]}]}], " ", "=", " ", "0"}], "*)"}],
"\[IndentingNewLine]",
RowBox[{"t3", " ", "=", " ",
RowBox[{"Plus", " ", "@@", " ",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Sin", "[",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}],
")"}]}], " ", "-", " ", "J"}], ")"}], "\[Tau]"}], "]"}]}], "*",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}], "*",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"Cos", "[",
RowBox[{"ArcTan", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}],
")"}]}], " ", "+", " ",
RowBox[{"2", "J"}]}], ")"}], "/", "d\[CapitalOmega]0"}], "]"}],
"]"}], "^", "2"}]}], ",", " ",
RowBox[{"{",
RowBox[{"\[Theta]", ",", " ", "\[Theta]s"}], "}"}]}], "]"}]}]}], ";",
"\[IndentingNewLine]",
RowBox[{"t4", " ", "=", " ",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "/", "2"}], " ", "t1"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"t5", " ", "=", " ",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "/", "2"}], " ", "t2"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"xSignalPowder", "[", "\[Beta]_", "]"}], " ", ":=", " ",
RowBox[{"\[Pi]", "*",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"Sin", "[", "\[Beta]", "]"}],
RowBox[{"(",
RowBox[{"t1", " ", "+", " ", "t2"}], ")"}]}], " ", "+", " ",
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"2", "\[Beta]"}], "]"}],
RowBox[{"(",
RowBox[{"t3", " ", "+", " ", "t4", " ", "+", " ", "t5"}], ")"}]}]}],
")"}]}]}]}], "*)"}]], "Input",
CellChangeTimes->{{3.9163937302684803`*^9, 3.916393789539342*^9}, {
3.916395457000986*^9, 3.916395666472385*^9}, {3.916395737945644*^9,
3.916395897386197*^9}, {3.916395945688806*^9, 3.916395978096415*^9}, {
3.916396055721607*^9, 3.916396056113295*^9}, {3.916396089539307*^9,
3.916396102855833*^9}, {3.916396400469493*^9, 3.9163964404088306`*^9},
3.916396496024024*^9, 3.916396892306131*^9, {3.9163970212385283`*^9,
3.9163970233346863`*^9}, {3.916397155793157*^9, 3.916397185095731*^9}, {
3.916397223665463*^9, 3.916397223927697*^9}, {3.916397259064118*^9,
3.916397260088785*^9}, {3.916399005583267*^9, 3.916399008724667*^9}, {
3.9163990408465652`*^9, 3.916399048264076*^9}, {3.916399091964438*^9,
3.91639925496462*^9}, {3.916399336390561*^9, 3.916399337476449*^9}, {
3.916399564900099*^9, 3.9163996196361322`*^9}, {3.916399650332074*^9,
3.916399696524806*^9}, {3.916399729741062*^9, 3.9163997323889313`*^9}, {
3.916399861733108*^9, 3.91639986193314*^9}, {3.916459339998846*^9,
3.9164594261381273`*^9}, {3.916459481687921*^9, 3.916459920088002*^9}, {
3.916459957366891*^9, 3.916459965662881*^9}, {3.916460001527783*^9,
3.916460047086892*^9}, {3.916460114278419*^9, 3.9164601155253277`*^9}, {
3.916460151551512*^9, 3.916460211938319*^9}, {3.916460268142315*^9,
3.9164605026140747`*^9}, {3.9164611705112677`*^9, 3.91646122986865*^9}, {
3.9164612838081303`*^9, 3.916461283894438*^9}, {3.9164613352890387`*^9,
3.916461337638524*^9}, {3.916461476086728*^9, 3.916461525229425*^9}, {
3.916461790301509*^9, 3.9164618508224573`*^9}, {3.916461918750992*^9,
3.916461926078661*^9}, {3.9164619865834503`*^9, 3.916462015670877*^9}, {
3.916462068855147*^9, 3.916462135525106*^9}, {3.91646218312778*^9,
3.916462189670607*^9}, {3.916462346454254*^9, 3.916462409190194*^9}, {
3.916462535346735*^9, 3.9164625541754932`*^9}, {3.916463033773225*^9,
3.916463252751165*^9}, {3.916463327006172*^9, 3.91646332911684*^9}, {
3.916463381588971*^9, 3.9164633889006433`*^9}, {3.916463588216133*^9,
3.9164635883025923`*^9}, {3.916463825312687*^9, 3.9164638356214848`*^9}, {
3.9167417118658524`*^9, 3.9167417845846653`*^9}, {3.916741823928142*^9,
3.916741855983509*^9}, {3.91674190796159*^9, 3.9167419458324127`*^9}, {
3.9168044618145*^9, 3.916804918788116*^9}, {3.916804977625128*^9,
3.916804992702217*^9}, 3.9169176255793953`*^9, {3.916921214682989*^9,
3.916921294891244*^9}, {3.9169213495429077`*^9, 3.916921349995915*^9}, {
3.916921400115958*^9, 3.916921644474424*^9}, {3.9169217152039557`*^9,
3.916921717994781*^9}, {3.9169217702988234`*^9, 3.916921909994605*^9}, {
3.91692199838879*^9, 3.916922121417528*^9}, {3.91692217292935*^9,
3.916922419354519*^9}, 3.9169780033662853`*^9, {3.916978140634848*^9,
3.916978251504733*^9}, {3.9169783878167667`*^9, 3.916978392624208*^9},
3.9169784541508007`*^9, {3.916978660312846*^9, 3.91697868807203*^9}, {
3.9169787643044567`*^9, 3.916978775016548*^9}, {3.916978851712983*^9,
3.916978866038184*^9}, {3.916978918882639*^9, 3.916978940216015*^9}, {
3.916979161838489*^9, 3.916979168108508*^9}, {3.916992944874515*^9,
3.916993059407528*^9}, {3.916993109275483*^9, 3.916993111552355*^9}, {
3.9169931483204727`*^9, 3.916993350441084*^9}, {3.916993813057001*^9,
3.9169938546642303`*^9}, {3.91699397367304*^9, 3.916994034672371*^9}, {
3.9169946760155773`*^9, 3.916994678617371*^9}, 3.9169947539937477`*^9, {
3.916995214962222*^9, 3.916995215696632*^9}, {3.91699524637354*^9,
3.916995268776944*^9}, 3.916996345745707*^9, {3.917000684267418*^9,
3.917000684529488*^9}, {3.917080852483149*^9, 3.917080867437921*^9}, {
3.917080928286187*^9, 3.9170810101501637`*^9}, {3.917081285823888*^9,
3.9170814306388607`*^9}, {3.917081492952283*^9, 3.9170815317674427`*^9}, {
3.917081732430093*^9, 3.917081746828898*^9}, {3.917081784461227*^9,
3.9170819427847137`*^9}, {3.917082042588502*^9, 3.917082088608952*^9}, {
3.917082122912458*^9, 3.917082129227632*^9}, {3.917082751292272*^9,
3.917082937855699*^9}, 3.917082991525301*^9, {3.917083026151189*^9,
3.917083040965802*^9}, 3.9170831689817677`*^9, {3.917083291606894*^9,
3.9170833197187443`*^9}, {3.9170836452001257`*^9, 3.917083693267619*^9}, {
3.917083726257503*^9, 3.917083726719248*^9}, {3.917083761313854*^9,
3.917083770275614*^9}, {3.917084388897684*^9, 3.917084396768778*^9}, {
3.917084439216658*^9, 3.917084548810131*^9}, {3.91708458451401*^9,
3.917084670002634*^9}, {3.9170875511786337`*^9, 3.917087627817471*^9}, {
3.917087685437559*^9, 3.917087730449567*^9}, {3.9170877763825703`*^9,
3.9170878786845303`*^9}, 3.917087989220323*^9, {3.917088030110725*^9,
3.9170880382101316`*^9}, {3.9170883999443274`*^9,
3.9170884359087667`*^9}, {3.917088480636065*^9, 3.917088482497657*^9}, {
3.91708855187601*^9, 3.917088608176709*^9}, {3.9170886864064503`*^9,
3.917088721072529*^9}, {3.917089019557981*^9, 3.917089066336769*^9}, {
3.917089158035212*^9, 3.917089159832007*^9}},
CellLabel->
"In[366]:=",ExpressionUUID->"91f51bdd-73c9-42b5-a1b5-e7db64c90baf"]
}, Open ]],
Cell[CellGroupData[{
Cell["Numerical integration", "Subsection",
CellChangeTimes->{{3.917089173077888*^9,
3.917089177617301*^9}},ExpressionUUID->"9c36c1b1-42af-4980-89c8-\
3ae4a95fe9d1"],
Cell[BoxData[{
RowBox[{
RowBox[{"t11", " ", "=", " ",
RowBox[{"NIntegrate", "[", " ",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Sin", "[",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}],
")"}]}], " ", "-", " ", "J"}], ")"}], "\[Tau]"}], "]"}]}], "*",
RowBox[{
RowBox[{"Sin", "[", "\[Theta]", "]"}], "^", "2"}], "*",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"Cos", "[",
RowBox[{"ArcTan", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}],
")"}]}], " ", "+", " ",
RowBox[{"2", "J"}]}], ")"}], "/",
RowBox[{"(",
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"(",
RowBox[{"g1", "^", "2"}], ")"}], ".",
RowBox[{"(",
RowBox[{
RowBox[{"nVersor", "[",
RowBox[{"\[Theta]", ",", " ", "\[Phi]"}], "]"}], "^", "2"}],
")"}]}]], " ", "-", " ",
SqrtBox[
RowBox[{
RowBox[{"(",
RowBox[{"g2", "^", "2"}], ")"}], ".",
RowBox[{"(",
RowBox[{
RowBox[{"nVersor", "[",
RowBox[{"\[Theta]", ",", " ", "\[Phi]"}], "]"}], "^", "2"}],
")"}]}]]}], ")"}]}], "/", "muBh"}], "]"}], "]"}], "^", "2"}],
"*", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"ArcTan", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}],
")"}]}], " ", "+", " ",
RowBox[{"2", "J"}]}], ")"}], "/",
RowBox[{"(",
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"(",
RowBox[{"g1", "^", "2"}], ")"}], ".",
RowBox[{"(",
RowBox[{
RowBox[{"nVersor", "[",
RowBox[{"\[Theta]", ",", " ", "\[Phi]"}], "]"}], "^", "2"}],
")"}]}]], " ", "-", " ",
SqrtBox[
RowBox[{
RowBox[{"(",
RowBox[{"g2", "^", "2"}], ")"}], ".",
RowBox[{"(",
RowBox[{
RowBox[{"nVersor", "[",
RowBox[{"\[Theta]", ",", " ", "\[Phi]"}], "]"}], "^", "2"}],
")"}]}]]}], ")"}]}], "/", "muBh"}], "]"}], "]"}], "^",
"2"}]}], ",", " ",
RowBox[{"{",
RowBox[{"\[Theta]", ",", " ", "0", ",", " ", "\[Pi]"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"\[Phi]", ",", " ", "0", ",", " ",
RowBox[{"2", "\[Pi]"}]}], "}"}], ",", " ",
RowBox[{"Method", " ", "->", " ", "\"\<LocalAdaptive\>\""}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"t22", " ", "=", " ", "0"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"t33", " ", "=",
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Sin", "[",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}],
")"}]}], " ", "-", " ", "J"}], ")"}], "\[Tau]"}], "]"}]}], "*",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}], "*",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"Cos", "[",
RowBox[{"ArcTan", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}],
")"}]}], " ", "+", " ",
RowBox[{"2", "J"}]}], ")"}], "/",
RowBox[{"(",
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"(",
RowBox[{"g1", "^", "2"}], ")"}], ".",
RowBox[{"(",
RowBox[{
RowBox[{"nVersor", "[",
RowBox[{"\[Theta]", ",", " ", "\[Phi]"}], "]"}], "^", "2"}],
")"}]}]], " ", "-", " ",
SqrtBox[
RowBox[{
RowBox[{"(",
RowBox[{"g2", "^", "2"}], ")"}], ".",
RowBox[{"(",
RowBox[{
RowBox[{"nVersor", "[",
RowBox[{"\[Theta]", ",", " ", "\[Phi]"}], "]"}], "^", "2"}],
")"}]}]]}], ")"}]}], "/", "muBh"}], "]"}], "]"}], "^",
"2"}]}], ",", " ",
RowBox[{"{",
RowBox[{"\[Theta]", ",", " ", "0", ",", " ", "\[Pi]"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"\[Phi]", ",", " ", "0", ",", " ",
RowBox[{"2", "\[Pi]"}]}], "}"}], ",", " ",
RowBox[{"Method", " ", "->", " ", "\"\<LocalAdaptive\>\""}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"t44", " ", "=", " ",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "/", "2"}], "t11"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"t55", " ", "=", " ",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "/", "2"}], " ", "t22"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"xSignalPowder", "[", "\[Beta]_", "]"}], " ", ":=", " ",
RowBox[{
RowBox[{"1", "/", "2"}], "*",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"Sin", "[", "\[Beta]", "]"}],
RowBox[{"(",
RowBox[{"t11", " ", "+", " ", "t22"}], ")"}]}], " ", "+", " ",
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"2", "\[Beta]"}], "]"}],
RowBox[{"(",
RowBox[{"t33", " ", "+", " ", "t44", " ", "+", " ", "t55"}], ")"}]}]}],
")"}]}]}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{{3.9163937302684803`*^9, 3.916393789539342*^9}, {
3.916395457000986*^9, 3.916395666472385*^9}, {3.916395737945644*^9,
3.916395897386197*^9}, {3.916395945688806*^9, 3.916395978096415*^9}, {
3.916396055721607*^9, 3.916396056113295*^9}, {3.916396089539307*^9,
3.916396102855833*^9}, {3.916396400469493*^9, 3.9163964404088306`*^9},
3.916396496024024*^9, 3.916396892306131*^9, {3.9163970212385283`*^9,
3.9163970233346863`*^9}, {3.916397155793157*^9, 3.916397185095731*^9}, {
3.916397223665463*^9, 3.916397223927697*^9}, {3.916397259064118*^9,
3.916397260088785*^9}, {3.916399005583267*^9, 3.916399008724667*^9}, {
3.9163990408465652`*^9, 3.916399048264076*^9}, {3.916399091964438*^9,
3.91639925496462*^9}, {3.916399336390561*^9, 3.916399337476449*^9}, {
3.916399564900099*^9, 3.9163996196361322`*^9}, {3.916399650332074*^9,
3.916399696524806*^9}, {3.916399729741062*^9, 3.9163997323889313`*^9}, {
3.916399861733108*^9, 3.91639986193314*^9}, {3.916459339998846*^9,
3.9164594261381273`*^9}, {3.916459481687921*^9, 3.916459920088002*^9}, {
3.916459957366891*^9, 3.916459965662881*^9}, {3.916460001527783*^9,
3.916460047086892*^9}, {3.916460114278419*^9, 3.9164601155253277`*^9}, {
3.916460151551512*^9, 3.916460211938319*^9}, {3.916460268142315*^9,
3.9164605026140747`*^9}, {3.9164611705112677`*^9, 3.91646122986865*^9}, {
3.9164612838081303`*^9, 3.916461283894438*^9}, {3.9164613352890387`*^9,
3.916461337638524*^9}, {3.916461476086728*^9, 3.916461525229425*^9}, {
3.916461790301509*^9, 3.9164618508224573`*^9}, {3.916461918750992*^9,
3.916461926078661*^9}, {3.9164619865834503`*^9, 3.916462015670877*^9}, {
3.916462068855147*^9, 3.916462135525106*^9}, {3.91646218312778*^9,
3.916462189670607*^9}, {3.916462346454254*^9, 3.916462409190194*^9}, {
3.916462535346735*^9, 3.9164625541754932`*^9}, {3.916463033773225*^9,
3.916463252751165*^9}, {3.916463327006172*^9, 3.91646332911684*^9}, {
3.916463381588971*^9, 3.9164633889006433`*^9}, {3.916463588216133*^9,
3.9164635883025923`*^9}, {3.916463825312687*^9, 3.9164638356214848`*^9}, {
3.9167417118658524`*^9, 3.9167417845846653`*^9}, {3.916741823928142*^9,
3.916741855983509*^9}, {3.91674190796159*^9, 3.9167419458324127`*^9}, {
3.9168044618145*^9, 3.916804918788116*^9}, {3.916804977625128*^9,
3.916804992702217*^9}, 3.9169176255793953`*^9, {3.916921214682989*^9,
3.916921294891244*^9}, {3.9169213495429077`*^9, 3.916921349995915*^9}, {
3.916921400115958*^9, 3.916921644474424*^9}, {3.9169217152039557`*^9,
3.916921717994781*^9}, {3.9169217702988234`*^9, 3.916921909994605*^9}, {
3.91692199838879*^9, 3.916922121417528*^9}, {3.91692217292935*^9,
3.916922419354519*^9}, 3.9169780033662853`*^9, {3.916978140634848*^9,
3.916978251504733*^9}, {3.9169783878167667`*^9, 3.916978392624208*^9},
3.9169784541508007`*^9, {3.916978660312846*^9, 3.91697868807203*^9}, {
3.9169787643044567`*^9, 3.916978775016548*^9}, {3.916978851712983*^9,
3.916978866038184*^9}, {3.916978918882639*^9, 3.916978940216015*^9}, {
3.916979161838489*^9, 3.916979168108508*^9}, {3.916992944874515*^9,
3.916993059407528*^9}, {3.916993109275483*^9, 3.916993111552355*^9}, {
3.9169931483204727`*^9, 3.916993350441084*^9}, {3.916993813057001*^9,
3.9169938546642303`*^9}, {3.91699397367304*^9, 3.916994034672371*^9}, {
3.9169946760155773`*^9, 3.916994678617371*^9}, 3.9169947539937477`*^9, {
3.916995214962222*^9, 3.916995215696632*^9}, {3.91699524637354*^9,
3.916995268776944*^9}, 3.916996345745707*^9, {3.917000684267418*^9,
3.917000684529488*^9}, {3.917080852483149*^9, 3.917080867437921*^9}, {
3.917080928286187*^9, 3.9170810101501637`*^9}, {3.917081285823888*^9,
3.9170814306388607`*^9}, {3.917081492952283*^9, 3.9170815317674427`*^9}, {
3.917081732430093*^9, 3.917081746828898*^9}, {3.917081784461227*^9,
3.9170819427847137`*^9}, {3.917082042588502*^9, 3.917082088608952*^9}, {
3.917082122912458*^9, 3.917082129227632*^9}, {3.917082751292272*^9,
3.917082937855699*^9}, 3.917082991525301*^9, {3.917083026151189*^9,
3.917083040965802*^9}, 3.9170831689817677`*^9, {3.917083291606894*^9,
3.9170833197187443`*^9}, {3.9170836452001257`*^9, 3.917083693267619*^9}, {
3.917083726257503*^9, 3.917083726719248*^9}, {3.917083761313854*^9,
3.917083770275614*^9}, {3.917084388897684*^9, 3.917084396768778*^9}, {
3.917084439216658*^9, 3.917084548810131*^9}, {3.91708458451401*^9,
3.917084670002634*^9}, {3.9170875511786337`*^9, 3.917087627817471*^9}, {
3.917087685437559*^9, 3.917087730449567*^9}, {3.9170877763825703`*^9,
3.9170878786845303`*^9}, 3.917087989220323*^9, {3.917088030110725*^9,
3.9170880382101316`*^9}, {3.9170883999443274`*^9,
3.9170884359087667`*^9}, {3.917088480636065*^9, 3.917088482497657*^9}, {
3.91708855187601*^9, 3.917088608176709*^9}, {3.9170886864064503`*^9,
3.917088721072529*^9}, {3.917089019557981*^9, 3.917089066336769*^9}, {
3.917089158035212*^9, 3.917089159832007*^9}},
CellLabel->
"In[367]:=",ExpressionUUID->"5908c610-d9e0-4b8e-a103-fdc9495468c1"]
}, Open ]],
Cell[CellGroupData[{
Cell["Plot", "Subsection",
CellChangeTimes->{{3.9170891175268507`*^9,
3.9170891240050573`*^9}},ExpressionUUID->"73e0f8fe-657a-4aab-a349-\
27c85bab56c5"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{
RowBox[{"integUd", " ", "=", " ",
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"xSignalUd", "[",
RowBox[{"\[Beta]", ",", " ", "\[Xi]Ud"}], "]"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"\[Beta]", ",", "0", ",", " ", "\[Pi]"}], "}"}]}], "]"}]}],
";", "\[IndentingNewLine]",
RowBox[{"integDu", " ", "=", " ",
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"xSignalUd", "[",
RowBox[{"\[Beta]", ",", " ",
RowBox[{"-", "\[Xi]Ud"}]}], "]"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"\[Beta]", ",", "0", ",", " ", "\[Pi]"}], "}"}]}], "]"}]}],
";", "\[IndentingNewLine]",
RowBox[{"integS0", " ", "=", " ",
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"xSignalS0", "[",
RowBox[{"\[Beta]", ",", " ", "\[Xi]Ud"}], "]"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"\[Beta]", ",", "0", ",", " ", "\[Pi]"}], "}"}]}], "]"}]}],
";", "\[IndentingNewLine]",
RowBox[{"integPowder", " ", "=", " ",
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"xSignalPowder", "[", "\[Beta]", "]"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"\[Beta]", ",", "0", ",", " ", "\[Pi]"}], "}"}]}], "]"}]}],
";", "\[IndentingNewLine]",
RowBox[{"integPowder2", " ", "=", " ",
RowBox[{"Plus", " ", "@@", " ",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"xSignalPowder2", "[", "beta", "]"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"beta", ",", " ", "\[Beta]s"}], "}"}]}], "]"}]}]}], ";"}],
"*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"nBeta", " ", "=", " ", "20000"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Beta]s", " ", "=", " ",
RowBox[{"Array", "[",
RowBox[{
RowBox[{"#", "&"}], ",", "nBeta", ",",
RowBox[{"{",
RowBox[{"0", ",", "\[Pi]"}], "}"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"integUd", " ", "=", " ",
RowBox[{"Plus", " ", "@@", " ",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"xSignalUd", "[",
RowBox[{"\[Beta]", ",", " ", "\[Xi]Ud"}], "]"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"\[Beta]", ",", " ", "\[Beta]s"}], "}"}]}], "]"}]}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"integDu", " ", "=", " ",
RowBox[{"Plus", " ", "@@", " ",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"xSignalUd", "[",
RowBox[{"\[Beta]", ",", " ",
RowBox[{"-", "\[Xi]Ud"}]}], "]"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"\[Beta]", ",", " ", "\[Beta]s"}], "}"}]}], "]"}]}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"integS0", " ", "=", " ",
RowBox[{"Plus", " ", "@@", " ",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"xSignalS0", "[",
RowBox[{"\[Beta]", ",", " ", "\[Xi]Ud"}], "]"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"\[Beta]", ",", " ", "\[Beta]s"}], "}"}]}], "]"}]}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"integPowder", " ", "=", " ",
RowBox[{"Plus", " ", "@@", " ",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"xSignalPowder", "[", "\[Beta]", "]"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"\[Beta]", ",", " ", "\[Beta]s"}], "}"}]}], "]"}]}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"integPowder2", " ", "=", " ",
RowBox[{"Plus", " ", "@@", " ",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"xSignalPowder2", "[", "beta", "]"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"beta", ",", " ", "\[Beta]s"}], "}"}]}], "]"}]}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"plt", " ", "=", " ",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"xSignalS0", "[",
RowBox[{"\[Beta]", ",", " ", "\[Xi]Ud"}], "]"}], "/", "integS0"}],
",", " ",
RowBox[{
RowBox[{"xSignalUd", "[",
RowBox[{"\[Beta]", ",", " ", "\[Xi]Ud"}], "]"}], "/", "integUd"}],
",", " ",
RowBox[{
RowBox[{"xSignalUd", "[",
RowBox[{"\[Beta]", ",", " ",
RowBox[{"-", "\[Xi]Ud"}]}], "]"}], "/", "integDu"}], ",", " ",
RowBox[{
RowBox[{"1", "/", "2"}],
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"xSignalUd", "[",
RowBox[{"\[Beta]", ",", " ", "\[Xi]Ud"}], "]"}], "/",
"integUd"}], " ", "+", " ",
RowBox[{
RowBox[{"xSignalUd", "[",
RowBox[{"\[Beta]", ",", " ",
RowBox[{"-", "\[Xi]Ud"}]}], "]"}], "/", "integDu"}]}], ")"}]}],
",",
RowBox[{
RowBox[{"xSignalPowder", "[", "\[Beta]", "]"}], "/",
"integPowder"}]}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"\[Beta]", ",", " ", "0", ",", " ", "\[Pi]"}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\[Beta]", ",", " ",
RowBox[{"HoldForm", "[",
RowBox[{
RowBox[{"Subscript", "[",
RowBox[{"S", ",", "x"}], "]"}], "[",
RowBox[{"T", "+",
RowBox[{"2", "\[Tau]"}]}], "]"}], "]"}]}], "}"}]}], ",",
"\[IndentingNewLine]",
RowBox[{"Ticks", " ", "->", " ",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Pi]", "/", "2"}], ",", " ", "\[Pi]"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.4"}], ",", " ",
RowBox[{"-", "0.2"}], ",", " ", "0", ",", " ", "0.2", ",", " ",
"0.4", ",", " ", "0.6"}], "}"}]}], "}"}]}], ",",
"\[IndentingNewLine]",
RowBox[{"PlotLegends", " ", "->", " ",
RowBox[{"LineLegend", "[",
RowBox[{"{",
RowBox[{
"\"\<Singlet\>\"", ",", "\"\<UpDown\>\"", ",", " ", "\"\<DownUp\>\"",
",", " ", "\"\<(Ud + Du)/2\>\"", ",", " ", "\"\<Powder\>\""}],
"}"}], "]"}]}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{"Export", "[",
RowBox[{
"\"\</home/gianlum33/files/projects/oop_ciss_simulations/images/\
oopEseem_eckvahlParameters.jpg\>\"", ",", " ", "plt", ",", " ",
RowBox[{"ImageResolution", " ", "->", " ", "400"}]}], "]"}], ";"}],
"*)"}], "\[IndentingNewLine]",
StyleBox[
RowBox[{"(*",
RowBox[{
RowBox[{"Export", "[",
RowBox[{
"\"\</home/gianlum33/files/projects/oop_ciss_simulations/images/\
oopEseem_eckvahlParameters.pdf\>\"", ",", " ", "plt"}], "]"}], ";"}], "*)"}],
FontSize->14]}]}]], "Input",
CellChangeTimes->{{3.9163937302684803`*^9, 3.916393789539342*^9}, {
3.916395457000986*^9, 3.916395666472385*^9}, {3.916395737945644*^9,
3.916395897386197*^9}, {3.916395945688806*^9, 3.916395978096415*^9}, {
3.916396055721607*^9, 3.916396056113295*^9}, {3.916396089539307*^9,
3.916396102855833*^9}, {3.916396400469493*^9, 3.9163964404088306`*^9},
3.916396496024024*^9, 3.916396892306131*^9, {3.9163970212385283`*^9,
3.9163970233346863`*^9}, {3.916397155793157*^9, 3.916397185095731*^9}, {
3.916397223665463*^9, 3.916397223927697*^9}, {3.916397259064118*^9,
3.916397260088785*^9}, {3.916399005583267*^9, 3.916399008724667*^9}, {
3.9163990408465652`*^9, 3.916399048264076*^9}, {3.916399091964438*^9,
3.91639925496462*^9}, {3.916399336390561*^9, 3.916399337476449*^9}, {
3.916399564900099*^9, 3.9163996196361322`*^9}, {3.916399650332074*^9,
3.916399696524806*^9}, {3.916399729741062*^9, 3.9163997323889313`*^9}, {
3.916399861733108*^9, 3.91639986193314*^9}, {3.916459339998846*^9,
3.9164594261381273`*^9}, {3.916459481687921*^9, 3.916459920088002*^9}, {
3.916459957366891*^9, 3.916459965662881*^9}, {3.916460001527783*^9,
3.916460047086892*^9}, {3.916460114278419*^9, 3.9164601155253277`*^9}, {
3.916460151551512*^9, 3.916460211938319*^9}, {3.916460268142315*^9,
3.9164605026140747`*^9}, {3.9164611705112677`*^9, 3.91646122986865*^9}, {
3.9164612838081303`*^9, 3.916461283894438*^9}, {3.9164613352890387`*^9,
3.916461337638524*^9}, {3.916461476086728*^9, 3.916461525229425*^9}, {
3.916461790301509*^9, 3.9164618508224573`*^9}, {3.916461918750992*^9,
3.916461926078661*^9}, {3.9164619865834503`*^9, 3.916462015670877*^9}, {
3.916462068855147*^9, 3.916462135525106*^9}, {3.91646218312778*^9,
3.916462189670607*^9}, {3.916462346454254*^9, 3.916462409190194*^9}, {
3.916462535346735*^9, 3.9164625541754932`*^9}, {3.916463033773225*^9,
3.916463252751165*^9}, {3.916463327006172*^9, 3.91646332911684*^9}, {
3.916463381588971*^9, 3.9164633889006433`*^9}, {3.916463588216133*^9,
3.9164635883025923`*^9}, {3.916463825312687*^9, 3.9164638356214848`*^9}, {
3.9167417118658524`*^9, 3.9167417845846653`*^9}, {3.916741823928142*^9,
3.916741855983509*^9}, {3.91674190796159*^9, 3.9167419458324127`*^9}, {
3.9168044618145*^9, 3.916804918788116*^9}, {3.916804977625128*^9,
3.916804992702217*^9}, 3.9169176255793953`*^9, {3.916921214682989*^9,
3.916921294891244*^9}, {3.9169213495429077`*^9, 3.916921349995915*^9}, {
3.916921400115958*^9, 3.916921644474424*^9}, {3.9169217152039557`*^9,
3.916921717994781*^9}, {3.9169217702988234`*^9, 3.916921909994605*^9}, {
3.91692199838879*^9, 3.916922121417528*^9}, {3.91692217292935*^9,
3.916922419354519*^9}, 3.9169780033662853`*^9, {3.916978140634848*^9,
3.916978251504733*^9}, {3.9169783878167667`*^9, 3.916978392624208*^9},
3.9169784541508007`*^9, {3.916978660312846*^9, 3.91697868807203*^9}, {
3.9169787643044567`*^9, 3.916978775016548*^9}, {3.916978851712983*^9,
3.916978866038184*^9}, {3.916978918882639*^9, 3.916978940216015*^9}, {
3.916979161838489*^9, 3.916979168108508*^9}, {3.916992944874515*^9,
3.916993059407528*^9}, {3.916993109275483*^9, 3.916993111552355*^9}, {
3.9169931483204727`*^9, 3.916993350441084*^9}, {3.916993813057001*^9,
3.9169938546642303`*^9}, {3.91699397367304*^9, 3.916994034672371*^9}, {
3.9169946760155773`*^9, 3.916994678617371*^9}, {3.9169947539937477`*^9,
3.9169947818069963`*^9}, {3.916994844790324*^9, 3.916994952620088*^9}, {
3.916995074591215*^9, 3.9169951083187733`*^9}, 3.916995203888769*^9,
3.917083186353039*^9, {3.9170891087362747`*^9, 3.917089114256297*^9}, {
3.917089198201344*^9, 3.917089202894772*^9}, 3.917089812704777*^9},
CellLabel->
"In[373]:=",ExpressionUUID->"a6c9a54e-97e1-4266-86e8-25be65e222ae"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwVlnk8VF8YxmXmDiqF7HPLnlYpIaVzTkI7Ja2UNSGFylaKkC1JQkjIljZl
169yZIk2KWQry7h2ZoaIJP1uf83n+3k+Z+497/O873uVbF3NTggKCAhkzxEQ
+PfLwHNru7XdgeebxIfA+sErtYHSTUtumcKWLfKOC7aFlE4/W2PfEm0Ft+xb
8qzF+HZpj6TjVFG0KzS7P+leYny/tNU4qDwz2g/OSLrujDAuLm20ila/G30D
fl5rLC1sXF1q5iLXGh+dAgNWNUSKGjaV3hyzzI+LfgqXH11fv0a/r3RT1c65
BufKIBbxvsQTnyp1u2Bik+9WA9d4+6RsLp6DT5eciBRUqYPbN9jWF8sJ4Yb+
HSL3bRugcmG+QuGj+Th8zU+BoiPNsM7lV51/tRh2X1kTW5b5DTpWjtsWblyE
p+1O5Xw/0wm95+/1M3SUwravDu6NcuDApNeAI6Urg9cVyUrIuXLg8k8pHS5A
Bgs+ba2/58WBl3V0fLGRDE5LPX4oP5QDdZYcjTxkLoM5gQ7Hvz7kwMA75E8z
dxlsu9PTheRx4PHvixo8HtLcFBua7dUNC3yeCtnLyWK70YayslAKCrewu+4P
yGLrC1GHSqIomL6k78F5niy2ZOzmPo2n4GxJoOPmCVl8UKqCnZJNwaNZJpXl
AnJ4u16u56UaCtatW8VJkpHDGleur9oo3AP9U/vlIg3l8JSYcXx+SA9UYjmU
Wt2RwxGaxa5Zwb0wSJDfm6Qvj9+ta+r1iOyFxG4D4Z1b5LGw9uQxo7hemLhx
XOmHkTwO0tPdTWX2QsuwGH09U3l80aB4mXIVfb69Yk6sjTx2Ni/uusvog1dt
LzmEX5XH27yL98f698GM11MJTu/o8xea3tmH9kERiw0jMbXyuNx3csv6qD54
lHlk5csv8hhc0dWsT+mDkSFVDrOt8lgnvHi+OO6DK9XW1e0bkseqScVVEX/6
YL+wqcL6eWwsWFasG3ShH45ZbXSmtrHxQ1GJrD8B/bDfnd3QtouNzSxcJL2u
9UNuW5ZdrSkbp/9UHHVK6ocVSx3GMg6xseHq8Iempf3weqtTlcxJNg5OtFzM
FhyArtVnZxZdZeO5HnMYeWEDML11ZYX9KzbOK7dwXxk9AFVkXM3Kytj4qFhR
R0biALyh2jUrXcnGjx45v7z9aABudI3KKXzHxrs59R6XPg7AH3sk7Uua2DjS
NKt/u/ggXC+4k1HPZ2PxFbtqO+IH4edr3qssFUjcK5QiXpM6CHNFPusOK5H4
v54x82fZg3C4+MuslyqJ7e8ltvmXDMJM/yc4YDmJS2QH+5WaB+FmrYl5J7RI
fFwojGEvMwTfTB54b2lMYq2eb8a7FYZg3FRzZPZ2EgtXaIavVx+CTuOtovyd
JM673CxG6A5Bm1Vu4KwpiYmf6kuyDg7BAnaK89bDJH5MvdnQHzsEz5lwJ2Wd
SHylXN637u4QTOXEeCmeIvHB1DO4JHMIylS756ucJrGApbRxWOEQPMlmWy92
J/H++hP7VzQOQYv9Hje+e5N4+jXzjIvkMPT5es7iZgiJP6UczjUnh+FDv50P
zMNInHHp8bi+6jAMvcsrWHSNxCZ65hdF1w/D7t7lrKuRJL73LD00Z/8wnHbV
jFkfS+LtKQbp/OhhGPSV71d9j8QhNXXfA+4MwzXJZIlDOonfjB6XlcoYhlft
4JhAJomNDC9e1yschgEZR08vzSaxwUC+V0DTMDSyL7uqnUPfT8IgT7JzGJ6Q
PN/w+CmJyzbVDWf1D0OLMwrqCrkkhpHDNu9/DUONTedbxvNJrK+ltluSHIHG
U9M+9s9JfNEyPzhLdQQuNd/Oz/+P9u/qltcbVo/A5dmtLrMvSKzXfEznGBiB
l2/OuxBUSmKdS3GKWdYjMPJO5Ih5BYk1q4UmdDNH4Dr5wCChDyR25ceuefdk
BILr1cFCH0mcI6fqbFk0Assd62IEa0m82gV1+FePwKKyksaBTyReIe7z9u3A
CHQQ6p/wrSex00YhpuXYCJy+usvmQAOJs+1iAXd6BD6aymhb1khi9aLcfIn5
XDg+0j9b9pXEqhaDdy00uPCkx+t5RS0ktgvybh7R4cI5z5qnHVpJnPaEtcgf
cmFTh+2MRBuJlQRUQjP2cmHNj4wNlt9IbL08t1znCBfmae48/4vmVDP4p8aG
C9UkN1fe/E7iJZkWZ0fOcmGJ7Y+0/HYSH6sdeOx3kQuzgp6s29xB4qRJrz7x
IC7c+19a82ua5XfGWOrEcmFn9ganl50kPnJO+XbNXS6859Zivq6LxPFJzz4f
zeJCH6fCw+k0y/A+GPsVc6FB+8pHnhxav4ltBjAXWpi06jXRLLs+z3d/DRdm
RhuIaXXT+teM26/quHAHl9IIp1nW53aeegsX3iwxiPv2T2eHf7zZxYXPLduN
V1Akliv17f89wIUvj2zaco5meYbtkrppLhR9uVtqkubETHO9jQweDPAX5a/t
ITF7+zbzjHk8WG2RLe1Ic9KgnusCSR7sX5UVlkAzeX1VuDfJg7E9UTve/NPX
KGRyVHlwKuzHQS7Ni7+Il+1ezYMXNI/mifeSOPk8s61ImwfvzjGz1KR5iczk
hCLgwVe6Tgd2/tOfD4hdM+ZB/pI1yVY0K1h+WzlhwoOvJdfrutGcOltrbHWI
B+eGiij50qx477XNWyseLJvaYhn4T99a4KvlyIMvJ90GrtKs1Jt1+64bD4Yt
Xfn2n54WmpAn5MOD63RZM//OK6+M+Oh+hQclhuMD3P/pHy/3t4Xx4G2Zi8ds
aFZxc2cYR/OgWJLR9d00Z0jYL3mWyIOBp6IltGhWLTyoJ5/Og6dDZkYk/+mH
dpgHPeLBCAFFxTH6/mrTm1y5+TyY9zPhwTuas5I0wg+/5MFr8cLXkmleCpUy
yyt50EFlXtXpf3rXorJVH3nwL2fL4Q3/9CBWW1wjD+5ea2I0S/uTtfTXhEA7
DyLPLxGYZvW3Q2Kneul6qp9d40tz9qn2lY1cHnxa83n1epqXLfhsDCd5cMVg
XGgfnYeY5RalIkw+PLNu5ACiueFCw3sgzIfHXtS+7aHzJflhT8u5+Xx4PbQo
KZjm2DNo/LskHxroG9n+R+czLl9tRZ4aH/oUmfoN0vn+ykzR7VvOhxbFu2ed
aZY+KGtEavBh8+uKrl66P25PzbUO1uHD4cyR5jq6f+I382OPbuNDqedzk07T
/dcc6ZR+Yxcf3nr30Owt3Z+ynZxnlaZ86G588ZwizQkBje81DvMhdSTpZ1kz
nc/q/+YwnPhw7YtUmfd0//M7n/nwXPhw9uAYZyHN26azRtvc+PDxpotFe+l5
Mb7qVleBNx+WgRzvN1/oeRx96rVDKB+mLFW9GEDPm4xHNnr7I/jQKaYw4T49
j35XHsqFUXw4oh5WVUPPq+zJrfdk4/nQpSV829/3JBY8Rl55d58PxZdpCm2u
IfFhT4lfRY/4MEqBSDOoJvHTG8Lu6U/5MMLxsKnhGxJblo9b+xbzoVjMUmpT
JYmL1D8ijWo+/BNtKDKDSXxq7JJAdC8fyjsotpUVkbh83nnvy4N8uMrmAS+k
kK6HmjPfmcuHGV4vlHYV0Pvg0MHOrT/5sFz5cFcVPc8VX2mUTRCj8HfRA07E
Y9rPkA6/I2qjMHak4aYNvU/0F2/5q2g/CusGogZXhNL7xrLhrK3jKMw5cFDa
LJjE5ndO9qa7jML3y8c/nA+i30cu8uNSj1FY8b6l/bE/XW+ptjurgkfhfWfn
vD56/02JemzYkD0Kk7vrmWGOJC6YzXY3HR6FeTfshq8Y0vtms35PFH8Uzixo
v0oakPiD76fDX8ZHIcyW/5gHSdw9PQEP/BmF/nXeTl82klhi0mCBxYIx6LTv
wPR3TRK78b49dNAcg288JYPUSRKv7BSjLp0fg/JlIZkRPDY26VMs9/Qeg+tT
vM0/D7OxG1cz1dV3DPr6W9pIDLJxwcxeS5ugMZhgopgQRrGxvtzNBsOYMeg8
v+Du7hb6e8ZMvGpewRi8MKLRq1bOxi6V4lkJP8bgTKLN6KqbbPwkW8Kx8OwP
eB7PiLxXZeOgRryF4fUDTj544sVRZGNLwdPsfRd/wO3+RycmSPr7yrK6djjw
B7RTLF8qLsXGDgt9tVVjf0CEnkXIEmys6NkjeKv4B5wZEsIulDyO2Vpy123m
B6wbuvxcO1Ue+7Yfq18ZPA45GRsjM+bL4/Ftm++eCB+HGwU2KHQLyWOXXPJk
SuQ4bH/6dvsShjy2CGqblrg9Dt+VarqE/5LDG1ccUZ6+Pw5zT3CUNvbK4V8e
5u41b8dhT+GT51OlcthTdNfCE6ITUFva1HD2tBx219+wKzlmAh405C4NL5fF
0ymGtkNRP6GQw9F+NzsZXOeWaO2VNgm7p0TS6kulsN425dnv96ag0fYbloEy
kvitkV42SvoFTTVTr4XaSuDM3AQ9zqNpyPEdkL7iJYalVFY5H3/wG24xOScx
d4co/jJHOEDu5Qy8e2jPsqR9IrhQ+FxW3ds/0H4lWSPpQ+BVUmLOtlWzUDq/
Z63Y7zmYF/lTUuvrX6hfIekzmjdTqhISssbVWQBlLnD6KbHnZynnaFurQZ8A
StmaO2/Eg1+6vaf+V+GZOUi0QGFUyqKn1PvsCUfpkTmInz3G3uvaVGpSdGen
tKcgshPV9c/9XVDq+MP2r5S3INL6ccdaWrCgNFBzRYHUBUG09u6DGkWR/NKS
hyWLpS4LItula68vlcstVU5p5C8KFkQH2i0a+Vcelv4MWXhbPE4Q8b1/hqng
uNLkI4Hd84sEkWjRHZXMwXuAO+Psy/gpiKTnhMTsVSkHRw7vWv5rUhCJ9e50
kgsrB5X5K79yfwmiy777s6K45SDBeXhN6x9BtMPjrVF4SQUwbD7d/YxgoJGA
/NsPtleBO/luO49LMdDeFTvKY47UgO3OnrLP1zPQa83EvwxQC/KrDlbl6DDQ
JXNDGJ1QC5Yo6Z7N2MBAkZPzL9SO14IfTZPvb+gzkF7Kg5a9Dz+BZCMfPwdD
Boo+GhNWGloHxhV9exeZM9B3MkVdr/8zuNd0peDMOfr5pht4J0IbQG+VZkek
BwNZiUZbXixoAKsKOkSeejFQWrV7gHVnAyiK2mzFu8hAl3W+TCfoNoIPO36J
uAUxEJOjXPy2uxFMvXCzco9lIOVNHZaLtZqASarV3PPFDOQYW/489UkLiIlc
oB3znIFeaPsPP61vAS2+r6wKXjBQ0FT9whu/WoD9EXbhOGagDpNorVeGrcBH
osnKo4aBltzaZ9DS3AoygkwKPVsYKDyfv2PRVBuYdtxs7fObgdprH1VlS7SD
nS9WII8/DHSkcyA8UbMd3BGVVXT/y0B8qclvtibtQD9vrMORwURtu/bpeoW1
g8u/71sdnsdET/rO6zz90w4YkRJWumwmGvXSkLBu7wDz8/uOTWxkouON0k/P
lnUCS6Jx86g+E/mGKN9v/tAJnhwqXzwCmEhMgE5WSycwmUn6Thkw0dlTOoJR
o50gysjsWMNOJpK2PsFzUOoCks0vLfOPMpFu2LXzhpe6wOI/Ny3cLzDRnDi9
K/VqHLCds+f5bV8mWuxaWRuoyQHnq0VkSi8zEdZ2jiY3ccC7m1e+zA1kopJP
VdeF9nKA51L3HRnXmGhyTumXCm8OqDPdq9uUROvyILWligN+r58f+yeZiU76
p55f9IkDlsrXjKncYyLLkQoRnWYO8KVgjlsmE5n+JxauPcgBy33WqM3NYaIv
jo1nloh2g4C0BYs2YyZa2Fm5NcmkGzwJeedm95qJKnZFXLU/2A2aXYJrwyqY
SEXhRavU8W6goTsb9rWaia5dF23UOt0N2t6PCLjVMdGPoHPpx8K7wfqJD9y0
Lvr5V09EnS7rBlatobvfdjOR+tx1mW/fdINwbPiQ18NEWT+G1Bd+7AadYS9P
6A8ykf2LlsiDLd3g+pLH3xrHmEioZXl4E78b9G679k6YSaDmyyDiPpsCtrus
FdVYBPpo220frEiB7ybanluECSR+qLzVVI0CDQc6lC7MJ1Cml1NRmgYFyu20
fIYkCWRfG9i8HVEAnBT+JCRDIInfXKNLhhR47vxdVVWOQN/Hyq4kbafAM/eQ
OsvFBDr2pODSnb0UuOvXpl6rRqBkY6UNSVYUkA18dmlQnf6/L01v1e0oEBN8
tZ61gkDnGjotkx0oEH59jR/UINDZiu7U3acp4H0n8OszHQL1LhI8nONDgfHk
w6s+biDQrUy3R9G+FHBNWx0wsJFASQVN6239KODwoGm1MiQQK9meWRFEAfPi
lVdvbSOQ28cP+yMiKVD3n0Db0x0EagtTlnwfRYFdpY2aH3YRyPvsBzQRTQGD
Kr9vzL0EWhf4fnrebQqU1pivUzKjz/cLx03FU0Dvw/LQzeYE2sNzfl6XSAHN
+notz8MEmu9QXLA1mQKPv2aHRR8l0IoOnNieQgH11ksdOZYEMhJarnbiHgXS
vptpvz9OoK5kCYumNAos6VK/1mdNIL9F6Vu1MyiQSM10MuwItPqSUO/lTApI
9X/WUTxBoB93zu0oyKLAfN5FzmEnAuWu3e/GyaZA6NjeDR6nCDRxxNSg7QEF
GD/VIm+eJtCrGPsx/JACl39Ndz9xJdDPir6QqEcUmJ75pPfOnUCbbNfP3fOY
Ap4CmTd6zxHIzP+x/wTNo4wLPYKe9PuUl4yFPaGAi5DpJgVvAv05VnNybg4F
+ueq3tx0gUDHpff1edJsv+BX7yFfAs1u/OT9ieYO8Vr985fp+2ZUqUg+pcBR
qfToKH8Crcx9xTOk+ausd//jAAJFGW6jbGjeR+4Bb4MI5Fk+JXyK5g8KyjE9
wbSfoq4nrGnerjI5MCeM5qA9cwxorlj6AS65RqAzfzdTC2neGdmxU/o6gRZu
mLH79/y6ibEDC24QyHfO+upLNB86xrJh3STQ7rmrJdk0t1fKucxGE2h5p9a+
+/T97Fet9voZQ6DukYQgZZqHbqEAbhyBHvgUFkTQ9Tj7e//13ngCCaZ39fXQ
9ZuyPRnfnkjn3fqyqgbNl99dSP+aRKAiP77bCbrexLrInNpk2p+Ue/XXaD8i
Eu49f5NK53+dwP57tF8ScworS9MINOnjN5F5nwLxjjWfijIIJHP19usE2l+F
urbWnCwCrV9T9cqX9n9ViuBo8kMCZb10sRZLp0AeS3om7jGBlqCpRa/pPOmd
WS50I4dAX5JfitukUsB4897FfnkEehS9jeV6lwIfM+yWeRUQyLLZaO73O3Q/
zPfSci0i0KWDw2c30vm1abu7w+o/AlU4N0ZUxNH+GuSaH3pJ+xPgsYsXQ4Ez
DyutTEsJpPPFO2zuLQr4+gx5wHICKX65nbzwBgXiZPTSFN4R6MmFykHzYAqQ
frufyHwg0M7wQZs/gRRI77UqWVhLoP1F7yJjr9DzoTC49u9nAp3W2KwWS/fv
+/0N0x0tdH2fhbC+uFPA7EUf0dxGoMQNv4enzlCgWfm3WN13Ag3rZ5ctdKFA
76iSelkXgRpDq3aJ0vNCIMp1f+oA3Y+Vj4q2H6FA8GTA8fghWi9x+sA7QAFR
qzinqBECqXUzhUPMKCCv8crPf5TOc/wF0eBdFND+MPex9S86r3/H5av1KeAs
nMVUEmGhWu39dyxI+v0EQ69vncdCxh6jTg9laD/+OEk7iLLQmhyg0CdBAd7o
6mWPxFko4nKr3QoRCpxvK9ylLc9CDpYy1i3j3eBSTlX0jpUsFPhzY1RXTTdo
z77PdlnNQlJhn7YvqugGKD0sI3INC+W7xgdoveoGgvF7iuq1WOjMW517MLcb
BF9pbDmmz0IJ1ydTQuK7QZR5j+LZPSxkYz1r3WHXDUZNqh/EmLJQtfT3pj+W
3cBsx4N1xftYqD5gh9s8ev9IgdOGMwdY6FtCtsb4tm6QqD5xMvg4C508Uynw
Z0U3yJhmPk10ZSGitJo1McIBxamqmytushArnWTXnOQA1b+GF1/fYiH2R61h
TysOiDp24jmOZdH+FWjIHuIAR/ks7ZcJLLQw0mrlOmMOkI9R1yi8R99fxXCm
UoXenyErFO7nspDV/kV1p791AYMzmnOufWahOrZc1jzDLlC7Sb/KTFwI1YLQ
pNlvHSC8xOO38SIhRHqInYh/0wG2aT9du0lKCLlfCbhNPusAZRrKySpyQqgz
PyuQCugA+UrCXuOKQmhfcq3vefUOEC/UsCxOUwjlP+9SzXRpB3b1pyJaTIVQ
n47t/A9938CU85391pFC6M2Q/LbDmS2gZm/KAVFpYXSwZtOiB8Wfga2e/v37
McIohwdaVcgK4DTyceJbnDC6e++w1mRdOXC7Z2UokSCM9gzdMXxxtRz4iQR2
+d4VRqfAjmBp3muQ1PKWbZYljBryhI0VX5eBrz6HomaKhVHa6y3XTle9BDv/
O+uzr00YLTltZmCwKR/sO8OsCf4ujOwnqXRWWh44rBwn/bJDGPkImY2+EM4D
J8Of5y+lhJHWN+aW343PQNBRAe7vYWFUo1d9p6DjMSidvm6bNSuMnqSe+yW6
NR1U5SjktgmIoNFXfU3LFqaBD7a5f8UYIuhZrwGp3ZYK2t41JF0UEkFOkfs8
d/UmgalEdtNeMRH05v1cVcLoFvhr8kQtWEIEfVn1Eod8iwIsBjz/QlIECa4c
PferLwJInrIVXyongv4k1KlfMwoEbIVxKwu2CEr0RLYe/b5Auf5qTtRiETTr
9FD6ldE5sCJE5k+Vggia2lR5etDIDqzd9GDXbyUR9FRihbT3m4DN/wP2Q+cK
"]]}, Annotation[#, "Charting`Private`Tag$32222#1"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwV13k8VN8bB/C5d0aWKDszI0kLUbSoKOY5aRMlEaksEVkSWaKQspRKyV4h
yZYSirJU5iJKWtSXrNnHvlUUyfI7v7+83q/XzP2cued5nnMss3UztidpNNoL
gkb7/186JfS5e5M7J64mJvZ7dXzJygHuNvnoA1CgHmGeG32OO/1U3a4pyhqy
pdhZZ6OvcnskHacKotzgRsbZQP3oO9zm3SHl6VEXgWZt9eBfVCb3m3WU0r2o
W/D4dDn/WGQR19iF2Xwn6j40M/7srrtZxY38ZZEfF5ULT4NK1c5daORuq9QX
0vUsharKgCkXrQHuGV9Dm/wzVfBn/Wqmsf0v7uki+3By+RdIHHcj/uZMcuv6
9wo+tK0D0vgYS/f7DHfsrvKuYI86kAj6t/bg6AxXyIA/0DqoDtR/zBmZ0Wa5
KLtiSialDrpCaFm6K2a5We7Qf7WzDj6VaU6lnJrlBk1rvHM+/g2edQTq+0/N
ctWFFS6rWdXDFbuJcTuhee519T+0giONkLD9oFHjFRrl67NXtde5EaLa1B3X
3qJRTlSiqbR/I1w8olzqd5tG6R3Y8dg7qRGMr4YtY2TSKH63CJMt3Y0w/ShC
900VjQrJUckocmkCJKhRNSlAUAFrrQ1eXWyG+VWbHiqEEJTr2byzQxHNsMVb
pygujKAsS/iS2SnNMF5xJ44vmqC09z+Z8KtoBhH+oOxPDwjqn8vfe9qCLfBa
ZB1vAUVQ555E/yiJaoG9Az3+rCmCcletii1N/w7Z/70Qz7UjKZ4971JywXco
p51uZp4iKbNkmsuld9+h2UF63wV3ktoqpaWLBr7D5z37l6kFkBQ5/2iUWtMK
rjYr0JbbJBX1X9geKr8Vbi0ILuG9I6m88wf+lpS1wUhGWuKd5XRqxfNTvHv/
tUG3tyJdYjWdihsNrbnQ3QZGPlB0WY1O+Z4oTdfha4ecohD6IS06pbt/vXGJ
Xjs8sJ/9L9qQTtUqSGS9rmkH8fb99CQfOjV94lROq2sHnOjzjax+Q6eOi42f
e+3dAeqJyxJn3tGpSq7vjoSADrASHM5W+kinIpjXG83DOyDzkky7Yx2dUqrJ
JOuyO8BX2Xr7bR6dOrS116x6uANU0+3MU+gM6mXf6WWPJjpAw0Np9AQ/g1oa
+3sodKYDDNdFuMgvZFCDY4zAXcKdkHB5gh0gzqAC05dnlap2QnBGg1i/AoPK
EbWZL3DuhJ+rEt/aaTMoSW7/+1iPTriV7C3yHBjU+VNnYrx8O8Fhm4nCjC6D
2vn24uoN1zuhxE011Xsvg2rxSzLJftQJb7JOj0iaMSiBvpaHqf2dQNdbwv59
mkG5xpzwCPrRCeptPWZfzjCo2u1D2jZTnRAZPbojzZNBJSVOf5UX6AJLd2PV
zecZ1CZj5sxdpS7orPhEkiEMyrbEzCjiZBe0Dq311rzDoDYUyIoz3brg37HF
Z7/GMygyt7n2gU8XJMR1cW3uMaiUZKvD+Ve7QMyzWtUxhUF1BZ+0qn/cBQtM
VDYLP2FQef7KCtb5XfCiW8zcOodBBZ0d7Ox71QUn1ggWPHrKoBQdXO3/fuwC
HaEB+RUvcL6+t4vcWBfQjx3yyC3B+Ts01dInu6BC7abuawrna0+PraV1w6BV
Miotw/lrAzxBrBse5bhS2ZU4X/SKr+3GblBz+Xlb/hPOF9TTHtrWDYpB6x7y
PuN8UmjOc2c3ZPuX1z/4gvMnbgZeNu2GfboHIog6nN8QezXTpxt67ArArBnn
fzmsv/5SN3TVLl/xrQXnv2cKv7zaDWX5C+UMWnH+y3u3PtzthooScSTXgfPv
pceNvsLrERVVM+nB+XEO5j4V3aDZeiD4ei/Ov7WaRfvUDfe5ne1FfTg/MPue
WFs33BSXezQ9gPPtXqRp0Hgg7+VoIj6K8y19TpYI8CCNlvqSGMP5ZlrKu8V4
EGhXtKQfO2VPSdZhRR44tA9/vfuTQXmgi6c7VHhwP/iAgv0vBqWrtV3daSMP
LrMk7ZXG8fpUKvN8d/LgVr/jx4gJvL7loV70/TyQmTce3vIbr09u7+Ybpjwg
qoxnv2EbSy2ckrTiwbF1cnPOf/B6F30qvneSB2U/7Uf+YP9acMtvlRsPPkUN
vD8/yaDK5410cn14EOZwImocO2pKfH7LJR70RkbtsptiUCd+1pWWXuWBHKnV
9QH7uG/E4aIIHozHhzms+MugLOj7RnPv8ODtujXzXthHbvBffpjMA6l78pkl
2GZSb9j3M3mg893RZg7bOCkgL+4pDygRCZUt0wzqgNLWveFFPIj1UiIcsfc9
/d1+uZQHnj55PRHYelrPvC9U8YD9oLz+GfaucheRs194kJTsWFuNrWugnObS
yIOnewubW7A5dd1b7Tp4MBzzZoiHvc3y/tdj/Xg9yWl8vdiavUcdTX7wwDXH
U6kdW8NNel5/igcTyvuMvmCvn/oaq0vrgUdJBheLsdUCb67ZKtADvIrI/Hhs
FaG9b9aL9kCgDxr2xFaKZhxdLdsD2sV+yruwV8iV/lBQ6IGhfCeHRdgK6X6h
sso9UF20IbMG//4lalvkRdf1QC4iBq9iswp/PefX7AGLYWLNVmxplGMwDz1Q
GnLidDd+3xLvnbr+7OmBDf/MskOwRY1Xnh890APFTouHlmALt3Qs7j3cA3sl
ylfm4v0TtEvMaLXuAT67DAtN7AUjh3W+OfSA/8/f4cV4/0lvibqPbj0w4Tv8
agP2/Nxn5wqfHogbeNeViutnSnT3nfzQHlAcVWe74nqbuEuoZ93qgU0qO1Tf
4Xr8qVhSmXK7BzTv6G2QxR7U0BiPfNgDkuoHFFNwPfeVjF27ltsD5OF+wZYf
DIq3O0shsLAHQnNTexZit5orGp551wPHaqu8TXG/NHe28hxqemDBXIuK6wiD
qne+62fd0APesnZfAoYZ1Bd/0UeGfXi973RGQgdxvSbP0dfy90Jzlp+FFu5P
7uqX8SsW98KKgrDrYrh/X+WdXS8n0wtCmfLpnd0M6nnFsNVCpV44mHXhnlMn
g3rY31w8sLsXDI1Ph8l+Z1Bp7nFGnYa9YOfzn8hTPD+Spw/2NZrhzyscOgdN
DCpe+L1k1clekDRLpe+uZ1A31hW6ZVzphRnTzJ6fNQyqekND79nwXrj2a0T4
IJ5XApsmLXfF9YJvlKlT5kcGFaK1ZR8vvRceqXRS8J5B+ekWKitW9sLH44WN
ouUMyvlQYec9eh+kSJ89qZ3HoDLNGsxPL+yDLD7VPHk8b3vNJ2u0JfrA7sae
tX+zGZSN5RZui2IfLE658TTuEYMyP1kYz9Ttg+6slG7PZAa151yhSeylPih6
er2y4AbO922otrvaB6F1mgPs6/j9+U9u14jog4218ZrnQ3G/BG5ZV3u/D14K
fzsiF8SgNl8vFBaj+uCA2+IUhg+u58TCyhuzfXDMsFDd0hrXT2nhlhDfftg9
P92yVoVBPRYRz5gN6gcZd+rH3lW4v4+5SPqE9cN8UsBHC0UGlfpH4adTYj+0
dDg1nWTh83Ht9ccHuP1wsOLfPmEhBnUl3mIJmxyA5YcSKhL78G31LEHPuzYA
q35wGr4l0Km88mPuqlEDoH7QSudDHJ06KlrQnhY/AEPTbz0LI+lUVpbz69tZ
A5AjZWHiFUqn9nXVnr3waQA0n4QNXfSgU+EHMvr1xAZB/ej8VNtuOiWmYvC5
/c4gtDxs55X2k1Qv/32xquRBmMwPyP/XRVIve34depo5CKuHQ2PUWknK7kF8
y6WiQch0uB7h/5WkimQH+5c1DsLxXw+Ci4tJyor/Gt1OZgjU+J5NFl4lqSe8
t5r9sUPAWjYZ/VGBpALLWf5f7g3B622qqxay/n8fc6WK0oegNPYkb7sESdEs
pHdfezEEeitf9N/mIymTWnsTlW9DULjMR7V3gKCmyxiuLpLDsPpalrfwM4LS
u6+b+iNqGPgdov1CtQgqtOpLa1DCMBwU02UrrSeotz+tZKXShsEp9sLTEmWC
2rXT76bWi2FICS4pq5EhKN2BfJ+ghmGoYow/Dv1No7Q3rtwnKTcCgcZac3ty
adS6d/y/t6SPwIgIy01ajkbJjH3cfbFwFK5NycqkFcxy70RSNgPUKNTUcGVa
H8xyZTXy/E2qRsGdbhDNdxP7/O08paZRuGUqIrzyxCyXRbeV/zI9CnNLmP5J
i2a58jKTvxU4YzC+UHbVRdsZ7ipYll5eMQa77MNVZeamufHvXhJ0px9wRiyt
Nodviqu9ZPu8gt1PWAh86TVNP7mqHaK8C16/gJnQXuiUyONmZ4o7vvAYhxJ/
/eK2CxVc/zbLWtUrE5Aib5KS197EcdfWNEiK+Q3DqCagL3uMM31/p+1QxB9Y
Os9xFO+d4nw5E3/cJ2US1Kfbude9CNDaozjX+mAKRFtff2tcsQDe79LKRIl/
YfcmiRf8uUKQ/uyuVlfWNKR1DDhq+ywGqeVrnK0e/YNU6ZDG3d/F4D9CIIj5
egZe58mZOdIl4YWAZ8aX97NgGKgaTIxJwRopUWfbyjkY5vqIqF2WAYncV0/S
38+Bo75XZWyYDEzrOYz1f5qDZyYC6G+kDFT5c73c6ufAQ7LUKz9JBux4Lhf9
++Yg4Lly6kShDNzLfx8TJzgP9zct2Z85IAOLjIOp6v3zILKE3vB2ryyMhf+R
3Fg/D0Ju9pZeM7Iw/EO+fG3zPBxih9udIJgwaLzHTbltHgYsaw0NFzCBJ33n
/ZLeediTMPhWRpQJzUlaAQJ/5oGVOid3fjkTbA9zx0eFaCjj7o5lXnuZsN+B
sKxQoSHzUJK7PYoJ++7E5petoSGnuRMuj+OYoP9+tRClRkPc8yZfFyUwQU/V
uLB4Aw1pGF8trk5lgu5YiljuVho6ULeubdELJmj67Hx7V5+GtOc/Gb+rZ8Ly
0FB1N2caCm6OGxmTZoFHvUaArQsNNax57FfMYkHpyq6Ppq40tPFO95sAeRZY
VWg7a3vQUEjp5oCZlSyIJ36lCfri5zOjfSs0WCDub8FKu0ZDIulv4i4fZAHp
vp6vKZOGikMmn1WEsuBgaZvJx8c09F7OwJoexoLkxTdSqCc01Jz+K1UnnAWc
nF7IeEpDQZrLxtJiWOA7lODrWURDSfHOZzgPWPDLfsEPkSoa2ia/WSexmAVd
R1uadftoyHF58sqZXhYI6xx+eHyAhp7JXFjWO8CCTUtrPQOGaKjqWOG76mEW
XO2uFn45RkMb8u4vCvnFAnWXl5z1UzRU1ihysmCWBf4X7qYsFSTQWRkdDlOC
DRnWUm46Cwk0vtn/MP4fHmq2R247JkIgmvMKQW1ZNiguuFYXJ0YgJ1vb9XuX
sKEq/NyCRSwCmZuX+SgqsfG96LDzjAqBdNNGftZosYETVLuZtZZAzCPnJES0
2eBod4CuqU4gA7W61zs5bHitvCfRcyOBrpoLpqbqssH22ebPg9sIZPdr9sFS
AzbklEttaNpHoA4BiF58jA2NaZFzfwwJxHkxUDJhwQYiVOSD5EECUT1qNnVW
bDhkwGdnZEog67EhkWBbNvyrnYh9Z0kgvlaNvntObNDrqf37wpVA7DPUtypv
NlxQDffLPUOglr/JZVvPsSHPXW8204NAXDWHrw/Ps4E995qW6E2gDwv/HfH0
Z8OodAZ/UACBXtWNztQEsmG55fFrfpcI5HAu8TcrmA3mqayFZ4MI9DBxVtgm
hA1l6rcWOV4hkMVus9i2K2yI0TsnZRhOoMRs2r+kMDa8D99we08EgdDRroby
G2yYqxuW3R5FoF0WYZ87b7LBwcZGTiOOQE+bvi4Qi2DDVl/95awkAgVXlUdp
xLDBrZSRLpFMIMd4p7XrY9mQtoBaJZJCoLThda3KcWwQid6oQssg0NYDXecF
77ChI0tufW82gS5xTe/cSsD79as+rz2XQCseBny0S2SDvmakRtMz/D66T4pt
useG/Ao+zY8vCFQadOTD2yQ2XGkd5eSVEEihdPvPnAdseLX8UWkWRSAZkcZE
ixQ2/HA6oZteRiA4L27Kl8qGI38adt2pJJDXoO/AnjQ2rFlcti/gE4FGzK/H
RGawwcbU77NPDYGKmY9vyzxkQ1zCJiP3rwS6teBu6h3seaXHJnbfCJT3bVFd
WCYbNFztvlk24HrNy56cxXZ8Ln/4cBOBXJ8aKJ56xIb/UPRR/Vb8e1eXXd/8
mA38ofu/72gn0GvP4ncx2Nqf+K10OgkkevGX4Cj2GYny9s3dBCrynjfSzWJD
+hF/m3U9BDr3wCsxErv5/ubu1X0ECrLpG2rBXtT7w275AIGuaYxylj1hw441
Wb1yQ7hf8hVibbDPedg7So8QqC1GZjQR+6rBqMPWMVwf27uSG7Bvr/BxsPpJ
IKPC4rPC2bjfZudPBo0TyLda3mUbdkH91ZMZvwl0oiE62A67MlfsZPUkgfTe
JL4Kxa67Gm8/+pdAxjNciXRsns1ye/EZApWfDwx7jT2+9Ynd5jkCsV67KH7G
JiU32R2lkWjnJ6HGJmzxkZITASSJ3qO+rHbsZW93n0hhkGh44617//e6+zW2
bxeQqH5/5JP/fx6dM7cdFCBRFXWh8RP2gYOdNosWkmjTrl6F/+dZqTjbbBAh
0cxyq8tp2K708eNmi0nkscaX7//rvfDd77ivGImeFH9JPoF94wXjeJIEicKf
/TXbip0YftO6XIpEf0LClRZiZzlIW/fKkGhQXUW8Hr+vl+i+lRALf1/LSToB
u5qpbKUmR6Kfzwc2HsXu/6Bl6a1AogKGevFbvD9TaeUW8Yr4eUVbFLyw+QMM
LLgrSBSQJHifjb1qneWxBatJJF/2oMsc7/8mwd6jKqok+sopyhjF9bOzy/Wo
4VoS7XHTDAzAPhFz6UjcehIVeSqdu4HrzeO04JGXG0lkMfIrWgg7aHeUedsm
Eu2z76wIwvWaPJV6eNVWEk08/mlng+v76dc1h/W1SXQo1L/2XTobqMcvzFw5
JIq4OGOqjN1m8c60QBev/zc3tgH3y8gmI9PmnSTiH/M2XoU9s6jp0NxuEun9
W6TohvuLXTZostuAREKWLVOjyXjerFxkXG9Coi/1CgEPcb86zsUdnDYlkbqM
0Ie3uJ99GpYelDcnUR9tQrkD93vctfVGJy1IFPNsUpqIZ0PtyCHDP3YkQn/N
Cv7h+dH1tnU/y4FE1xbVXh7C8+XX/ZP7OU4kypGts/sWzQZR43P7rpwmEfGt
wuh2JBsMCxL0pb1JxGoz+16L55fjuO281Dlcb1p+Fx/h+Ra8TuW5lC/eb5eh
8fPX2VD0uGiJVAA2n6nRwqv4PLn/7YfEFRI1bZb5NhbEhj+hi2+LxZHo0rII
WqkPzqusNxC7QyINKeOnunheq5JJNLF4EmX7XVpX6sWG4/5rnEWTSFRzWjIl
yx3Xx5m9OoszSBS8bmrvzlNsSDoS3C1cQKLVAlG5/pY4P07/jnARibae6j/5
BJ8ntbVi+4VfkmjDg5nR+iNsEDBMLljIJZFOVKK7nBneb92Sa0JvSWSUlKvr
ZMiG3aqT6gL1JDI2eq4khM+v0Rlnf/ofEkW2HWt0YuJ5Z26w+u8kiVoE1+rS
ZNhQka9aP/qXRM+a9j+PlGTDXedh9eZZvD5vvbz0xbjeGk93P+WjI6usHlYU
HxsS8s/oW0nR0c5xvy/+P1ig5+wtW6xBR8yYzJiEchbkV5pV5mymo8sVYhej
KRbIL9vikaZJRzzjjb5XXrNgvGHywy1tOjq1/E+qZQELknadv3hyJx0FykrX
fHnEggkF/16JQ/h5IRvqqm+x4EFD4HNXTzo6dOg/M1FzFvRWrmsPP0tHUoLn
PrEPsWDN83bBXB86Gi5vC1lmxIKCCB3rMT86qrt+uIitx4KPe/8KngmhI+Oz
K3Z82MKCqVdnrN1j6cjt+1VvGXy/Mky2FvIqpCOL96S002cmxIQv2hRTTEf+
6olDJe+Z0ORfYv38FR0tvyIhK1LJBLsj7BcTFB3ZXH5zLv4VEx8jDdZnq+hI
2TTCzT2TCWkhhi+8m+hoenhiUDSQCdOOOsfP/6Oj70eWKMmp4fvhKxV0dpaO
zNfOmjJXMyFBRFbBfZ6ODDvGc8RWMEE771e7I52B0joMu8aZTAj499DafCED
9S6StQ/gYwI9XNx6C5uBtt33i3zSIgvC+X2Wv7cykAbL3NMzRBaWzEYec/dl
IKcNcpZt72RAr2t/8W1/Bro2+VxBuUwGvN4JynADGEh0Utzf5aUMVEcG/icU
zEANvpfneU9kwHuV+960MAYybba3jsX38S8HjLY0JOLv/2ovmjgiA0EpiyR0
KAb6WFX6sbBXGnr3hFULMPhQ+q3Q8dQfUvBm1UeQD+NDdPkrk69qJcBZIIOx
THABorusvOyRIAaFySt03kQuQHGxnIObh0Tg8zbtSmMxfiR12u3tbKwATDkn
mBwP50dynbWxzYvoUGV031REWgCpbPiezY3/y7HV0n74MEYAvankt4hYP8Rx
Gvn0+3ucAMoLqqozqxzknHlgvVP8rgAqUyx7JH1kkHNRMLjT/54AQmeyaoMu
DXASm96zjTMEUKI3n4xoTR+n/vzhiJlCAfS54Xab1CkeR/+lx/mDLQLoyYX1
+VLQwjnoyqi60iqA9L1n+2zsmznminHSr9sF0O/2fREPw5o4DteL81fxBNDt
6osSCo0NnJCjtNF/wwKI++f7xw9n6jjc6Zu2GXMCqDghOctX9wOnMmfpsxaa
IOoITlLzCn/P+Wj7bF6ULoiaFx466tD8jtNSXZfoxy+IRrwyLLQ9KjhT8ewG
I1FBdGlcoPLIjlececPslVfEBZHS0gRivrmQs4AOXq8kBZGd/oBxksdzjuQp
W7FVTEG0OVxS9d6OLA576YT1MbYg8syIdCv3SOMo1l7OiVgiiHStnXQrdyRw
VEJlZiuXCiLh2cI3szvCOOu3PTL4t0wQ/WVODefceqzzP0aLlOA=
"]]},
Annotation[#, "Charting`Private`Tag$32222#2"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwV1nk8VF8bAHDLzNyRFBJmKCpbkqRsxT2nIkQqW9myJ0ska0IqS5FtimRJ
slYksqbuFflZK0VRylL2DDP2Jbz3/Ws+38855865z3PO89wdDl7GzlwcHBz5
nBwc///lxjd8/KPijVa3KO36E5H3VnoMO7z93inQ8jGBS/RpOLb8cp/Td4Yt
mLhubzdWcB8bErq4WMHwAvf5x8LaCnKwH8fD63IZ10HL1w9d+QVl2FdbhmwG
Ix4s7f/zSLPgPWbsQfuRwsgEtvo5Ydl5nVjitPWrZEYx8L3p3K//eBA73HBi
w1GfWrCgzjE6bzeHXQ4ysn91uQlMWqeGiF9fxy5VOcdx7WoHfflZm3jiSXjn
qD5PvkMn4GltkuyO48Gj981zVFh0g3+yf5//WeTDvfc0JdXm/gSewl8VUtQE
8GVH9xe/PPvB47aHaTSNLbjDW/PTCRd+g8q2kxvujgnhjuzO2trbgyC3pOjY
8yhh3C4o4WxVwiD4uvHSdp1YYdya23CyOGUQvMz8WNjDEMbNt9aLZRYMAvfZ
5YG1DGFcT6PEP6RpEIjNFqdvKxPGFW/EKhyiDgGzgButNX3C+CL/8ZRXUUPg
Vqr8tP9BEfyuUqVXXuQwmIiXwJo7RPAW5a5hv7hhcGxRlObbLYJTVRZsdJKH
gf4JX1mxXyJ4uIaa4WDuMIjqybC2HRbBrx2tlNvZMAw0tq+K1y6K4G6mlQMZ
3COA/Ywv9be4KK4bWGmSFDYCNn0NaCpwEMXDg7panG6PAOBxvHn0giheF7xw
5GDCCNAmiXtLu4vi6A01pY7MEZBoHFx230cUV42u3CiAj4BzmckcBuGiuFR6
ZcPd1RGwvh7qJJwrinPVVqqFB42CDmbjPplBUfwZn2De6s1RsK/2VObJUVHc
2MpDKCBmFFBtrgp6T4ji2fOSbNf0UWBVb8VVOCuKa++NfnYKGwW1FQfX2SQa
HplqvU2MawykfGPKYFI0fIMfJ3fpnTHw6cX4HjN7Gl5aZ+W9hzEGOC5svfbP
iYZb8lf05aSOge0//77PvEjDnz93e/Pg+RjgVX+t+8OLhhv+7vAL+UCs5/vD
LRFKw+NO5Y3qCYwDj+H7u0ce0nABeYOPfSnjwHL+3czljzR8GMkUaHo8Du6E
ZF+0/0zDXw9Nm74sGAdwtvycUScNd8pK7QmrGgcK0ULPtv2g4VWi46M7usdB
/aDnZsYQDT+P3OF2EvkLCh3jOz+v0PDCwf/UR5P+gueaVhOF0nT8Rh09uD3j
L6jVUnyqIEfHzR974lW5f8HvP1V9BfJ0nMNa+Pid8r/gA8dsdfI+Om7S4Wwi
//UvcOaT3KWnQceX35E8PYQmgGfYrVZOQzqul3k0m8WYAN/duEvbPel4VFP7
r5tpE8BnZbmJ15uO/8c+L7o1ZwKY1Om9PepDx3W0r8VqlE8ASRczNCeAjh8d
exVws2sCyDV65KqE0XHNA9KGQuJMcJjiJ8VIoOPXrF9F5kkxQWxYqUQMg46/
jjjyTn0vE0yUeSxfv0/HNbptVG1QJkjN5zxlk0LHVUOSJfPsmMD4cvTV4Uw6
rtSIzKnlMsHvYt415Rd03IuVtK+liAnE9JYo48V0/AVNys26ggmsqVen00vo
+F4P2BfWyAQ8vUJX5svouLzA1ebmMSZQf3eIHlhDx6WsxjOsFCeB7B9FnYpG
Ou4YHtjNVJ0ElSzR+3ua6fiTIsqWMDAJIpseNKe30PEdHLtu55yeBLtw37Er
H+j49lyrK8wrk2DlTgNp8gsdF5lqO369chI0mjGYEr/oeEoibj+GTwJt2/f7
jXrpuOjB0mCTpkmgxn8mKrCP8NUHpbLfJwHgrnd5N0DH6dwO29uXJ8HvsoOI
1DAdT8011TjEPQU+3bfvUx6h42J6uqY5vFNg57GEVq1ROi4eqxAdKD4F7jw2
H9AdJ/YjsjAniU6B6FteG/dO0vFH1WP8McengKBIbJz4FB2XsP65Z85oCrwP
vCNLZdFxyax39s22U+DAlozMDjYd37nn7gfvG1NgwLWj9PAcHZcBO3Lr3k8B
F52zb0+v0PG8gS21Ch+mwM2CiR7Of8R4OKUn+esU0NSsESkmLNv8l999eAo0
ZVSOrq7S8fu7rTAeEgtcldH558EhhncGdbaiVBbokqjgXycs1Hbyu89GFtjN
/0snllMMT/KEs7+EWECljy70iEsMT34lLV8qzQKePjInE0li+DdSptrIbhbY
+0jAl0QWw4XNRXXEFVnAVcYJ9yH8YHGDXaQqC4TFyzYcp4jh3frhl2oOscDr
1LiwZ4RF01aDWCgLdJzVd9iAiOEpWqwkS10WyFQuTsUId8e5ZscbsIDlmvm0
IJWY3//75ftTLJDdZXDFkfDDm19bFc+xwMXV7cxFwj86jL47WrPAoB/HmBaP
GE6XbhpOsWOBeyYqm68TTm18zcntygKCIQU/5wiz+l9enfJggcZSMkVugxiu
u5zH7rnMAsZqZ3vMCT/akuHa5MsCvBYbbG4SnlW4N1AWyALqXLExzwifOH7H
IiuYBaaqTrp8Ipxle/1zbBgLMB/VsFiEFwP99IPCWSDI+7jcZl4x3Ijh/u7C
bRbQvXN+kzzhnOf2GiZ3WUDvh2/2EcIr78+WgAQWSJ5ZHjEjbNx7crfCfWJ8
3eHnBcIFC8eyRFNYxH2XuOFLeI3/EI2cTrx/es63UMJm8kqJ7EwW+Bzl/CuC
cOExGZ7ebGI9rSvpDmEuG/EbLfks0HfdkyOa8Dl/waWK58T88KxtUYSL46ne
2cVE/mKGmWGEKU/XRuNfscC3hDLvAMLWdbN2wZUssFHh1lM3wqU9490Xa1gg
K7YlyZIwz1z/aTOcBZ5c51bTJWy3qavpSD0LBDjnxyoRrpD9ABUbWaD2sFKq
MOGNR+qr6K0sIJ0iarNExMvRsloJ+cQCWk97vnUTfu1TXDDzhQWcVeeQcsL8
sbmS/d9Y4GHmACuWsEteWkrbDxYw/7WN4UgYwxP5q3tZwCNMdkKFsPt0CAdj
mAValNPb2ol81/H6BoaOs4CENdn0IWFRaTeW2yQLpG5XTz5P+L+z5v3H5on4
yK4a9hHnSdzb8JzSMguk6zDqUgn7RB9tF19jAaFn87PGhCXfKtbOkdnA3EeD
UU2cV/9vUuq/edhAzUVizYXwhyn6y498bPAC/yO3hXDQTuRx/lY2OHBw21tb
4vx3RvVdt5BmAy8679Rn4j7JZ31d0NnNBlPcKXYXCN943eqlvJcNZiu1kha4
xXBFZqUtrwob2Leu6PMTvm2cAN5qswGvdgiLTtzXXvfIyqd6bODIj0QnEfdZ
JSJ4X7IhG1AteP5uJPy78qKElykb2GiUkqfXiH6w7ci6pBMbuPmfKUoi6oWe
decVh4tsMOdfOD9K1BfTNJfhbA82uFjkc02dsDst7oOMHxt8XFE91LZE1MOt
PWkKkWxwSupU1n/zRD0y9dzsGc0Gjwze/1gh6lXpPc5bxXFsUFicaraXcLOA
nJvyA2I/ub6CETN0fJHPT129gA1WrA0whKh/pJPUwquFbKDMdUBUgqiP/HfT
JGpesoGGdHa1MlE/ZTfUUdBqNnA3Bt+MJoj+Stn89VgLGwgU3bprSdTfsrUC
71MTbFD/KP9xLVHPa7U0hxJYbLBuXP0lnaj3bcGfzn2ZZYPyAlULP6If/Fme
A2arbKDd2nhBrIeOCy4c3WS1aRosOFemHf5Gxy9P/Xx2QWkaRL8bkP/QSsf3
9PMPhvhOg8KKs/OHiP5lNCJZ5x84DSx9H+ZgpcT8SaXHXsHT4NmxInVA9Luy
f6et7cOnwcRNw61qRH/UpCV2at+fBuZKjHLOAjpuaCzQwFs2DbLPn9DiTqPj
Hu8F8h7OTIN3Taa9b0LpeFzrjnDGwjR4UNjW0BtMx19+2e8QszINpjfKF64G
0fHZ/jPbQ7hnQI15T6Ay0e+DVxOT7bbMgLQ2id2BXnT8rqpglOyBGZC1vCPT
15aOFxUIXiy/MgMe5cS0qmnR8fCv+BHugBmg0slSbj1Ex625LomduTYD3A8Y
HLBSp+MbrBs/TtyaAYrj1tzeB+j4hc3BKlJJM8BQ8jaH726iX/kPcd2rnAGv
Lndc6hYi+suxqozL/2ZAYEXv3l1jNDy416ZjT+QseJ7Gs5/7Ng2f1dXKcI6e
BSdd6Kpfw2m4R4m4S2bcLPjVVaSVc4OGW4X3LAs+mAU9gqoWGtdo+CF5i53L
+cR8w59/gCcNX/Iz9W5qngW6Zo0WuAkN9+cz2OzMNweMy2T9E8RpuLemusGj
+3Ngnv4mvo74fl3O1Hb4mzAPzrjcVeQoFMHbL6faBTxZABaaRUctAoVxDd2d
a7+yFkGX/FBi+eGteLOORgFMXwLd1h2PPk9uwXNLHmr8fr4MOsljcueuCOJb
dym4nX+6ApoTjmZncgngXzipN2lv/oGX3QIrzd2b8HKqT1578yqw3k4m51Ty
4gpb+d0cGtbA3HH9o5EdVHwqbl7owLd18G+IxaFcT8Z3RUXt83LjgFst5od3
cnLjvy17fhwd4YDcft46Sx4cuN5Qx1K5JycsMJbdkPNgBQu84nxRmMkJ1+cx
S7BxATOqSDsh7M8Fy42MFkriprHJf27B3PNc0MbajBmfysSyum6UefpwQ+yG
8MBG0RFs+aKW3dUVbji8p2vLIc4B7ESNPPRb5Yaf9Tq2uE70Y2l8opLe69xw
snFke15XP6ZZOt13kZsEp7uyjU+86MdCV/Jtz/GSINp0aeth636MO07QVk2M
BOXKl48G+fVhG1+N2MwdIkGvJi4bf9IvbNtqopV3EAlOPGbrP/LrxvR+n6x+
EEyC6Q+S65DT3ZhvI48IFkqC3/qlziXKd2MtiTe+bLhFgiWu9AZSfxfmL+Ot
nxNDgv+Vxgt4GHZh7adOq3Wlk+Du5pN5anu+YTefbNqihRP/b+PX9ZCjEyuK
arns+I4E7e2dJlZ6O7Buj8iPd+pJEPM/aRfytgNTVFu7862RBOfVVE70BnVg
Pa1MjsvtJDj6oNdFZOELdnCubfLJAAlKQMeXdnOfsWHdmBYqiQwXntw9Js7T
jjkY2ElKU8jw7frexg9dn7BfRir+R6hkmM0oqcrI+IR1mvXtCNpIhpatp64w
d3/C6hwPXP0rRIb771nGnND5iGVc75H9KE2GB96muTMj2zDTyj0R93TJ0G4j
ycpBpRlrf83RU6xPhuUnHlspcjVjBthXpTYDMkxI8lpU/tSEHW24/pN0mgzV
w3OwIdcmTKmj44D/OTLU6p0Im8pqxDZOXft9zpUMq07aVt4S/w+rl2kD22PI
8KSAb+Huw/XYibi+E8KxZDjm85/JT4F6rH1u2mxTPBmSV3rksNE6rPc9zWON
QYZunEO0zQ/qsEUHl5TeVDLcYnPm2ODcO0whk4v96BkZ3v+g8cfwTS2WLKLx
RKKFDE1bOVsOd73BxK8bFom0keH5OkRQPuENlj1sW7X5IxkGTOqcu6L/BntZ
Hvlx/TMZ6qg6GvK/rcFaTTqX+76T4UWtP40hBa8xjgQvk8djZDg4ST23Fl+F
uVHzSDt4KDDvk1FR9OMyrJXrduwxXgq8ArpQB9syTGHVVfgCHwX+93NsPmN7
GTbF3iv3XIACx4R5Nx159Arz7Sk3UKFTINdelprSk1Is5EUDQ38PBabwtHBF
vHmJJZgOSV45SYGd2U5ce3yeYWyjxqf3T1Hg4sKB06I8zzBj/afKlWcoMEKj
NLU28ym2Fb2k/c+MAn1CSlzhpwIsVXbOJfI8BYr+7n7DUs3HcpZJxaleFFim
f6qxRC4Hq3wspVWfSIE3yCf5d0tnYFLr2tfe3aPA/bf6dtPupGMJNs7VeBIF
7otu0FSdTMMu0vNU3jykwO8Nr3Vna1Ix+n1ZxfIsCpR5ueuFm3MKFhwlL5Ff
QoGJLUvuSVP3sNGhEza5ryjwx/m9cUvO9zAzbfe07HIK3L0pzin0FwNT5CwU
eVxNgYMFovwjnxKxvqC9/A/fUeCrhF2rmuHx2FFPJc6YzxR4jKeINV4Rhb1o
Ow3udFCgWHGkMV9jJCa2xzsk6isFPvDN6T37PQKbHSlZuvWdAtkd5ptsSeFY
rv2B6eABCuyZGf1C9Q3DqGaqfzzZFIgsH+asveyD+b4y33FphgKdKppEojq9
sQGBAFv3OQrcBvSK3TQvY68/Vva4LFEg356SkFklN8xdT6PTjhOBl1/P5gSR
rbGPhzUbjAUQuMnbsDin9AwaXeW3cnwLAhuVD3Y4ImdRXZXi/Ye3InCD+nFM
8qQ1Wqu489EuGgIpmdQTf8wc0Vc7qAGzkgi0zJeZYlhdQlOQTrlkJQSyfjQl
nyUFombhfLbRyggsE6up/bf9KirIqZsUehCBwmd/RgipBqExy9WcLuoIdB4t
/VxgEYyGMjN/qEEE6p2zyrA9HIY6drjf/X4KgYVKyncwcjgqeTq37sMZBH51
nBdzDQhHf7b1Lr4zQWBohY+oy0g4av7fGednZxFYQ74w4lgXgepVq6HXbBEo
sc1TJt4pCiWrevt62SPwRRNuyN0chdaVPnvm6IjAET9Fse49t9HDhdtEDF2I
/VV0nns2cRtVzORmiXshcMxPiU/SKhodF9OSEfBGYJE3W6apNBrNT/G3Jvsg
0AoIH++lxqCSjLEmpj8Cnx7faWj1MgbdEvEpCwtF4OOzZ5IbJ+6i7Zw83aVh
xPMW5uY3qceid0OPbsq/icBae5nuzzdiUUpgeVB8JLFeyfl3O38cuuiWZmIX
h0DO+dXUP+LxaHxQNnI9AYEHtJ10Iu3jUZno5zUZDASm3Ov54JUTj5o9rdnV
k4zADoUttATBBHSiqr5rKQWBJwopFX77E9DwptYY0TQEBnltlbx1KgEtHemZ
MctE4KTfjze0Owmo/sKffN8sBNooL0jm5iSg/ZQJq3vZCJw9v1JmjSegm2X+
1bfnE+OSVV9MpxNQDyfx+wYvEWhc9Q+LMkpEuX2l9NxKEVjqoBN0zzERTb2l
8O92GQL//vym3hmQiDY/0XT6rwqBmre7FZcyElG7Um3RodcIPPgp6FFfcSK6
+M6wjfstAgf0m2+s1yaiMgPWB4+8QyAZbxNm9Seib1lOo7b1xHko6+Wqn0pE
TTkupYc2EPnYYN7VsZqITmz2O53RSMT3Jm/pLl4GeksihPSmGYEfdcRKXokw
UPq+iKofrQgMDB6cDt/FQEvRWI+lDwj8zaQmpygy0H6bjE7VLwisNlAJjjnK
QAMu5d4260Rgjl7LqocBA90UUqTp+w2Bad86bJJMGGje3XIWoxuBagOH3pCt
GKhW+tuckh8IdGDIaeD2DLTzecO59p8IvMAkz9W5MFCPmg8bp3qJfLpe4xe8
xEC5W7/W8g0g8Nudy4VF3gw09ccvX4U/CJQM5R1P9mOg+8eH5AyGEHiq4uX4
x0AG2rTE/Ok6QtzPMK5282sM1I5nPuH2GAJnnvTX7AthoAuia9r5fxH4a9al
3TKUgcbJUZYamAhMWmLv+05YRn1T0eAUAj8HCa0+J/xWV9ieexqBczuyLDuJ
9aZnt2/dOYvAUYFcd5NgBvr3gkwznEeg142LJvJBDPSmv2KI7SKxPzNPFcsA
Ip6RqvtDlxEYUemjMujDQEuS0KH0fwg0KPcKaPZioHq5xx/WrCEQdDIkeN2J
+JYZnfzBQYWbio8bP3Mm4vvenHOJiwp7Y/YeLLAl4tt5vlyETIVblnaMky0Y
aO6fC66qCBVqOKk+fH+GgWrOeG4z46HC66/KLgzpE/HlCvjsw0uF4v3bAl2P
MFB3wesRDD4qTI7bPXNGnYFy7YzSKNlMhYL5DauZRH5T98czPwlQYfXUVsxU
iojn6UwzPmEqJAleWprnY6Bu74cwRJQKF4WEmdVcDJRPXUGOi06FuUXh51bm
E1Fjierl+W1UuPmikPnqr0R0lrHuyJagwqe1uk14eyKaTDn+4e8OKpSKcbpC
qk9Ee5hfMvulqVBlWkpJNC8RDbWn8fTIUmGM9kbpseREVPKr7ZWvu6nw7ICj
EIxKRJ3eTGi37KXCF9/D825dSEQnoynjr1SI9byeq9ckEtGENUOTF2pUiBaU
7n6wMRE9cOXemwINKgzuNP0JlhLQQAvJ+AwtKrxnp5eh9TkB5ZI7dDBKhwpf
qtwSIAcnoFsbLoVamlHh2k/pVKVr8WiVetmI6VkqfOiuZriiG49aFi6fPmVB
hYjti0vrW+LRR/eidmnbUCGU2vq45mkcKueQ1bTXmQqt1YrVNdpiUc31TkFO
Pyo8EC6eMzcZgzpoaObn36fC98yI1wNVUagr88Pcz2QqlJxAbm+/GIVezrLV
FnxIhWOHLd6+FI5Cr/PcGgjOoEK9si8S/d6RaPr3ZjHjPCoUupQnVCEZgX67
ejbhXyVxXoxESKkON9ETr69cPdNDhenfH5OMhK6iZzxJTZG/qJB2yUvtvnEg
em5nsvCbPiJf8fUblBMCUJfo6lcyg8T7M/Yei+bxR8MtOSZXJqhQh+74XXvu
CootxzrkrVFhBG9OgLa7K9rwQqKkh4MHPpAXFevpckHbHErW+bl5oIfCRPHH
YxfQnpbO9GsID4wfG5VapDmii6liXaf5eWB1zVMhnhsW6LpRkXSkIA+MHVbb
cMHYHKVwA98aIR7IjDrULL/LBBVydxCQofHAdzMiGhGR+qiYxKytlRgPnIPR
Vjelj6E7OyJeJGzjgRbLPdTlKA1UPkpktUGCB7YOSjfcvL0b3X/4qcHKDh4o
9UV4uL5PT+t/NQ6Klw==
"]]},
Annotation[#, "Charting`Private`Tag$32222#3"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwV1nc8Ve8fAPB777kDhXtESFZLXyPZI+7nSRLqq6FQWdmhjLJnkmhIKqus
krQks1JOKpJKfl9CZGZem4wUfqe/7uv9Ovc855zPeh5ZB68DzjQKhVJKpVD+
/mIEX90PDR+OQepiad5M9quNQxXbpK7thQOnPJsDgiIrFgqUnb4l2sGxc3Nr
DgQlVPQJu82XJnrB6OT/urSDsipajaLf3E2MgLtRnEahoIKKr3aJcumJV8BV
3QFPC3xdccBTvDUlMRP67wr+V+1fX3F1yrooKfEJ9Hf3/I7y6qrYVmXKZ3Dq
NYx9li5sWpqo8A42O1bkXQO+74/t1pqarzjxzDmetr4emuofvTdQoxCNgya8
9xwagaH7Oyl0CSMuKM9SSg+3wCd1qaV2YBE+CjU3Xt/9Du+WlUvHj/MRvc69
kVml32Hb9jX/XfDjIyyyKJ6R779DUv55c+kzfISuiI4BGvoOxL6iEPUUPoK2
fH+MUGyHluoNqwSr+YjE/y7uIorawdiEPR0ls4IoDNr761VlB3zf5B5yoH4F
seDokd9+sgsOIMvepTX8hD0+HfjSvws0NQ/Vqm/gJ6oqgnfcDO+CeGrvMScl
fiJB/EKLVXwXFOyWzCgAfkLuSx6t8TFpFdXVi478xEHdfovakS5ofOXk6PSQ
n8hnH1sude+GFIP7xXYaAoRwxeCHG76kq35uq9EXIII8vK+fDu6G0ohZXXkj
AcKwOuIf1QvdsGXQKLXVQoBoC8kwf3y/G4Sfpd4bCRAgeAba7t0Z7IZLeqzr
jc8ECIdXFvsSXHog943TzjwNQUK1VExI3KsHYiTfTXTqCxK0J60N2QE9wDP1
tUDQSJC4nWVrWRTbA5uuHXa1tBAkes662DY96IEn/JaB5/0FCQdTf8+14z0g
w4+fcysh3XwjNi/gByh17qxNWM0mVOstTVUif0C/Y6Cs4ho2QfsgvvJF7A8Q
TEYubyXZxO0X6Vc+pv6An/8YlvRtYBM96XeTxsp/ALdN48AvVTbh4FSSo07p
hchHTo1HzdiE42Tj69exvXBE3DmNJ4pN2AcnWD5L6AW5E+L3h6PZhDW2Z+xJ
Si/wWauu/nieTViIvJXIzOuFnU8teSMuswljnaf+YTW9cPA2j2F5CpvYcuay
oi5PH/Qq3k2MzmcT82yjlKLzfVBr3L1s0cwmfqZSlR9e6YM8Re/md9/YxOS6
V1W3k/uA80lvcct3NsFVV5++eq8P3vlVqcx3sYl2q3Vm3u/7oDx9u6otl028
yVrClFj9kHNDWyXwD5u4tLXMKzemH/zag6y6JXGiVrW53y++H97Nv99bJ40T
PBpzNjuT+uFtnGB+mSxOROto7em92w8ntXdlRGzEiRCDss3rqvphn+sjw15F
nHA/WNadjg2ArESOC2UbTuRZNFudWDEAC25m94v0cKLfau6L3qoBMFm/w8yR
gxPHbLQq2tYNgK3a4quy7Thh5VKWJm4wAIFEiJKGMU7sCiwzvxE5ACVJGSJR
B8nnBzfXOsUOwHaPSdvfh3DiTejcdvWEARgvLWb6WOIE54zW1obMAQjwLPLe
fwQnNC+UrcSJAYhU+JLXb4cTG26VVV1aHIAkc6VwB3eccMho1rNmDMLyiU9J
2R44kZU1V6TAPwjjA8187Z44sfau1u3atYNwcHsC3cQLJ1bll4Xz6A3Cbbdt
ujOncIL2ukwrOngQykt74jNCceIBv1DuYtQg2Lxs3v08DCcOHPUUDrg4CIYW
1i+/hOPEnVmZyeO3BqH3cGzZeCROGCpdeLC3YhBO7/km9CcaJ0aCe8U+VA9C
R0iB289zOHG9hnPe4Msg0HMlfQZjcKLPcdpRo2sQdumap76NxYmYNGtJCdoQ
HHqdbmh0CSe2DJZevM43BK8X4xXXXsaJJg18gX/VEKSJu1aPkpb7X1UTZcMQ
6IddEIy+ghM1LOWE/p1DULhWZDY0ESe8D8Ut2ZkNQfbeRx5br+GE2J0fnt8s
hoBTU5XYSfo4J8Xkk+sQPLJxnNl6Ayf4/KhYYdwQ+KyqWpGVjBOFb476KCQO
wZ5dPStVUnDiCLu0MydtCGofuRKvSD986P4y+SH5f9li7dpUnDj46508XjwE
83eilk3ScOKPkXTqhZdD0MSpCagivaenwS/s8xDM+jSGPrmJEz+Vt/TOfh0C
rc8PeaVu4cStsNgD3h1DUFMtYRxLelRMX9lxfAiyBqa/7U3HiSSX5PTvc0Pw
Q8Zf6TFpTvHkCgsKFxzXVqkyM3Aifm/uoDHOhTcmfOYPSWumUyzfiHOhpm39
yTnSHdwjVdvWccFsYt82yCTjrV2iViLPhSTp3BdRpJVjBG9vUeNClILOSCXp
lobj7LxtXIhblqn/QzpS9l24rCEXnhT4uahl4cRmL6nRtD1cCAjb98SZdP3L
wKPCh7jQ9vnjg2ukA/kaPly24YKxGnb4FWkZKyVtlgsXLrqtetFDuubu+dzI
k1yo3r+mDssm8zXdLbzgz4WTfzRvyJAW26539lQEFzQy4wR1SL+OT5ocOc8F
epqa/r+k3b5P2LkkcGHMz1LKhjQuv7uuM4ULG/rEitxI97My8ZosMh4eKtle
pF/0TR0syOOC/Ezo/3xJX3lrlJJSwIVKPQnDv3bKTmuLfMYFSqfirxOkdSLG
pI6/JuN7uGHCmbSAjYHD/houuPGpKBwh/UM36a5OPRfCVI7nmZJ+JsYdlG3h
wsJYppsW6cuz+op8XVzADRc8/n6PQ+NVr6kBLtQKZRQySGsW9hW2jnNhSrJQ
b4CMx4oEndk3c1wQ5rXlqyLddeKyzsNl8nlWtRKZpIt3d4deYw3DR28ZHz/S
tqw4zEl0GNZNqw2uJq3W991oj/QwpMUZ8/WQ+eJ5u/WCutwwrDSY8b5PujC8
hc3QGoaM1V9WKpE+b614cJQzDCcdjhgMkfVhrRuZ/NVoGIKVdV9lk2bMyknl
WgyD2N5XZ1mkWxtCjsXbDsPX/6q+FJP1l//0S46/C7m+7ugxW9JWJwIUdvkP
g0GJ5+Fcsn4f9VZrD94YhlsuCjd5yXo/82ZNaH36MHwZlZVKJfvBIusk8ezu
MBwTnR3cQJpivdoormQYnpnIWaqQ/WTe4Gwu/3UYZL6cuCVJ9uPmp8+ThNqH
wXtihfOVJLK/4vlbF3qHwXR/eMAi2b+5piX2H38OQ3P+cHDddZxYqKSf9BQe
gTO3PTFDch58ybR6enDtCCh6y69LuYoTOWGPfuptGIF9TdxLgwk4YaZzMIRf
fQQ2rL25K5ycJ9kFd2LzzUcg+dfy4TByHhlnGtyZSByBLVf6tWrJeXa+pr49
6uYICNDMHn4h5131pK2YSM4IRFe/ra0/ixM7DUMu65SMQKBwmmD1GZwwGCoK
iGoegeoNp16FkvNUT23jHuG1o1DRXINLnCb3H+uimNwNoyClxAxr8yXr9dz2
Sm2lUZCYbb2Z7EPWY4uNpg1nFLj3LWZp5PzWDEuSybUfBXM1BaXc4zix9T1r
RuvuKHge/bRG2hYnvCZuKNc+HgUi2Xw5zZrMl/gGd+vSUaiWk88SOooTSp6o
M/L9KCTZrRWfIfcbeTzow4ehUTCIfTYfs5/cX45y049uGYMYhddzHTtwQnT8
k1FE2RjMmDwKciL3y5SrxLEhYgxu8baWO6wn+1W9MNS8ZgwuDOKz1uT+KhaU
XCj3bQz2Kzoe2knux2swB6n6hTFQCZds6BPGCSnRuRkZzjjseLvg7oLhxCaQ
vfvm3ThYe0kaerSzidzuVa8VP49DGBKbGmplE5uimW1JX8dhtbxugVMLm5D7
MMz26B+HbWL69mYNbOL6P0creOkTQFMMz52qYRNJRRvlCzdOwEumcVxEEZtI
e/+Cih2fgLLXNTUF59jERFdB0LjnBJT7nenoJ887uxZyJ9u8JyBBUzFLPJI8
nyhe6y4OnIAnwZ7yfsFswizRo9IldgKcfh/wpnuR5y2btWdq702AyqqVvtGW
bMJjKoyS2D8BHizrOcFNbEJPcvuyjNMkKFUnJvGeEiSMrRt9Hdwm4XjWk2o9
D0Hi4E3X/juek7Ah+PcdN0dBwkM8/vMmv0mo0ejwemAuSKSJtN1UjJmE2TSv
q01qgsQ8v5+2dt4kPBDdINcwJUAUL+X57B2ZhFF7FRsvDwFCoYvdG3Z6CgQf
mCvV7OInHucJuZX4TkP0/KHKTd18RGiHTYNCzE+oPN7L5OGS53s97d0Z12eg
RbUnk1FAJxYyDR2GE2Yh7l7o9RBfKlHvnWYfcHsOzoYHV8uF/q7Q2bVuqT17
HjIC+c0SD/ys+LBTJw/d+gWNPHK4lg234u7TVJ2ehwvAfpR150vJ1wqR9Yru
tvd/AyrfmtevXs75j8oTJf7yDySI73Xgt+7hlPCcyq3/sAiodz/VbtMER1GE
7e5QtQQ/NHNbvmrOcsbjZ4XVmpZBbP7b81KNP5z1588re7lT0PxjiWDbJAr4
NqmHO3hSkNl+ZqNPJgVeb+z5dOgkBbkVcwcj8ihg+07PXc+Xgg6+ebrt0gsK
pFGncniDKShmbuFf5w4KCIVar8mJo6A/OeNeohupQPNRYXzLo6BSTbrhyXwq
9BxpazUYoKB+t4GoiAIarNS3vGc/REFiaR8tWp/RQEO64VT4MAWl79l+Yksl
DWJ/1K58MU5BQvznDr/5Hw2UPV9wVOYpyDPPaiZligahYam3pXmp6LmVmPey
KgYiWZbuf+Sp6Ki96MU7+Rhwoho01yhR0ZqHkbXrSjFwc9qLaStTkdWQD//N
Vxi83Lzr1ik1Krqcdi3J/xMGDk8167jbqOhDVWvUtyEM8t+IqH7bQ0XlAUGq
/66ng3Ffw6+Sk1Tkc1OjoTOBDmEK8SFPvKnoyOzWBb5kOhT6GC/m+VKRs8j9
78rpdJBYekm55U9Fl65O1Lncp8PY6lxWVDgVqa+02RlXSYfrxoEiZvFUVOUw
75A5QYeuh2tV+h9TkW1xIIXHlAEiU02FnU+oKK08WNdtLwNMta+qf3tKRdav
RPjeHGRA0TuG9qcSKsoyeO/sYMeAmPYxTuErKnq92Xjy0GkGKApW7gn/TEUO
4jlerHQGBPo6u60epSKpZlfRy0MMiN095qo7TkWVxF4scowByRsCXG0nqSjv
zRbkMc2A0qZYl9wZKspWccyTX2TAtO4jJ80lKpp0kxL+l82Ek9i0vYUgDXnf
0/CU1mBC2PcQ+2CchniCLQaSdJhwqYRun7GKhvJDK24zOUx46Lrarl+UhnwF
4prqjJgw+FHHxl+Ghvx0LovSrJjgeD3ycJIKDUnNiKpNBzLB9wTv4RdqNKRq
Xr9jLJQJUUaJVh0aNFTj5BPTHcmErPk7lpt0aYh+Ti6jIJYJHdbvD5Ua0NB0
3m/KZDITrDYKHGgyp6F16vmDv4qZYFZ603S1Pw2dMD1rKzfEBLdph2WRQBoS
WlDO/TnMhLNb5YtFgmkomUGsLB9jwrMHzyRFwmno3b7P6mo/mbAu8+vEqhga
SuoR6KtfYsLsecFkPImGFOw3e1UKsYBd1bQbT6EhHQkDPxkRFijQMih4Gg25
XFW9HijKAvtQRXd2Bg1NXDKXEF7LglpvE33BXHL9o5JG8xtYkHH47I+VpTQk
3Tn55bQGC54lmaasfEZDPhJq2521WNDQgP+78gUNtfbyvTfTYQGPWVbpigoa
oiw8EuTXZ4Gvwas4vmoa2tLhekXTkAWXIqI5fDU0JJaxmDm+kwX3Xu6e5q0l
8+NY+jZ7Fwu+a7Za89bRULzTrx2TpiwwUphT5mmiIZsu+gb9/eT7ulX0slpo
aMfHvg8VB1gQcvdcKquVhloODJ3ROciCAmlhjNVBQypqC3JrLFmwRlilidFP
xuebiGmsNQvU989fYAzSUGrh/8L/s2HB3ngCGFwa6ulfVyVix4JoHrP79DEa
8pywjzl/jAVjf9xDsVkaYqg9bRV1YcFhq93//JqjIV7XQpONrix4V6TQNPaL
hlY7CwkqurEg1X1EuXWRhno9aekb3VlAr/70/csyDf0+neUs5sGCk7KP46qo
GHq+43k03ZMFhi0nfhQwMNQXGFddc4IFT9TMEnJZGPLbbD2UdZJ8/ytb9G/x
Ymhsa5eDrxcLJnaOJ53nx1DBhp1HqD4suFnkbWorQl4/02795RQLmIL758xF
MbTF4IKW72kWeLur5JiIk9e17x4X8CPjKTu1qC6JoTXv7jSq+rPgaeh/D+Sl
MfS/kFr+ctJrWwotZWQxFFrQl6EXwIKp+FNPV2zEUK1o4geFQBbYcM1tqXIY
ult0yjGVdM1O9RVzmzH0MYN7iBLEAtVs4Wcj8hgyVlufbU86/c9Ppx5FDN06
tXvnC9I8Vl/xli0YKuG7ZsAfTNZHUUnF560Y+rpbIfUw6XaBJI+3qhhKUN1l
kkna2N1f7Lk6hh45SJh3kC6qsqjK18TQ2s0dpatDWCAlq+Wbo42hHv/3p41J
x4aKSqfpYkhgmH35FOnp5rmPV/QwdKdmZjmZtK1aS+A5DobO/C78XEK6Jv7Z
xhCEISvR87OfSKtxU/7zNsDQDcvC4HbSGTuDIlwMMWSS6X9kgDRv9mFFayMM
SQSJJnFJn/6j822/MYY0RFuV/l7vsFwTs8sUQzLmjHV/7zcpWlDV34Ohd4+7
ff+uXyzQ1qlqRq6397nM3+dLuZdf2rwPQ/PMFoW/7xdXdVNH6gCG1HdfvO5L
+qdMaP+qgxiy1ll3dBdpu1Dra7wWGCq6MRohQrq2WQ8tW2LI6CNg7WR81NUk
R38exlDbsGdfOunM+MVU7lEyvk9qN1mR5uO2G3XZYEjSv+D9CtKnd1ZMf7XD
EM0woOYZmR/TP+H/VjpiyG238PASmd8SS7uFUmcMVdTl8KeQlimCe49cye8b
vXBVnvTscQo1xQNDhws6KraR9XKsquvx5RMY0qlbdfwFWU+fZCqPnPXC0J9A
Jf+/9ZbdfKb45Ckyf9FPXvytx/6qrZ3xfhhyyfY+5UzWq2JxJ++TAAw95ZF1
KSbruTRB3248hIx3XcxvXV8W/AkfiRMMx9C0m02mL1n/20/cLFaOxFB/tXPE
bW/yeSa/eL2jMaRv4jrLJftHSDtPPSGGrLfWa/EYactNlnYFsRia5DnsLEz2
Ww+tpHjiEoakcaX/SZH9OV/ubedzA0MXS34VNZH9znkgfeFqMoa2KX478NSZ
BWdT6oqfpmLIvueiRrQTCwT8FPmm0jFk6KH2QciBBeu3DBb75mLomGq0fgM5
b9zWJncm5mGIyT8g4H2UBfl8RnxFD8j85g/+wzjCAu2BO3bT+WR+p1pAjJxX
Zll2fKfLMNRy0Z7as48F1+MFNK4/x1Ba0y2N7XtZ8C30lV1xOYai2huep/zL
AqfDEiU/CQyt7LpQspWcl0FCzXZ+NRhi1bES6TtYkBNtVuL/DUPVV6bu6qmx
gOu72JnURtb73X4DWRUWKB97xFfWjiHNO3qcpS0seKHPZz/XTfbTiVnzbHkW
fJmt4gvkYkjlsb/oJVkWLLjp2wf9xpDd6du9P/nJeimXR36LGOK8i1K7tIKc
R/xiMj7LGNo3sHp4LS8L9AqnOt0wOsp1XkiWp7Mg/Pc9O6sVdNRxyJ0294sJ
WLyQnZYEHQ1O7x492MuEg13LHDVJOjLoTdE6282EHNVRKWVpOjqX3frrQQcT
jJrfd2xaT0fKa3Zx+1uYECsTZrtagY6cpT2S2Z+ZsLJowGZGl44ej57nVyT3
V2vGV/1JPTra++Oz+VQBEx5bvpEc5dCRo8T0usLH5P7751Z7rwEd2T3day91
jwkJOw/YNJrSUSn23f9+KhOEW15aFx2ho/X6s8IXw5gguXj1qE8wHR0RCwuM
Rkww7vn3eXIoHQnGX8yR02PC6fe8ohXhdITdT3B5q8WE2qtn/uM7S0d6jWpF
vVuY4L/JxyTnIh3907kno24tE+r37tNqvkVHsyIhnO1zDIi6LbBKn6CjBV8T
5fxcBjw+X+vtWElHp+oszrpmM6DFM6Yu7i0d7XinfE/8FgO2aC3FNb2nowEz
tovbVQa0fRyleNfT0YhD0tyTEAaoz3wau91NR6P3ef8ZMmNA/66LtTx0BvKv
MlMWIs93DrvtZTYyGehYgLs2k0uHdjMN/+08DPTmSOW16R90aDzUKRu8koF4
f0WYvGimwxtHtaBhYQbanWk0MldBh/SINrm6jQx0OdZjVOMSHQ6WKZy7touB
ZD0m1D/J0uHtpk8gdZGBgsLWPejRwcA0vtN09WXyfonGtNfk+bh+ZuqQwBUG
ajlUp5eqgEHHO3HPpUQGstncd0tXEoN5B9eUjjQG4s53szgUDBQzaZMZDxho
JjHJzqSKBkmiOrelaxmIekRX4MxuGrjz5NJleZno3VbvIxPGVCjL2qD/9ioT
XfwtuTxcsMip26ZXdQBnoTsWDAn1lHnOvPtNc/t4FhLqPBk0pzTNqdmXeYh/
NQ/y7a+Mm+0Z4jjo6N27d50HBbdP9pxKaOMcH/088z2JBzncHjSbW9fG8c62
MxRK5UFPz5d6+pS0ciJ4z3aHpvMgvFz+oGnrN86tbx8kDuTyoH1sq/HE9S2c
piDLhD9lPIipkWeUVdzIMX3hG7S/jQcJUQ2HXe585Ow/Sa+JaedBS2pt2o+q
azlW65JWv+zkQepjAVaDQx84rheeF23q5UE9kZf0jLbWcKKPUMZ+j/AgubMG
XVkv33EqFi475C7xoAGFiFdyeeWcqnzpp20UXnShl+9mw+hzzieHp8tsjBdd
ernqhr/aM05bbeOtEBYvuiamq59TUcyZT5No3sfmRV5pR4ds7j/kLJs93hgj
xIsql96mGqvncZgYnC4X5kXR6gJL8kQOR9jDAd8kzosYY/NQdv8mR0L6p91R
CV4U8GU50Iq4zlnXcC4/QZIXKXy5JN93/yJH/rzoYpU0L8q8/qlO+kEIR2Xb
/d2/ZXmRgV/CH6XpNP3/A4rFT7U=
"]]},
Annotation[#, "Charting`Private`Tag$32222#4"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.528488, 0.470624, 0.701351],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwV1nk8VO8XB/CZucTINmNmIhVaqIiKQjHnSaslpQUh2ZIQUpS9BVlKKKRs
lS2FIkslV8rawi9rSfZlJnuLEvk937+83q/7ej3juedzzrkKdu4HjtMoFEom
lUL57y9Binzo23Sam9G1/Y+9X9bLVbzyrctu7IPFF5u8DCNCymceqzl8ij0G
tWZp/2Qi4soHWE6/i2Pd4dryrIu/wzPKP+8KrsyIDQJ+yfDLN+FF5S3HYpWS
Y69DiDZRtyy8qvyAq8znW7GpwHk1mXIntKU8ZsqqMD42HwqWVS684z9QvrXK
QETvTAXI6i6Lytj0q9zD19i20KMWghoSjxMGFPJU6fEo2opG6GsvfrJxhSDZ
PKxPz7Jrhq0GvuidmAgZofaLUnykHZwTPJb+AHHytHJtXEXGF7je8j93YUUG
2X+8/0Ja8RfY4nPlsvM6BmmaRnG9UPMFXLmtYrUaDHILW1sP8b5AQnZcoNd2
BkmbfzBGqnRCqyHcSbRhkLEfI3eThZ2wtc97seBtBlngs+/Py1dfIfdPg44V
nUnO2Lvkdbp1gzR39ZOsT0zShvH9fJl3N4zXny9z62KSVeW+2+8EdoNw6qkz
GwaYZLRMRLt5VDe428t2PZhgkkoN2bTm3G6Y3JMe7igkRR7aMmhaP9IN7XMv
JMQ1pMg8Sdv5Yuce6GP5aItFSJGs8uG6OM8eUEV79+6+LkX6uHjcPOvbA1E+
gQP+N6XIHdVBazZG9MB2adOUzylSZIdfysHcBz1Qy85m2BRKkcJDHVn3h3tA
PucDJbZDirR7abo/2rEXJipy9CNWs8iNxdJMGfdeUPyirJCwjkXS8j833T3X
C1sGZ8NTNrLIe2nWZoVhvfC4wVwkWYdF9l52tG7N6YUz+U13zfezSDsDb9cl
472w3PCZRJ03dltcWPa5PkjtWG8WSuLzG80MNlzogxt6V8d7X+Pz62REn4f1
gXej95R2LT7/efL1t4l9IGkSrt7WiM9Pzogfe9EHNdu/Xf7Qg89zKErXoPRD
++IFp/JpbNJ+srmiIqwf1P1uqKojNmnjG21WGt0PbZzV4snb2aQVYTSWf6sf
zmnlfafuZpOm7Neyqdn9sGhlwvuyvWxyj/YT74DafnC0Nc/+ZcEmVS9eU9ki
PAD3yMAjvmfZ5G/JXbcKrwxAok01r+w+m/yRSFV7eH0ANnSFqYZmssnJ5S+r
7iUMQIvHR3uDB2ySr6HxPSZrAE71pia/zmOTnebLjT1qBmB9y4iuzzM2WZn2
j1gnNAg/f2UUTrxnk1fXl7hnhg6CkaB/jeh3Nlm/sW3QK2oQIjd36q/+ySaF
N00f3Rk/CH77nLu402wyWFvTqD9jEIJFHfWO/mWTfnolq5dXDcKoTtEXa4JD
Oh8q6UkmhsD2lYiYF5NDZpu2mZ9aOAR016gb21gcctB8ukFHaggaorYq0Tkc
0vaoZnnH8iGQ2Pj8bLgMhzR3LLktozcEmx8qpBrLc8jd50sOxl0YgkfH1Ub4
Khwy2Let3iFsCLoW2co5qXLISv/pbRrRQ2A+3GvRrcYhuRc11zelDoHl7jre
q40ccnNEiSiDHILZHzQbfS0OefZq2+Xu6iF4c/L6hxRtDlkQNT2T/2EIMiXd
t49v4ZDrbmjyjL8OwZpMgIu6HHJlUknV1bkhEFku5nNSj0PapbTpWAkOQ6ga
k5WwnUOmpU0XKosNQ8ea0kJyB4dckqF5r37JMGydXEGh7eaQUnklgcI6w6AZ
eaLWwJBD7n/c9rNt+zBsu2F+eb8Rh4wqmHbNMhwGaerlbSZ7OaRIiablLsth
sA8arN6+j0PSKko0g32HITPx8+TIAQ6ZI8bMnLs0DBfT4+06D3LIA5aurHOR
w9DIGJ+qOcQh7/+SnzyZNAzXQr6cjjTlkEY7/I71pQ/DowNrbBzMOOSPmJb3
VrnYEpdOaZpzyB3rInL2lQ9Dycv2/rdHOOSIb790XfUwLHS/Y3zNgkPerOVe
0WvA94v+3rrHkkMO2H+339Q9DAWB83p5Vhwy9LbVUlkaD1YayoduPMYhVYeL
I2+K8MDq1NLeN9itmxgzYlI8qOmWtDKx4ZBK/6tqpazkAYWS88DclkM2LpPf
6avCgyqrrQFN2OddfQu/a/Agx/W22x47DlkrpBY9uJMH/j05OfL2HNLjcPi/
Y8Y8aJw69PMytvT9PtdPpjyQlCw/2oNdMaHbceAYD+aSB/u0HDjkSe4t/Xcn
eFCR1nglApt5dapkpwcPxl8E6bdiP/9kpEie54Hvxj+rlxzH9VXKuql1kQel
g9sVrbBFvKhEQTi+j4XTtnjsgkrL08qxPHDL8/Ctx7aQLO5Kv82Dvfed/vcb
m2YtabzsPg8ybx3dpeDIIR8+dC5LeMgD12vWn7ZjH/rzZi3jKQ8+y/lH2GDP
7pJLjCjjgd212iPnsNNv+ggJVPHgcYHZ7jBso94mr4D3PEhcCAdvYP9QU+3/
1cIDucK4gFvYSQFhBzy+8sDC/mx1AvaOt70VvEEeBHj9XBeDPSqtq2Y/zoNX
PRpPg7HjHROSv0zz4CTsP+KJzX06udCUwoeHbxyXWmAPUo18G4T58GBXIkUH
O2pf5vAeBh+ctUUIaezNyRSzShk+1Od3rhzD9/3Kt6jaupwPnpbajuXYoVpF
6kVr+fD26o6aMGy1UIl7qup84G1cvWcvdnvTScnsrXy41iHOW4h9QeFNoMIO
PggXrsx5g+vRWHbeknWYD6dK46+txD4v0lR37Si22cHHb3F95c3XaQk58uGg
EOWH6395+N7DmvHmQ4r+7NdknBfpbTqXzwTx4TQ8C12HXREVPzlyhQ+dotv2
l+B8MdYafui6xYdlFcn6z3AeB4VSGbVpfIij6ZNbsJ8PTB16nM2Hj9PdMiU4
vw53b3dcKOVD4fWHgWnWHFI7aGzZyQo+PLtqGC6GLX5Uz86klg/rJgt8vI5y
yFJp/rBCOx+GllSIbsb9ce2XropINx8K6J35Ubh/7Jpj3KeG+PA5O1+7F/fX
wmjtX5XTfDhSfprmi/vPWiiccFj0DR7MX3d3xf2rPvBll5HcN3DMPr8v6TCH
FH69PkJD6RtIGKlK/9fvBYHtkoKa3yDXesVxMTwPBH8pLcs0/QYDxKmfVnh+
POqv1hqO+wal+ts2CeN5dLFysX9j8jeIfBpXPbiTg79H3MjSjG8w+KNhZwWe
XxQrzq7wom+A6h0lHPC8O9h0/ODalm9wIe3cJzc8D2deCbi5skbg98WJ1Bg8
XxtSzZ8cWjICyrnWunIbcH4DHv3QWTkCqbW0hiw8j421D/mJaYxAC/dh4wM8
v+8+vh+Wd3AEbn/9eeS0Iofck6p3fyJ2BKhl60bE8fy/UtvYeenOCATNKY6u
WsQhqyetpdnpI9CQt56uyeaQO3f4XdMuGgGtlYy43QwOqccrPHepbQQOR2aI
L6dzSB31VUasJaOwPCB4xUu8r/ysCkMzV45CrI26kjfeZ89Dtr3SWjcKOWUK
JmvwvtNuP7r5KHcUKCcqFweOscnNAfHymTajIGkRf7unn02urxH6qZkxChG5
tH/RjWzSfSJOrT53FCxyi16P4P2ZJ7PS2ap4FNbk+pfpvWWT61xR14WaURhi
FRl0VrHJtQyfujreKKjfV5t695xNrrTkJ1uqjkG2wP1NCXifLxp/tyuoZAxm
VA0Vv3qwyVsxpC2PHIPVCe87Y06xSWmNAv+DtWPwUSlZFjlj+yQUKH0ag+rl
iqpX7dnkYsJuWePMGKhKbH/be5hNLls0/VOeOw6ft6S8j9Bmk4qgkFH5ZhxE
Yp8GvZ9lkZk9UhUq78dBpbRdrPk3i1QMXtAR3zIOK66t3dnyg0Uq1X2TdBkc
h/kZ1tOaERZ5c41lOV1gAp7lhjx1/cIi4wtXrS1YNQHXwm/uL33OIm/XPKcS
JyegQ8Kx2voMi5zofuwz7joB3TT1X6LuLHL3TOZkh8cEdDr5pBc7s8gfKjd6
np6fgDKlrxdmbVmkcazLK8ewCfj4Wd38AP5+ox1dcrE+awIyY4YDlFRYpMtU
ACV2cAIYruqvg7qlSJ2l2+blHSbBfMdMqIqOFLnHqtnTzmkSXCwXHTbejL9f
75wYvO86Ce21LHWX9VKki0zUe0WvSWjg3F8Vv1KKvM3uuKMSOgnJKTPsJ6JS
5G8xLy2t7EmY/3kqf7aDST79l31638gk6IUHOk97M0nlbsn+gLNTMEH+8OlP
YZC52UynIs/vUDPRNrvgmQTp//Vok3LoD2ApFTP+uS4kT+toGabc/AnmRg2D
d+sXkDOpO+y+Rf+CbNXjgy7KNLLR47bNuXvT0LAqceHZlj/l2ruX/+u8+xvc
NNvL/c6Nl9ft1M5GSX/A6V1Lqfjn1vKMJ4navQ9nIJP9p2DYq5nLXqHibP3g
L1gVik5VCo9xP1KFL8mUzcLKqMfxDkf+cIuEz2Q21s3Bmk26NfJeVFBhSzrb
Vf2DHgVtw/h4QRiP+sVSb52HOXjn6XuPDiuuXFFzd6agIk8J97+TouDZqhFo
50pBnUNOb/7NiULFqt53h90oaLF+qPUMXQys3+g463hSkOQox/Szghjcpk6l
030p6Ho4WqBrIgZMf6vF6eEUZHrqvHhknhjQTm8Q/JRNQZWZ67dp2otDr0XH
Z70hCjro/SdL76kEiOqaZdnwKGi0P8RoCSkBm+SazgR+o6ARq2qZkToJCOur
F30+TkFVs4PL3bokQM31OXfDbwoqXz/eMCcgCf4Biffk6FTksad9KElVEthp
Zs6za6lo2+H4mUWBksC91LR58ToqUr7RldN/SRKcHPYRWmpU1Nyiv+PRFUko
W7076Yw6FUnM+K5TiZEEuyebP/C3UlHCubPFY/clIa+SvfGTERVZrC6NDqiV
hD0DTX+K3KjoRbvbiudiDAhQjvLL96AiOYZDzG0GAwpO75nL9qSiCc98D282
A2T/lVGSvKnIm/4+SH4pA8Y4mUKXAqkoJ5haq6vCgJt7zrONo6jIJXJWL0mf
Ad0Pl2wYzKWidvc8jb4LDGBPtRZ05VORvoCU+vpgBhhoxWh8ekJFjiHLws9f
YUDhG0Gtd0VUdP3qNu2/1xgQ2jnGLXhJRRrWd+JqbzNAReKVUeB7KrrzLvLu
pUIGnPc87sQZxc+nFli69zAgzHDsxJZxKpoUzVWy6WdAwspzJ6wnqchkhbGd
4RADilvDHDN/UlGp8NVljFEGfN/yyGHzPyoKPJyccuQ3A9yI7zamEjQ0vj1D
7qsYEwK++Nn4MmgoOirF20uSCVeLBGxSpGjIeJPfeiEpJjw8wTk2uIiGUsdN
6mWkmTD8VvuotzwN8ex+B/9VYIL9zQtH4jfQUOSFrOuPNZjgeYp+5Lk6DZ0x
ePV2dDMTLu2KNf+6iYamXAxsV2kzIe33fTPFLTT04dCV+Mu6TPhqVXO4WI+G
rEIkZWd3MsF8lfiB1oM0dOfi1JLOw0xw+hdvMnOYhpp6dheSZkw41yZnssyc
hrxquXeSjjAhPnzDfkcrGlJNN7PeeZQJTaOHjH850FBLc1DGAQcmGBffMeB4
09B+N7cuy9P4vO928+zzNDSxVTO1zpMJl9evfcr2pSHKlqvHN55lQmlO6VJ2
IA2d1K0T+OnNhOWpLRNSoTQ04msZyvVngs6XpAypMBpqF9E/ExzABDMZBwup
CBp6nVbhUBWI39+NqdfMKBo69cnhkNZFJvy6IpHAiKchOHDSpjeECZJVrYaM
WzRkIhzqQrnCBGVaCoVxm4be5/n5yIQxwcZfxVkyBf/ekQ3JOhFMqPfQ15XI
pKE4ifp/u6KY0J8rOSWeTUPi+x7I6l5nwjy/LVM8B9cvnrpFNZoJGscdJcXz
aMjgRIgvNZYJKUcu94kW09CmfTMLXOPw/eINbomW0lCi8jPlLfH4fTUx9oo+
pyG2U+9+IoEJwsZpxQvLaaiyQSAp9Ba+f+QJl4UVNGR+ve4VSmSCbq2q/MJK
Gmptuz70E9tT72W4SDUNpSlWbzS5g+8fFMwVqcXv/9tC82nsrDLD7/R6Gqou
+ed/K4kJXzZ/tqJ/oKHHX9Kr3iYzYZfytJpwKw19bDXa/ysV39+pvF+oHefH
yfD02TQm+GWEJAp9piGZ+YiYUezHcixC6CsNZdvmNzTexe/HqqNkQTcNGbmF
jW65x4SBxHuuC3ppyIEaKZKGvZi1oVVwkIY2ahF6lvfx+zH5HSE4TEPye85Z
PcHeF0WCIB/noZjhTUtngvPb0B8CIzj/w81RxtjBwsYPBMawQ95kxmGn7GRb
C0zg+voPvGzDfnbpC1NgioauUrnNrAwmNJP3a4gfNDR6rYVnhD026+xP/KKh
9d1P/wVhHzE3XPNnmobcjk5r5mK/KVRuHfuD6zG3914LtqqE6OX+v/j/ufpG
9w92ovOI2uc5Gtom4CQinckEgep3Xxrmaehr2C7hjdhuCrnhVVQCJbq6a+7G
/uR/bfMLgkDkuu8JZtg72k/1PRYkkNS5vjX22PnqxtGZQgR6L3dw9CT24uuq
ukl0AkUom/a6YIfwxfkxCwm0r55K/+/5xM7x+CtiBLpg7mpri215t2F7gASB
2qxzvx3Crp7Nn/BkEOhYbGfWduz15tHJTlIEcm/mxK/DvlPoYWDNJlDKxrPF
TOwFEibTBxcR6OUgg/4d38/DeUO6vgyBGk3Foj5gd1QxTECWQAvYITszsHcp
TM1pLCXQo65bauewn/h/zFkrR6C1d08a7cBe0l5gJq9AoF/uMkmi2FNRZ54s
XEWg4y7pzVG4Pkf5B62pSgTipdW93INdu1Nj4fRqAjn/tP08h+ufPPvDoVeF
QIPjV/OOYAubtzDaVQn0YM7TkYLtWVhU/n49gT7/8TxwD+dpj7O39DMNAk2f
OlvThvNXWGValbeZQPIPP+53wV6moOmZrkUgOVsBiRmc1+9t02+v6xDoa1r2
Wjq2tXr7+RAugeoML4aF47zXRpWu8kMEevPkj6xg6n/58gly3EGggvf3+kdx
f9DvHlGx2kUg4Xm9xZbYZ2e1P5nsIdCiXtvQ17if9AtnNuoaEUgmSogIxf32
Q95/UOoQgeLjM2/+D/fvMX+rG3RTAjWg4WBp7Po2HTRvRiD7Wym5FrjfU6Pm
EvmWBNp93vdBI54PBrOBe1/ZE0jTOvvAZTw/7rZdfOp2hkCBGr6PiEgmDFat
74rywvmyiuYPhTNB5WkXPf8cgf4uehlVjedXcbTusXE//HsNnIVnQpnwTv8P
3SOYQO3TRt1heB7+fuFx7HQcgdQ/sx2z8Xzl5shFxCQQqG9mXkfdC8/jWx+e
Pkkk0LPxRxdLzzBB3EtFZCqZQCfOeJoWeDBhherwU89MAlko/tWxd8bzPe2Y
yNkSAlFdngU8t2LCzSjxTTefEShfXOfsiMV//fDy2NMXuP7/qnuk8b5wOCJb
9IPEeWkOXGmL94sPs+2YVy2BfFOiLPL3MiE92LjI+xPO25kVctvxfppx0rXx
+UsggZ580b14/xm8WIu85gh041XQ5B82zreYtPzpeVxP0Je+h/elTsFUlxMh
gPrn/VT7xZkQ+DfrmPlCAVStcyVaTZAJRBTzmKasAApRNqjtm2CAaOHQ0Z9b
BFD9wHeVmjcMsBJs0Z3UEUByLgNFna8YkGtWuXSUK4D+KWTeGi9ngPFsUme/
ngBapvjVTfAZA6J3HjjabICfBzl5/XnEAFZ7mVWhhQDa2/gkm7jJgKVzMZan
fQUQj9r/MdOaAXt69z5L8BdAlofFbbssGHC2hr6oPFAAHXJn3WGaMaA+5uJH
kcsCyOtj8qKT+xjgrXhaPz1SAJ3Osj3cCgxo3Ldfsy1JAHF+P/hXIMeAS/fE
pXRJAfSoTG9DYIckDO6OrBcWEER+XYU2Odvx95mhjfyqBYLIWXanzmOuJHQa
b/LeJiyIbthvMXqiLQnNh7sUfEUFkaLecYkMNUmotFf3+cYSRJsocXsPykpC
clCH0odVgohMlKHf6pOAQyXKITd2C6Jmw+7fnpsl4LXiO1gWKYjcD9a8fF0h
Bs7CmQIK9AWoibOOa/NQBErSVuq+jlmANtmJL7/fvgA+bNWpOsAQQkMMQjmo
jwa/ne8ctIkSQtM0ww2Eyxy3dn/qYTGOMFrmlG1S0/yda6etk5V1UxjleHXH
hCwe4J4cff/zS7wwalZc/jC7up/rcffYDmaiMHpStFK2yrOfG0S/3OOfLIwU
80Vc+PV93KRPdbIHMoVRiMXSMp5vL7fVxyx6tkQYMUf3u2cUdnENnnv6mHQI
I4O0Hcs4q1u4Jm4CtaGdwuipVFLI4qBmrvnyeE5ZlzAy039vId3axD0R8axQ
sV8YiWr5K1GDP3KDLShjf0eEkZ24nftisoFbPnPNLvOfMJpba2wUoFzFrcqT
e9JBoaOJGO2cwfbX3Hd2T+YlCTrqcdz/UD+0kttR35zkJ0RH53Z5xs6+Irm/
b8u27ZekI1vrmixLlSLuvHHuqlAmHVnvYZh2hxZwFxBw9gWLjv53761SeWU+
l+Vix1CUoSMbq5GdSSoZXFm5H8csZenoXuTx25TXqdzlTSF50UvpKKT+sG+5
Shx37ZVFc1VydGRnIKDwTSWEu2HrA8O/CnR0PH+utDctXff/Uv7sCw==
"]]},
Annotation[#, "Charting`Private`Tag$32222#5"]& ]}}, {}}, {
DisplayFunction -> Identity, Ticks -> {{{
NCache[Rational[1, 2] Pi, 1.5707963267948966`],
FormBox[
FractionBox["\[Pi]", "2"], TraditionalForm]}, {
NCache[Pi, 3.141592653589793],
FormBox["\[Pi]", TraditionalForm]}}, {{-0.4,
FormBox[
RowBox[{"-", "0.4`"}], TraditionalForm]}, {-0.2,
FormBox[
RowBox[{"-", "0.2`"}], TraditionalForm]}, {0,
FormBox["0", TraditionalForm]}, {0.2,
FormBox["0.2`", TraditionalForm]}, {0.4,
FormBox["0.4`", TraditionalForm]}, {0.6,
FormBox["0.6`", TraditionalForm]}}}, AxesOrigin -> {0, 0},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {
FormBox[
TagBox["\[Beta]", HoldForm], TraditionalForm],
FormBox[
TagBox[
RowBox[{
SubscriptBox["S", "x"], "(",
RowBox[{"T", "+",
RowBox[{"2", " ", "\[Tau]"}]}], ")"}], HoldForm],
TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity,
Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]],
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}}, PlotRange ->
NCache[{{0, Pi}, {-0.00011024658520938831`, 0.00010558774645308683`}}, {{
0, 3.141592653589793}, {-0.00011024658520938831`,
0.00010558774645308683`}}], PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {{{
NCache[Rational[1, 2] Pi, 1.5707963267948966`],
FormBox[
FractionBox["\[Pi]", "2"], TraditionalForm]}, {
NCache[Pi, 3.141592653589793],
FormBox["\[Pi]", TraditionalForm]}}, {{-0.4,
FormBox[
RowBox[{"-", "0.4`"}], TraditionalForm]}, {-0.2,
FormBox[
RowBox[{"-", "0.2`"}], TraditionalForm]}, {0,
FormBox["0", TraditionalForm]}, {0.2,
FormBox["0.2`", TraditionalForm]}, {0.4,
FormBox["0.4`", TraditionalForm]}, {0.6,
FormBox["0.6`", TraditionalForm]}}}}],
FormBox[
FormBox[
TemplateBox[{
"\"Singlet\"", "\"UpDown\"", "\"DownUp\"", "\"(Ud + Du)/2\"",
"\"Powder\""}, "LineLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.528488, 0.470624, 0.701351],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.528488, 0.470624, 0.701351],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #5}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
TemplateBox[<|
"color" -> RGBColor[0.368417, 0.506779, 0.709798]|>,
"RGBColorSwatchTemplate"], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
TemplateBox[<|
"color" -> RGBColor[0.880722, 0.611041, 0.142051]|>,
"RGBColorSwatchTemplate"], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
TemplateBox[<|
"color" -> RGBColor[0.560181, 0.691569, 0.194885]|>,
"RGBColorSwatchTemplate"], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
TemplateBox[<|
"color" -> RGBColor[0.922526, 0.385626, 0.209179]|>,
"RGBColorSwatchTemplate"], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
TemplateBox[<|
"color" -> RGBColor[0.528488, 0.470624, 0.701351]|>,
"RGBColorSwatchTemplate"], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3, ",", #4, ",", #5}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{
3.916993356448021*^9, 3.916994756829715*^9, 3.916994859337345*^9,
3.916995112370061*^9, 3.9169952196087017`*^9, 3.916996352085382*^9,
3.917083188598196*^9, 3.9170885069171658`*^9, 3.917089089200302*^9, {
3.917089186612254*^9, 3.9170892080684357`*^9}, 3.9170899706220818`*^9},
CellLabel->
"Out[380]=",ExpressionUUID->"f7c7dc4c-4f3b-4d9e-a01c-7f9c43116382"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"plt", " ", "=", " ",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"xSignalPowder", "[", "\[Beta]", "]"}], "/", "integPowder"}],
",", " ",
RowBox[{
RowBox[{"xSignalPowder2", "[", "\[Beta]", "]"}], "/",
"integPowder2"}]}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"\[Beta]", ",", " ", "0", ",", " ", "\[Pi]"}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\[Beta]", ",", " ",
RowBox[{"HoldForm", "[",
RowBox[{
RowBox[{"Subscript", "[",
RowBox[{"S", ",", "x"}], "]"}], "[",
RowBox[{"T", "+",
RowBox[{"2", "\[Tau]"}]}], "]"}], "]"}]}], "}"}]}], ",",
"\[IndentingNewLine]",
RowBox[{"Ticks", " ", "->", " ",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Pi]", "/", "2"}], ",", " ", "\[Pi]"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.4"}], ",", " ",
RowBox[{"-", "0.2"}], ",", " ", "0", ",", " ", "0.2", ",", " ",
"0.4", ",", " ", "0.6"}], "}"}]}], "}"}]}], ",",
"\[IndentingNewLine]",
RowBox[{"PlotLegends", " ", "->", " ",
RowBox[{"LineLegend", "[",
RowBox[{"{",
RowBox[{"\"\<Powder\>\"", ",", "\"\<Powder2\>\""}], "}"}], "]"}]}]}],
"]"}]}]}]], "Input",
CellChangeTimes->{{3.9169952873268757`*^9, 3.916995317335091*^9}, {
3.9170886217255373`*^9, 3.917088669184243*^9}, {3.917088725620603*^9,
3.9170888157504787`*^9}, {3.91708885032585*^9, 3.917088870632594*^9}, {
3.917088927543433*^9, 3.917088955544806*^9},
3.917089105803124*^9},ExpressionUUID->"eff06dcb-a5af-4c84-901a-\
92fa4979a26a"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwV1nk4lN8XAPCZd8jODGaGVkolKhFRybmp7FkqVMhSqaRCZU9KiyQhVEJS
lpQUWcu8EkK+SoRkX2aG7Aqp+N3fX/N8nnee85733nPOvYouZ/YcJSgUyhsq
hfL/XxopWter5annlN306U/A420rBzhbl96xgFwzm9GQzkt6sy/VjnyLdgQr
+tq7Bzuj9Pplj8/kR58BY9PA+G2dj/RaDa6UpUZfhAjrn98kOl/pfXWMXp0Y
fRt2ePRPeHS809vjLt96L/oh/IhSDJZsq9eLmrDPjYvOhocfPlJvf+nW21ph
Iqp/thQe7djTEOA6oefhb+6c61EF4zohpaljs3qnCo9GECs+Q4jAWxGpM1Ro
5BuLpLs0gpVCdlXEcUEIU5ui5B9ogaZ1C4z+cITB38dYlevWAvNKBkFRtcJw
gkywZgW2wMSipsZlrcJgZLEj0zsJP39hU6/0SxiEzkTu1e5tAYNHnrc+qYjA
lRcqaYXu30Bxd5DBkxgRCFrnaPrmYiuYzrm3rXURBU/VqtjS1DYYMV+a1NAr
Bn1H+4KT89ugfY+j8aJRMbBJprgHf2iDeB0754OzYrCFuVkfDbRB9oBeNYcu
DsT80xFybTv4ljswFbaJQ/SXm4ZkbjskU8zCt8eIQ46fxe+Sdx1QLj3Xzdsq
AUqvT/YlfumABg9RN5aBBMSNXP90obcDnikcH99qKQH+h0tTtwl2AtVbZvzk
EQnQ362+p8SoE/aOJB5wDJeABgWZZ28/dQIxGE+LapWA2cMnX7Sf7oKFb/P6
RDwkwYkx6fvWuwvO/U1c7OMrCRUc/x0PgrrgwY3Fa9qCJSFSPqxlf0QX+Dy1
y78VJQmrP2UQjVldUHTpP8eIHEnYt4VrUzPUBZ8zwvpok5Lwgu48n+/WDfni
HvXZp6RAlsOvjvXqBr9Xe5RlzkuB30mPmHP+3XBiZZbY6UAp2Fl5cY1GWDes
SbQ8I3pTCr4HJO3NetoNkXv9zrSnS4Ew73v6Y343aPv6hAx2SoFLiY1lpGsP
6GUZna9WooNGvpy0/JkeuK1RNKqlTAciu7XhkU8PLMxJMktUpUNK8iHb3NAe
+BlMf2qvQYeeENdDTZk98HBb68dEoIOLibf74tEeOHzXqFD5AI63Q2d96nQP
fNh4+5O+PY6nOzu6jtILtVZyBbaOON66oLPA6IUozfgJz6M4Hv2av8vGXpB2
Nfl3zBPHa44NzfDphenCD+cPhOJ4n21N1IN7Qd5DSlrhJo5XLS9eHNoLFrGD
p7pv4XjFibc/3u+FZS1HnPbdwfESU+NG3vRCwSzB/JOI4x3Je6JJ6YMMlVKu
SQ4dDo83lpaG9kG+kXbtcBMdnPwjbQsj+6DWTaqa20IHe5rZSPa9PlBcpyH/
vZUONsz3ix5m9EEdIl/mddDBaPMr7wtVfdC1hP5Mg0uH9Zdurd0i3A+GPVu2
m/6kg4qo8Xt1ej8EpNut/v2LDqvvCBxcI9cPHL0xm5RpOiikBlyXU+6HPuaa
SO4sHWSqT/RMGfaDqISo3SYqA2boBvdyr/eD/RilZUKcAT/vU9We3e6HijWz
0taSDBhfXlKRcrcfxu+9j8iRYsCgpuZkVHo/bDlZZeAozYD2/cvNPT70QyKX
m3mRzYDW7va+Y5/6wcQxreONHAOa3O4HODb3w7V1+y0m5RnwOZD+1JzXD9Se
4v69ixlQljxHWyfEhWzTb9++KzCAs6Y4XkmKC04xF/njigx4k3NefTGbC9O/
rm+grWDA6/KhQ2KruZA0L3GSvZIB6fzWogEDLvhvtw9asIYBTzzjLLvNucDs
8TGbwk6eteK12HBBBuVadqswIF68WrbKlQvN6vO/M9YyIHxDwZm0a1zw03Or
mFNjQI1GM/d8BBcKtu6yKN/AAGGtaYddcVwgCtfqXlVnwJXN2mZ9qVy4n/Fl
228NBgToFygvr+BCCDum+akWAwp3Nj8cr+VCwJc+D5NNDJgymGa9a+RCsVuZ
Gxfby1Rb0KmPC4J9v4PoOgxw21fQnUjjQZ2Bp+K6LQzIsGnef0qMB/WmOgUZ
2Nz90590ZXiwUcT62bKtDHB20OZ8X84DrYwbWfPYSY62Ws9UeEA9pPjmuC4D
2px9nvtr8CDrnOSq/7D3uxbEy+vzIPPHT+nQbQyIO97MGDDmQeUmn5gO7Ea3
6dBCKx5cKHTy2qDHAOlTbEroAR7UlPg+v4BteUbbx9aZB1/yr+tXYkd42o6s
OsED3iZbTVFgQO1Zn6NTHjxI/fnqkjG2qPfdtgpfHvytPqxyBdvQt2BvbDDO
9/Xm9cXYV/yba46E8kCmkXrrB3ZZ4PR2zUj8vaduGsghBlAusoto93igPZB2
EGHrXdLe0PCQB2n1K6sPYweG2KanpPNAuak16jJ28VWfpV7ZPPCuvv86AXvm
+t3Y7QU8kEzRVs/B3hRWIM4gcTz/MKH32OfCm0O6KnkgG3lC+xN2TsT0bHYd
D57tyiptwh6LZHtdbOLBpILa42/Y6+5oD5h38KDjY3VHM7ZbrK3TUi4PXGUP
nK3Hzrjr0zw8zIPYoSKnSmzu/bvmJb+w3WrS8rGVEgoqwv/xIKfqxK4UbJek
Zl17QT6cOOqrewM7OXk6V1WCD+ffN988id2Rwlb9I8uHzzfcNhpjL07VTqlZ
zIfyENmNy7EPptvKxyvxYTy5OGwKr9+9pz6RJ9byweKX/pZK7KZnd4U2a/LB
qChmexS2zIuCIGFdPmQY30u2xbZ82fyreQcf3q7WtpXHjsiZdk835YPhb7uj
TXh/RQu07Qzs+BBSzruuj21UZPuFeZgPPqVrEsZxvVx742Pc74bzfZ0ulIBN
lBZoX/HnQ/WihX09uN4yJaTT/l3mw48553Rv7D127rI+N/ngvEJ3RAD78ZTC
+IkEPvz947GAgevXbGeAY+8TPmwLf90cgev9Z9TX/+yz+MBi2a8Vwt65LizT
gsOHBXrFjjzcL0P+fXLVlXywcnXVs8COqdK7rv+JD5kJzsmvtBnQf3jysFYX
H+YKto8cxf12Ld5+ySJiAEQZA6/CNzJgPT//ZozoAGTN6D+rwv3bpMWYlZDB
zzdIKs/j/l5dX9FEURqA7LrVz+1w/1cJqUVydw1A10Gxri94XnhY35hzNB8A
3U2hUz2qDJB73Ov+zWYAeIvmIofxfDmhd8+49tgA0GjaeyaU8Xqep9JybgxA
5mivcLESrrcyO0/V6AFoz1XST8Lz7CA9v/NJPH6eY0q5sJwBz565vb37bADf
Q7rFVPA8NOtpOH/hvwHYs+TOEf1FeL8s0vhGjEE4ahaz052O6zuRYlsmPwjb
bw13zeB53TF4sGLr8kF4dV9bMFiCAWrXpFLWbxyEO4r3uBdE8fx962snaz0I
7k1FMjoCDGComNZ13huEb4zVNmlTdOAKPWRUJQ+C2PYgj1l8vhT3T+x7mTEI
OlndH40n6XDkUfz34MJBCBwcMGgdpUOh3CBfsWUQJrPEbMr4dDgkdIN2hP0D
vJLaF2d/o8PG/jYDs2U/IGxv3cmCZjoIv98Qprn6B0hFVlHefKVDTlALXVD7
B6S/1p/LraeD4NTqpWk2P6Dr1xmrU9V0eN5XqcOP/QFfnDKy/hXQ4VLZwsDP
iT+ge3LmRnEePi+TT5OFqT/gxclLOV65dKDYswxu5P2APZtGBxpf0GFvw9G9
Kl9/QG7TuTmnVDrMvhM47S47BFVLS1fci8Ln60P9x2PRQ6Ctr1hz1ZUO16s+
t19+MARBXzfnnDlMh8rxQ3LMJ0NAzGas2udEh107A25tzhuCdJ5vgfhBOugP
5Ppcbh4Cy3NvbunupoPuxpVmsouHwU95pvAuvr9s+CD0Szt1GFSdHYJDJqTg
zFisWk3WMAhbx/r9G5SCF/JKbvb5w1DaHlDq3isF69xRZ/CHYahT/6in2igF
Kgy/6uqBYTA+6KKhnCcFSnaDiXbrR+BgzL70Ffh+xh6tNbhYMAJGaqL/1g9L
wr0o0nmAHAG1tkeCwX2SIKeZE7i3agS8r5yZq/yO7Xc3Z/W3EeC/16neVCMJ
C2kuSz/PjsDKQzPziWmSsJQ9/UtBbxQG6w06wx0kYRUoppaVj+J7rvqRv+8l
IP5DMZV2YgxiFHOrn50Vh7Gul36j7mNQwCLfmp4QB8PZtPHvHmPgfSvEr/eQ
OPxce6f7te8YfPRzOzBrLA7m0SffuYaOwenM6MmKZfh+7bD4Uk36GIz9Yj1s
qhaDkxMXKNHcMdBSEH4+whYD3SXb5xWOjEPqa9k/1xJEQLWL3nfh3ARIhUdL
acwLQlaG9PE8r0kwPmF4IHAtAYEdDg2q135C92iewhXtP3qeujqmSTG/YMEJ
hwz18HG92Yc7XX5ETsF9iZLQVawuvc8e8U4+KdPQWOll6zZdztlsuHyu/dEM
NDAefS25NMCp3rU5AyX8Bpd1wWdv5ExxUl/d39zzbBZifBU/2j2lkMwVa90O
Pf0Dx5lVk0HeguQXqvBl+bd/wSNgZt+h46JknvDZtM/V/yD7sN4Ko0FJci2T
7uZSMQePKwtfXz7EIEcjpmQ3Ns2DK8NkakxDhhwaW1q2rnUehjz7XdBmGXJw
j+EZ5Y556PkZ/OkmyJB9rHvVS7jz8DlMOYVlJkO2Jm0OEp6ah27J4Pk/R2RI
F1vO5IgoBTlrJqsJxMmQu49RHcpVKGjx51j9+Z8y5Irr19XOuFGQprjkHpM0
WdKrSTPIxZ2C0gJdJryeyZKlK3tqrU9TUMS5JQ53X8qSh8p13XS9KEik5np4
Q7EsGU+deCLiT0Gp4U/Xy3+SJaUD7Rc+uUFBGtbKji1TsiThqS74LYOCrsXZ
JyzZwSStSjv21mZSkKmLFqPEkEkmS4WnkM8piMexVt5vxiT1XnAh7SUFiZs9
07lkzST9fzzwP1tIQXJ3YkqTjjHJiaMLxiSqKOjwH8rxBTeZZM/B7636PAqS
TTReFlzHJMW32aY7DVBQaaW01OAXJqm1rOFs0A8K2qqy+qV5M5MM7a0RLx6l
oCUnyinCXUxSzb1YT32Ggqg3lfK3jDPJwAv3U5aJUNE5ar3RQ2kWyUy2dfur
QkUv/vOTtbdikXqXGzYtXEdFh/OJDHlrFnn8iAVNR42K4nvWl9fvx0WvbJhw
diMVtYyURKk7sUiXV5vqBrdSUdfsCufs0yzyRRlT45sZFSlMWdenhLFIo/6G
33mnqcjqU7GhM4dFXlCNCMj2oKLju/4+3fyOReZ4Gv3L8KKioQ2dqhLlLHLR
3FtKgjcV3dbdezO1mkWOsNKELgdR0V2LopQHjSwyxsiXaR5BRYZLTl9NGGCR
1REadw0jqYja/Slk1RCLnGscktseTUVq0sGxz0ZY5DFn58WacVSU6NU5mjbJ
Irf4m6xYmERFR1WPurv8Y5Fdzxarc7OoaPfXPO4PKTbJnGjK6cymopuL8stX
SbNJE50ozW+vqOhWZmumvSybzC0X1KnNo6LM6ZHwIjk2ea19RC+nhIosdy6M
01Zkk2ul3pkF/UdFmnmCajvV2aSzdUCdzycqsr1Vqa+2kU3GPdCy9KynIoEd
WfuYWmxyfnXm3iNfqciPG+vxRYdNfkF3Dpq0U9GqhCJfOmKTvl5Hj7OGqagv
9cDuB7vZZKjpyLEto1S0ziTFZL8Fm7yr5HPs0DgVRQUstJOyYpP5TaGuab+o
KKuakntyH5uc3PL8yKY5KkIijWvbD7JJQlbryEEKgbbcevvKzZ5NSg+XHA4i
CCQ4+t/OCQc2ueHhJ5fKBQSa2i50Z9SJTZ6mTTrZSBGozewcmeLKJi+0BTj5
MwjUZa+TSjnOJsPzBJySZAj0bWVozP4TbPLZMZYjl00gs6IHt6ZOskn+x80O
3goEkgtObR30YJMzT8rs45cTKN+h7p+cF5sUCjK15ygRyOG1xartZ9nkqg0O
dgvWEEg52/nqxfNs8nBM8IE4dQJdkTA+/dqPTXqdEjlQvJFA6sYvX+T4s8nL
BtH7O7QINP4rbSwzgE0mzzy2XbWFQIMFF3xuXGCTL+vX2proEujUpYtvzgSx
STIzz+a0HoG+K+2bt7jIJjvsP1jn6xOoMu/jlblgNjmsZWndupNAh58nVtRe
YpN/Jb/tmzMg0NnbyQKxl9nkoneDew1MCfTo2tMAmStscv9KyT1Newn0J11n
R9U1Nnl8Ls5q1ppADe+n3Fyvs0mf5mVWS/cTqFBy4tYcdtwNdUtXewKFyhiU
L77BJlNdii3CDuF8h341pWC/3rrD4oUTgYI1o3qXh7HJhuF95lNH8PM8kwH6
TTbZU9m+e+ExAi07+193EPbEQ9fdeicIdC1VoIGLTfUbNXM5SaB6Ttpbo3A2
Sd/ja3btFIGK2k8mPcFWUKWaZZ4hEFEn4TuLrSYQZlrnSaBkYSNjk1tsUq9d
2nTiLIGqcpsZMdjm+Q9MWN4EmksJqG/GPj7pMs/0JVCSw/lHjAg2GbJB5TXT
n0DvFv1cZ4CddGr8ODOQQL7vK73PYxdmFi5hBhHo4qWSgIfYX3gXv8gGE2hX
9VPdcuxhJcPrspcJRLE+VNSLLewiqSt7Bee7Mnv8H/byh1/HZK4RaF+IZ7/0
bTap25aQKhNKoIy/ATHLsW3ljxyUCSNQ4LG0ubXYXjaqUjLhBHrSVb1CAzv8
zsR76QgCzX8spf3faZ+LfKUjCXSj0TXp//9/J3FpnXQ0gU4P3ZtUxG4zMeph
xOB8dmvR/v++qetSdxlxuL69F/33F+dDr2gyZdwjUIv6WqsebFUiicKIJ9Da
W8a3y7AN4GgePYFALp021xOxnQLXutGTCOReqbP5LLZ/0eRSejKBnq/++mQH
duxUcYNUCoGm1WRqJLFfbrwcKvWEQOl7v2c04vWu8TDeJpVGoARz9vZY7L4s
+oRkBoG2K+VEW2LPDzanSWbi/Vh2L3EBtuZRV7rkCwKVyv/rcMH7a56yrkLi
JYE+yNoxRbBPdP70k8ghkMz6MoFMXC9JB0J6xfMJVFvlI9mG660wzuSeeCGB
tK9kK5/6f/01MHaLF+P86sv+zOD6FDZPzhfjEEjlhX0tBXv5zWMnxUoJJJDX
VB0Yyia3Va1XECsjkDDIBE/ievfSL7khWkmgit4qVj3uj/CLV/REq/7fbzCt
jZ3+1nRSpIZAV/3ORd6/itd/U6u9SB3O305x2Az3l4HqtJpwE4HMh6Qtz+F+
dDrO6RNqwc6fnXqJ+zUg9ep9oVYCfa5ptOHjfn65TJYm1EEgI5vo7Ya43xfK
qjcJcvF+GbSVV+B5oWk1EybIJ5BGyZRmC54nFhEkCA4SKLz+xqF+XzZ5Rdj8
qcAIgQb2nu8Y9WaTI3/dAmlTBEqdXBNTgefVgf2ma35PE+i6dbpdriebLM9V
bRr5TSDHK62MBDzf7rsNqbX+w/0y2WFy6DSb3NlyqvelIA11U8UmU/F8fJDr
YXKISUPblJW36TuyyQVSVtN72TS0WphB7cTz18NN/YmxPA1Zhajme+P5bKA4
8U9zCQ1V3y/5GXcA93vE2VdiK2no2A3p6vi9bNLIzVuuSJOGousQ5aUBPp8q
bCpebMLvY60f/7OTTS5V1PZ6okNDmbLTTfo78HnQPP3xti4NMf6oXX4HeP93
+V103UlDo8Mijpfx+fNTIZArs4+G1tcnnZNewyYfNV96ffosDcnZ0BxPL2CT
3IoNnRHnaahDik5yafi8e90pku1DQ4+n63QPUPH5E7nNcTSAhnL7Q+6s/csi
a41/i3hcoaHkVuGS8HEWOfPGw9Ezloa+/C29uPE7izRPdhQ9V0BDTZtjpZdl
4vM9QlIrpgivT9Mai7Y0FvktsMTx9Rv8/WXXS+48ZpFHDizK+0nSUMOvWxrj
CSzST7rZ8XwVDRWLpES73maRT66Y53l/o6GqBmbz1rMscvb4Nie/PzS0YtGf
lXGbWKTJGxV0/h8NzcpeNurUYJEPJOQUPOdp6I2G99kVaixSN2ei8zhNAG1R
et6fsJpFBv1Jd9wvJoBswkss98mxSFqEtKP2IgEUkVE/9nUG38dyeQ6/tgig
dPUihko+k7QX/LptXFcAnUy2/vT1FZPMsi1bMqwngPTEG7IDs5ik+d+E9j59
AaTOkmx/84RJRu7a49BoIoCUW6QJyh0mKdvy1j73oABiK901SD7NJJf8i7Lz
9BdAnwusfA2XM0mjnt1FdwMF0GB6y/3RxUzy3AcRNicIvz+paU00m0nWRF36
IhoigAKf34qvFGeS3qs8jZ/cFEBHXOP7hvB99bOFpXZzggDid3bu3lAjS15O
kZTZRgqgU86a9gnusiTX8GaNsIAg2jKo89ThEb5fmzoprFwgiJbkFq2sjZch
2821vLcLC6ISd4EUrRgZstG6U9FfXBBdkDqX/PuaDFl2eKPfD1lBtDT5dM8u
dxky8eL31XUrBRH9ZePQmJYMua9A9eodQ0G0e6p/PKFCmny/qhaW3hRER6/6
lmc3MUg34TQBRZEFaJx9JrW9XoosSFba9j5qAdJ9J6x4coUYWbdVt2IPQwh9
MoL9lg4LyBm3B3udIoSQXO1Uc6QjlayyfGgtwRJGrtnBUyrO0xyXzbrp6THC
qOWBKRHayuecGP7vV1ucMBrseKX+0ofP8XjkuFP6vjCKnh70q5flcy6KhHQH
JgqjJKpL+bw5j5PwrXrRnjRhFPjqqbnk+35Ok59t5N8CYUT9suCpWGYPx6TY
y8/quzDqzGt/FMdv4VidFqi61i6MarqaQu8rtnD2L49jve0URgPbXifHHmzm
HAsryl3VJ4w8VAt3+Nd+5Vw5SBn5M4TzfX434E/2Fw5n9pZL2pww2jiT+2bJ
UBWn4sWyV98pIihFSH5PkMMHTq3Lq3k6TQSpxmZattRVcL7XNCYECIkgA0ND
I/9XZZyZ+EXNlnQRlNzM7RAYLuTMm2etvCYtgsLUz6mc/5THWUCDc29kRZBx
W4B556scjuxJF8YqeRGU/c/DyHg4g7No2U9Hu0UiSDFFYQMtJ4WzvOHqi8gl
Ikg0LCnlzPA9jsp19r+KZSKocyi68PFwKEd961PTP4oiqMb650i1UUbJ/wAE
hZu6
"]]}, Annotation[#, "Charting`Private`Tag$28762#1"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwV1nk8VN//B/CZO2SsY59BKaLFkohE8j5fFaEUKqRsSUhlKftWSZIkiShb
ZSklEaKaIxKp5JOyZV9m7JRCSn7399c8no953Pe955zX+32vgstpq2MEhUIp
pFIo//9LwwKNAzo+hvXsqCpLh7vblEfYW+Vv7IUaT0vloPZIw4UiDdf2REcI
EwiSsmpPMBySdJ8vSzwNls0enpvbsww7jKOqcxIjAO5co9Pbiwy/OiauTU+8
BuG7jPNPtVUZWnnJdNxKzITOejgo09JkeP3H4ZLkxCfgFPa19eOHXsOttWYC
Rn5VEBvmu+3Bwe+G3sEWziXe9TCencj64/Db8OTzY/HE6iaI/Fv06+NxCnwZ
NuXPc/kC1tMKFW4reSBWY5ZSZtcGNX57O931+SA4wFSV49kGw4/eRhImfOCB
7xyQDm0DGwlr3yRrPti1d/tD/4w2YG6PVc324gO+0wnWugNtYC0tGHEkgw+i
ClVyn3u1g9Ls89kjFDqEqzuav4joAPpVZT5nNh18VOtvVuV0gpnZ2uh4BQEY
PDYYmVXWCTq+RnyjqgJwMIviFVnXCS0r7q3ZtlkA9KX0jNBIJ2Qc3afVYCYA
xNKDSazWBVb3s5dH+AlA4ucrJrikC3YZWYBljQAUB+39/ep1N/x3n7o34rAg
KD07MZj+uRtEElWE6o8JQvLkpU9hA92wyL9qke+0IAQfrcrZxtsDlx3qT548
JwhGezStXu3qgeJ5QqsxRxCaV0kUvPzUA0WO8vGD44KwcPREYdepXkgWfmW/
94wQOInNBL7074U8GYnI8RAhqGUHb78d3gsDTcwH5y4IQYJMbJttfC8kKs0s
3UgUgrWf8okvj3vBv6Qh0rZICPbrcw42jPdC6nXHLw6jQlAo6rxU5tkH5ZVH
bS1thUGSPfzupm8fzERHVI06CEPQCe+kM8F90DRizQ05Jgw73kas14rtgzWV
0+4XfYXhW0iG9eMHfaB2cpbQiRMGOvdb3r3hPsh36m/iYQuDy6uD+xLc+uGf
6BldOzkR0Cpjicuc7oezr/zWOyiIAPGkozk7oB/msjpX2K0VgbtZDjYlMf2Q
mtbAo7lJBPovuDm0POwH44O9V9zNRMDFzN9r+VQ/rP06Gf/Tn6y3fcuGnLl+
4Cudvm0bStYzWJhSpwxAtK5OTPE5sp56uB+IDYDLZaVZkziynmh0sMumAai5
fmtiPous13ozJj9gANzfXo3yqSfrNdmYaUYOwLXjYQlaH8l672SEKmMGYLvy
RfuR/8h6lenX3qcOgDjeunbLN7Jeek7y5IsBaPCPdjo0QdZzLb2vTRkE0evX
2E8YDNA6EuD2ij4INFHXrvcSDCAO6q0zFhsEBapaRheTAXdNXhXYKA6C34vy
f30rGdCvUlscvGMQzFL2C53SYMDR71+qqmIGIfv9seHruxngFJxg8zxhEK77
LX77sJcBh2m7J5/cGgQjuZ4n/6wYcFCqRi4zfxA082NmjO0YsEvvqX9Y/SDc
WdCs9zjGgA3nrqrp04cg3C7yzlwIA1QETGs0RYegiBbPkxXOgLU3eA6tZw3B
3+dMfTjHgFU5IZdY64Yg5Lghv0s0AyTeefTPmgzBmlPlMnoJDJgXNb5VcmkI
StulZNXuMuBnKlWj4NoQOG/x+4buM+C74qvauylDsNa/0253LgNGtbVnrucN
gUI9f6zJQwZ02SpaeNcNgeJsa3rjUwZ09HUNHv80BIc/XVFPLWFAi2dqiGPr
EKgJzfseKmVAU6joAwvuEIzah8m9fs6A6qx/NHU+DoRJ2L+Xxwxgr69MU2Jw
QEmobzqjigEvis9qLmdy4BHPsVqpagY8ezPuILiWAxqWuoHcNwx4uif/F6HB
gajmmf1GbxlQ2HI0bmEzB3qKY7tu1DEgb7ijYsSYA9esDKdkGxhw3yd5X58F
B4KCO/33vWdA1oIlt+0gByifbPJCPzAgTeidZL0bB55sp1EqGhkQt7H8dG40
Bz7Ingt9/ZkBDVqtnLPxHLj517gor5kBdJ25IzuTOZD26M1g1BcGROnp7h7M
4QDvl4A9Si3k+rba1JQ85sAhoZBIDmmKYYD+hVIOrLj539PMVgaEGJWvU6zl
wMm7asJzbQx4vqM18/sHDvhXiW6+2c6AWeM56ddfOKDtwmev0sEAbVNmfEIn
B2xGLoaUkfY11+V1GuSAxwwtRe8bA4r22IRqjHNg1u7PoxLSk3sDZv7NcKBE
a/ilUicD1KxSPBv/cODup11v40h77i/vS6dxQRun14+Rzj/YantSkAv+Hzxq
/tfFAI7t3CcDCS6oLGmWxZNWsmeaCMlx4fftsKzPpJ2P6LK/KXIhQqnlnHA3
AzIcbXQKVLgQb1NnB6Q7nQMeBWuR12v2rHUnLeuastpMnwsfRx+PXSJt61ae
JmPEBe8/tfczSCe7t4qNmHKhhPnS6hHpL55zMc8tucCjtfZXEWnxk0xKjB0X
CoKzrvz///tO6wbYOHOB6lQjlUk63sdmco0HF0Lj1W/EkP7gF3Bs1psLX6bD
aR6kBfxTOmsDuSBbZOeGSJsEllvfjORC+yaXFyKko4JbG1xjuLBFEYgv5Pqq
Q+f+p53ABbpTqn4CaUoEs4J2iwujostdt5M2PKe7sTmTC44pZ8InyP0LvWCT
dzePCxNJVpfjSVdeDJD3fcKFDaPHo9aQ3hxbLiSGubDnkKDZVvJ8zsS1Xuh9
y4UKX7rkc/I8i+PnFp40ckGhW/ajKmn1G7ojFt1ciDnqLzhP5sPzpo2TPIcL
UQEoYR/p/JSA1okJLmR8VqBlkXlSulNeG7fIBSfRncWryby5ZLQaHOYdBvFx
mUmbr2Tes+ZKVIWHYT1VjXmBzOvyHN27DcuHQfaK8UY2me9DeTYyaUrDcHph
ZmXjfwy49SAgwUNtGIxvrfv7pYmcH4Xl4XSDYehnxQbVkf2xr6j1V+v2Ycj/
fVK25CO5/8VzXnnmZD1ek7ybZD8JlOvaG9sPA4+jYxSQ/UdUletGBQ9DfOZB
0zW1DHgoLJ67eH4Yut06NxbUMMDK3ksy4Mow2HndPK5M9vu92VXfPe4MQ9Q6
1+rfbAbsUI99uJc9DC2sQDVFcn6MBw+y3r0l75d3Mc6yjAFJ9YaXjD4Nw+c7
6Vv9nzFg6OjMUZ3eYdhQLHEps4gB0WmHV8gRI/BjY9sXn3xyng6XXUkSGAHx
uv5Cc3K+teiILQhLjED1RHKbLDn/1v5X20JRGgGrgWi51EwG1PNpJHB2joC6
FtVVKplc31kqrfjyCMRmhasLk/O2uNreRzVxBO5EDrAMyHl8SLSs537aCFTs
ibFxIud1QYHny5SCEaBlD36KOcuA3f3NZ8M+joB/4bcyOw9y//bmDu8SG4Xk
NRnlfyzIvKRTbKplRsFdUpM30pwB3aOHarcqjkJ6V8Wj3yYM0Ihm3N2waRTO
FtcJfkTkfH0ZaC95YBRY77fJ/NRkgJiKeWPPrVEQUGXNbRcn+5kvU6w+axQ0
5E5eOSZC5nPox/6i/FGgfu/oDxNggGt22rfI56Mwec+mK5Eg5xFrdFihbRS0
z5aKWfwQAQe+yzRX5hjYy+JlAk0i8Gjw7Zbhm2NwrfiIRHqUCJyrlg1tSh8D
0a0SdrciRMjvs1P4ec4YpGBGUGywCFAOSxtfLh2D2hQnc2tvEbBuPmat8nUM
3toEWgXYi8DCa55TXpLjcFGmp5J/owjsyjS6N504Dp1WNd8dPgvDpfqmrvO3
x+G+M8+j4vfC8Pa7A0vq/jjU9Cp8/PNGGHbuCLmqVzoOFte4pqfKhcFopCTg
fOs4OObx2n65LQwGm5R3Sy6fgITOrUq5LsKwsY7vl27OBNzN8RX1GhaC09M3
NRoeTwC/uWTt6V7y+0pGyfNw2QS47twl7dEmBOpeqCeybgKKJb7fNKgXAhWx
oHfvRibg19ZKOJ4nRM7H0XT7DZPgNcw/8+GoEDCnPhhHlE8C30KdyvAXQbh1
HTuP4EmImbFqbHwvCCzt4lDr+kl46pRWWFBNOiileG37JKSy5tR3FQmCLM1F
vmlhEvZfK3YVuiII8sy5X6sMp8Brqim7xlAQ1oBCTvWbKUjJvn5iMUMA0uoq
qTSPaWgfjhpZu50fpnuLgqa8puFoVHqM/xZ+MFnI/f7NexosXjhqv1Lnh59q
N/qeBU6DdbL0Cy0WP1gknnjtFjMNPGc2v2WP04E4svxcQ940uLfK9x1OosOJ
H2GURM40nDmSQ63u4gODFf9bWuX6HUwy5ta+slsGqr2ig2FnfpDvVUeVPY8J
eJwv7l7qOwP/WygoeJW9aBjafaRZNfon0G9MeSWd+WnoY7DFPCPpFwylJBCz
V4cMFzJ3uIwlzILIhX+2Y5XPDJu805wC7s6BQOmWzJOZ/Ww9E8V/XdnzULB8
STnj8Az73U69fHTnNywr6ZNdsWmRnfM0Va+/YAF+jIiNhbTSsNRqNU+HB3/g
WGZWX1ECHX+m0s/LvPwLRZt49f56CONSul9u07tFuFYlmx01LIrVpEQ9XWr/
gdjiWPv2N+J4Kn5WclPLEtxUnmjojJHE49Py1eodS6APRhum4iXxqJXJ6XXd
SxA2si5qMUkSD0rfereCswRnJ3SpItmSuCNDL5w+uwSNTl4S/55LYhcb9syk
AAV1VNVtkhmWxHuOU4+8UaGgN3uN/TZul8KrL13SOO1JQVe0U2/Fj0th3xbt
cBcvCiq/Ubo38LsUrlLu/3DgFAWJWBFvj8xKYYc3Bp4GvhRk+4JvTI4ijdOo
P+7zB1OQSuDMD1cJaSweelj2/mUK+vXzX/c6PWlM+GjytudTUN+4TuTpc9LY
sqrb+sNDCuJ7n/C08aI0zmLE3cWPKIiIawheHyuNDQs5kFtEQT2qWk3/JUrj
4LHbwX7PKejiq5NuE/ek8Y9jy6aF6ymo/Vol2lsrjfsPfesw4lJQevS5/lIe
JhbaZpPnNEJBuo7SlW10JtZZ2ewXPkZB0oNZurNCTBwz0CBUOUVBQ+tMVypI
MbGGV6Wh5jwFDXRLhW5WZuLQsNS7K/mpaCSkwdRhBxNLZdl4/lWhIrl3Z3xT
w5nY8HzzZll1KtpqtDZR5DwTu7vupW3RoKJtT+Q3hl9k4pfrTO74baKiQ9km
/bvjmNjl6ebG0a1UlNVUvZSXysSF1VJa7bupSHHF1jX7S5h411Dz79JTVNSP
2nJC+5k4TDU+5Ik3FbWs/mksOsTExT67FvN9qajyTdBSBpeJ5f69pNzxpyJu
9b2Sx+NMPCmdy3c+nIr26HaJJ8wycdKuQCmLePJ5bvyhufOz8Lt4rRSTBCra
yA2veiTIwv++jLP+l0hFA83+MePCLHzc2Xm5djJZ33VK94g4C+sHm62WzaCi
6nBvKk2OhXsLlmtyHlNRfTwnx1GVhaV+tBT3PKGiN0Ur6/ars7DZluva7U+p
SMB0aXiHBguXvOHd8qGUioipNWrSm1g4umvSsPgVFQ01xGWE6rOwGuP17vCP
VMROUSuw3cXCzgdCGgM+kfvhOBW3aMrCybd19vn8R0XY5NmxdHMWXlr70Nr1
KxU5HOFZ+GjBwp/RjUNmXVRUet4w48d+Fg70PeYuPUFFSROLh02dWDjGfPK4
/hQVLan41Fc4s3CKUsBxh+9U5LKaBUpHWbisJcYt9xcV5UOUOfcYC8/oP3Ld
/I+K+sJrPymfYGFCUsf1EIVAg5EvLrh5sbD4xKuj4QSBzpRIGWafZOGNmZ9c
3i4j0MPFxzU83ix8ijbjdJBBoM3wkYg6w8JhnSFOwWIEEnff0pF0loXjSnmc
MiQIlCySXZLpz8IFx6UdOUwCFRQe9LwXyMLD7/WO+K8iULuFYrtLKAvP368+
nKZIoKB5g+LtYSzMF25+mK1EoJXpNpflw1l4zcYj9svWEyjc5bFGdQQLH02K
tEvWJJCosNy+1+dZ2Pckv13lJvJ5dDyFfC+w8HnjRNtuHQK52CjXLI9i4az5
ezZr9AmkOK4t73SRhYv+U7MxMyCQtdbz1/Ok8cPSg6cMCUSX5XW4Es3C3Yfr
DpQZEUjvwYmIjEssPKGz70DHDgJJu7ymrYxh4b8i7fv/GRMosMc2IpW03OtR
a2NzAqlEtR4KvczCKml+1p57CJT/j69ykLS+31+r+L0EQoNCDJNYFrZVFrFq
sSYQtWVL6m/S7v+SLRcOEGgquOyj6RUWDmhdaSlvS6BXL0tnb5COLsrfZ3SI
QH4iHIk20smXNfe5HSaQbdy8knQcC+e4VO6NdSCQ5N/M9Rakn23dvrfQiUD4
Q4JCJOk3kh8sPrsQiId5TugR6eaJ/RazrgTSTV83+h/p/rdde2SPE+jke1T5
nfSPTLc9hh7k+ZVHhQpeZWFq0NRulxOkFZ5uXEla1Cpwd/RJAh3yi2pRI71K
lbr74WkCfa9in9QmrcETa97oQ6C79QqzOqQNu8TNf/gRiJjxPq1J2qLstpm0
P4GWWfu0ryHtPuOyJBVIoJ6lFeFM0hc2qjyTCibQXEx9O0E64+R3d6lQst7A
jvFh8vmeP3y+QiqcQGmm7qXvSH/mRnyWjCTzp8evk0N6QsnkkuR5Ar04s+QZ
QpruImIgGUWgNpqSzW7SiplfpyWiCWSuZfmbSdqg806ORAyB0hNcLLvJ/bWR
cT0kEUvm66e2YyZp34OqDIk48v7+uYr2pONu/KgRjyfQ6oDk22Kkc5sqAsUT
yLykDr2rJs/ztfA5dfFEAp2qPfv4FOnZS4wUsWQCCepyb5SReRCtbTEXu0Ug
m9zEZCvSqkQGRSyNQKl+EhYjZJ6cQtU8RTMIdMJP99sy0sEVM/KiWQS6NF9Y
dJXM483ZymbGXQKxI+/rM0g3eJtuY+QS6PWWqhMEmd/Bx6I/RPIJ1Dj4RvwM
me+l0dZckYcEuh7Hc6qX7AftY26iIoUE2li9hB6Q/ZJhd2FAqIzsj1sVNn8i
yf1NNrsl9JxAwyLOmUakm5vF9ghVEmjMbyEtiuw/ukVWmSCbzOeD2cfzZL/6
Gr26LPCWQF7OvNuzg8n9iYgyFKgnUBFFSYUdxMJ5L81n+BvI/eg1qP1K9n/n
5o7D/I0Ecn4WxPxFzgdj1TkNeguBfqupq//0Jdfvzh7kayPQ++OKpRwfFg7J
uZjK10Gg7rQT35vJ+VO0UpLG100gnWnDSxmnWFhWUrOFl0MgKbaEyk8PFp78
6xlKmyXQN8dfztmOLGxna77+9xz5fKkqW4wdyH4oUW2Z/E0ghunY/NBhFk71
HNfoWCRQ/e07+tKHWHhH28mBIl4aKq7rqdYj5+3tEm8zBykaiqPUC141YeFl
DMs5ayYNrayvSO/dycLenpr3TWVoqMzn13KNHeR6FH4saq+goUHJ1YMvEdlP
8X5PBZVpaGzw4u3beiy8y9OfVaFNQ2yFZwPHVMj3R+3B2sLNNERdkHRzX8fC
8gq6vve30FAleth+bA05r1vn3l8zoCG7ZzdvWiqS57UzKMJtBw1d5j50H5dh
4Z+rQjkS+2koKDzotQadhbNbzz075UdDRm4of6qXiTm1G3viz9KQUnTpKLOb
idWe9fA/CaChzxWrTPS/MXFZwjbHqRAaolcI7Tv5lYk/mP7m946iIeULf5/G
vWPi+Rfejj43acg26bLe0yImtshyFDhTTkPqZu9qbwaT7994EZ2kChqST1D0
JwKYuD30leOzFzSkdUHmgIcfE7vayZX+xDT0Z0VvtrIXEweJtzqeraeha3fW
xNkeYeL7URal/u00tGprmHW+IRMvuG9zCvpDQ+092yJ+/ZXGZi9U0NlFGrra
gVfMzEvj28KsVT5LNHRfwLF67Kc0Nij+0eNO40EUZbpC47g0Dv+T52gryIMK
Vnw0temUxrR4cUddOR4UZQZ/QiqlsVAJ98gvfR7kVnXwkaSfNF6xeN3eJ5gH
OSmdii/9KoV39e+pSAnlQVOD3daCTVL4TB0/kx3Og0zLxy7aN0jhhuvnPgtc
4EEeAtt0xthS2H+Nj+n9KzzobPNHTl2eFG7au0+39Q4PSmrXex8QKIXP3xWR
2IZ50Pye58kvpKQwx+RKA52HF5UaVCiuQ+T3qrnTKuVlvCgzaMJtp54k7rLQ
8f8fnRcxlnc8OKIlib8c6FEIFuJFbY0uWhFKkrj66KagMUleVEGsD42mS+L0
iG9rG5V50YaBPLe8TxJ4f7nqxRsmvCipA4UbHpLANWs+gPwVXsS3QVZP2Vkc
e9JzeRT4l6E+fqLG1UkUl2cpbau5vgzVfZY7KD8iiBu3GtRaifGhlmD5y5f/
LsPznretneL50N/Tf+SY7VRcvy/zgLA0He38IJIQSMyzXfQM8vKS6GjD9ZLH
BVEjbI+Jj786k+koLEl2i+rKEbZ3tuMO8VQ6mvzj2HmvYpgdwX+hLzSdvL6Q
6I+c5LLvtL+Ts8qlo4uxEZPjNhx2S5BNwt9yOnooCkE56wfYZpW+QZbf6Ai4
G1WeJ7azLU/x1Ed30ZENx2HB420b21YxWfplDx2ZPIn8K7nQyj4eW1GyZpCO
rn6WCbBxbmFHHaJM/hmnI5XQox5JGs1s9sJVl9x/dIQs8XvD5Hfs2sKVT79R
+NFPd2eLxb917A8uT5dEafxoT8MW/dKjb9nfGr7cCeHjRys36jAkNGvY82ly
rftE+VF5At8v5ZQK9pLFY+VocX7klf9a2cq1jL2MBmdeSPKjTzkTGoGaJWzJ
Ey5ia2T4kcitW/meKQ/Ycit/OtrL8SNRjTKnO5r32IrNFwsTVvCjLkWL3Osp
qWyVS8zF2pXk/U00+epSLrM1tz4w/6PAj17jfdIxk/mv/g9goTU5
"]]},
Annotation[#, "Charting`Private`Tag$28762#2"]& ]}}, {}}, {
DisplayFunction -> Identity, Ticks -> {{{
NCache[Rational[1, 2] Pi, 1.5707963267948966`],
FormBox[
FractionBox["\[Pi]", "2"], TraditionalForm]}, {
NCache[Pi, 3.141592653589793],
FormBox["\[Pi]", TraditionalForm]}}, {{-0.4,
FormBox[
RowBox[{"-", "0.4`"}], TraditionalForm]}, {-0.2,
FormBox[
RowBox[{"-", "0.2`"}], TraditionalForm]}, {0,
FormBox["0", TraditionalForm]}, {0.2,
FormBox["0.2`", TraditionalForm]}, {0.4,
FormBox["0.4`", TraditionalForm]}, {0.6,
FormBox["0.6`", TraditionalForm]}}}, AxesOrigin -> {0, 0},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {
FormBox[
TagBox["\[Beta]", HoldForm], TraditionalForm],
FormBox[
TagBox[
RowBox[{
SubscriptBox["S", "x"], "(",
RowBox[{"T", "+",
RowBox[{"2", " ", "\[Tau]"}]}], ")"}], HoldForm],
TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity,
Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]],
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}}, PlotRange ->
NCache[{{0, Pi}, {-0.00009365693907329107, 0.00006581619599821727}}, {{
0, 3.141592653589793}, {-0.00009365693907329107,
0.00006581619599821727}}], PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {{{
NCache[Rational[1, 2] Pi, 1.5707963267948966`],
FormBox[
FractionBox["\[Pi]", "2"], TraditionalForm]}, {
NCache[Pi, 3.141592653589793],
FormBox["\[Pi]", TraditionalForm]}}, {{-0.4,
FormBox[
RowBox[{"-", "0.4`"}], TraditionalForm]}, {-0.2,
FormBox[
RowBox[{"-", "0.2`"}], TraditionalForm]}, {0,
FormBox["0", TraditionalForm]}, {0.2,
FormBox["0.2`", TraditionalForm]}, {0.4,
FormBox["0.4`", TraditionalForm]}, {0.6,
FormBox["0.6`", TraditionalForm]}}}}],
FormBox[
FormBox[
TemplateBox[{"\"Powder\"", "\"Powder2\""}, "LineLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
TemplateBox[<|
"color" -> RGBColor[0.368417, 0.506779, 0.709798]|>,
"RGBColorSwatchTemplate"], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
TemplateBox[<|
"color" -> RGBColor[0.880722, 0.611041, 0.142051]|>,
"RGBColorSwatchTemplate"], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{
3.917088647055209*^9, {3.917088711695266*^9, 3.917088756941218*^9}, {
3.917088929942802*^9, 3.9170889587598753`*^9}},
CellLabel->
"Out[320]=",ExpressionUUID->"8fd5d6d0-c656-4d2d-9d58-9175fca0b53c"]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.9169956530147047`*^9,
3.9169956663104057`*^9}},ExpressionUUID->"baeba0cf-680b-442c-9629-\
8c55af8efd0c"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"test", "=", " ",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"xSignalUdTau", "[",
RowBox[{"beta", ",", " ", "\[Xi]Ud", ",", " ", "tt"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"tt", ",", " ",
RowBox[{"Array", "[",
RowBox[{
RowBox[{"#", "&"}], ",", " ", "10", ",", " ",
RowBox[{"{",
RowBox[{"0", ",", " ", "9"}], "}"}]}], "]"}]}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"Manipulate", "[",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"test", "[",
RowBox[{"\[Beta]", ",", " ", "\[Xi]Ud", ",", " ", "tt"}], "]"}], ",",
" ",
RowBox[{"{",
RowBox[{"\[Beta]", ",", " ", "0", ",", " ", "\[Pi]"}], "}"}]}], "]"}],
",", " ",
RowBox[{"{",
RowBox[{"tt", ",", " ", "0", ",", " ", "10"}], "}"}]}], "]"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"xSignalUdTau", "[",
RowBox[{"beta", ",", " ", "\[Xi]Ud", ",", " ",
RowBox[{"Array", "[",
RowBox[{
RowBox[{"#", "&"}], ",", " ", "10", ",", " ",
RowBox[{"{",
RowBox[{"0", ",", " ", "9"}], "}"}]}], "]"}]}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"\[Beta]", ",", " ", "0", ",", " ", "\[Pi]"}], "}"}]}],
"]"}]}], "Input",
CellChangeTimes->{{3.916995321855692*^9, 3.9169953649345016`*^9}, {
3.916995401006792*^9, 3.916995540419544*^9}},
CellLabel->
"In[469]:=",ExpressionUUID->"fe5d8333-063c-4ef9-b9be-daf4490e0a36"],
Cell[BoxData[
RowBox[{
RowBox[{"\[Sqrt]", "2"}], "+", "4", " "}]], "Input",
CellChangeTimes->{{3.916999913207314*^9, 3.916999913209971*^9}, {
3.917081962828033*^9, 3.917081997611929*^9}},
CellLabel->
"In[186]:=",ExpressionUUID->"fc638b42-321b-4e47-8eb9-8e5029047faf"],
Cell[BoxData[
RowBox[{"4", "+",
SqrtBox["2"]}]], "Input",
CellChangeTimes->{{3.917082008684125*^9,
3.91708202203605*^9}},ExpressionUUID->"9c4c92fc-3c18-46d6-a123-\
ff0e94519ed6"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"From", " ", "Zech", " ", "Dissertation", " ", "page", " ", "100"}],
"*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dd", " ", "=", " ", "4.76"}], ";"}], " ",
RowBox[{"(*", " ",
RowBox[{"MHz", " ",
RowBox[{"nm", "^", "3"}]}], "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"J", " ", "=", " ", "0.03"}], ";"}],
RowBox[{"(*", " ", "MHz", " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Mu]B", " ", "=", " ",
RowBox[{"9.27", "*",
RowBox[{"10", "^",
RowBox[{"(",
RowBox[{"-", "24"}], ")"}]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"hbar", " ", "=", " ",
RowBox[{"1.05", "*",
RowBox[{"10", "^",
RowBox[{"(",
RowBox[{"-", "34"}], ")"}]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"B0", " ", "=", " ", "0.35"}], ";"}], " ",
RowBox[{"(*", " ", "T", " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"g2mg1", " ", "=", " ", "0.00015"}], ";", " ",
RowBox[{"(*", " ",
RowBox[{
RowBox[{
RowBox[{
"Valid", " ", "for", " ", "\[IndentingNewLine]", "d\[CapitalOmega]"}],
" ", "=", " ",
RowBox[{"g2mg1", " ", "\[Mu]B", " ",
RowBox[{"B0", "/", "hbar"}], " ", "*", " ",
RowBox[{"10", "^",
RowBox[{"(",
RowBox[{"-", "6"}], ")"}]}]}]}], ";", " ",
RowBox[{"(*", " ", "MHz", " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"\[Tau]", " ", "=", " ", "2"}], ";", "\[IndentingNewLine]",
RowBox[{"dmJUd", " ", "=", " ",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "0", "]"}], "^", "2"}]}]}], ")"}]}], " ",
"-", " ", "J"}]}], ";", "\[IndentingNewLine]",
RowBox[{"\[Xi]Ud", " ", "=", " ",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "0", "]"}], "^", "2"}]}]}], ")"}]}], " ",
"+", " ",
RowBox[{"2", "J"}]}], ")"}], "/", "d\[CapitalOmega]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"xSignalUd", "[",
RowBox[{"\[Beta]_", ",", " ", "\[Xi]_"}], "]"}], " ", ":=", " ",
RowBox[{
RowBox[{"1", "/", "2"}],
RowBox[{"Sin", "[",
RowBox[{"2", " ", "dmJUd", " ", "\[Tau]"}], "]"}],
SuperscriptBox[
RowBox[{"Cos", "[", "\[Xi]", "]"}], "2"],
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"Sin", "[", "\[Beta]", "]"}],
RowBox[{"Sin", "[",
RowBox[{"2", "\[Xi]"}], "]"}]}], "-",
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"2", "\[Beta]"}], "]"}],
RowBox[{
RowBox[{"(",
RowBox[{"2", "+",
RowBox[{"Sin", "[",
RowBox[{"2", "\[Xi]"}], "]"}]}], ")"}], "/", "2"}]}]}],
")"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"xSignalS0", "[",
RowBox[{"\[Beta]_", ",", " ", "\[Xi]_"}], "]"}], " ", ":=", " ",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "/", "2"}],
RowBox[{"Sin", "[",
RowBox[{"2", " ", "dmJUd", " ", "\[Tau]"}], "]"}],
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"1", "/", "2"}],
RowBox[{"Sin", "[", "\[Beta]", "]"}],
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"2", "\[Xi]"}], "]"}], "^", "2"}]}], "+",
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"2", "\[Beta]"}], "]"}],
RowBox[{
RowBox[{"Cos", "[", "\[Xi]", "]"}], "^", "4"}]}]}], ")"}]}]}],
";", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"nTheta", " ", "=", " ", "8000"}], ";", "\[IndentingNewLine]",
RowBox[{"\[Theta]s", " ", "=", " ",
RowBox[{"Array", "[",
RowBox[{
RowBox[{"#", "&"}], ",", "nTheta", ",",
RowBox[{"{",
RowBox[{"0", ",", "\[Pi]"}], "}"}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{"\[Theta]s", " ", "=", " ",
RowBox[{"Array", "[",
RowBox[{
RowBox[{"#", "&"}], ",", "nTheta", ",",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}], "]"}]}], ";"}], "*)"}],
"\[IndentingNewLine]",
RowBox[{"t1", " ", "=", " ",
RowBox[{"Plus", " ", "@@", " ",
RowBox[{"Table", "[", " ",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Sin", "[",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}],
")"}]}], " ", "-", " ", "J"}], ")"}], "\[Tau]"}], "]"}]}],
"*",
RowBox[{
RowBox[{"Sin", "[", "\[Theta]", "]"}], "^", "2"}], "*",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"Cos", "[",
RowBox[{"ArcTan", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}],
")"}]}], " ", "+", " ",
RowBox[{"2", "J"}]}], ")"}], "/", "d\[CapitalOmega]"}],
"]"}], "]"}], "^", "2"}], "*", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"ArcTan", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}],
")"}]}], " ", "+", " ",
RowBox[{"2", "J"}]}], ")"}], "/", "d\[CapitalOmega]"}],
"]"}], "]"}], "^", "2"}]}], ",", " ",
RowBox[{"{",
RowBox[{"\[Theta]", ",", " ", "\[Theta]s"}], "}"}]}], "]"}]}]}],
";", "\[IndentingNewLine]",
RowBox[{"t2", " ", "=", " ",
RowBox[{"Plus", " ", "@@", " ",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"2", " ",
RowBox[{"Sin", "[",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}],
")"}]}], " ", "-", " ", "J"}], ")"}], "\[Tau]"}], "]"}], "*",
RowBox[{"Cos", "[", "\[Theta]", "]"}], "*", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Cos", "[",
RowBox[{"ArcTan", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}],
")"}]}], " ", "+", " ",
RowBox[{"2", "J"}]}], ")"}], "/", "d\[CapitalOmega]"}],
"]"}], "]"}], "^", "3"}], " ", "*", "\[IndentingNewLine]",
RowBox[{"Sin", "[",
RowBox[{"ArcTan", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}],
")"}]}], " ", "+", " ",
RowBox[{"2", "J"}]}], ")"}], "/", "d\[CapitalOmega]"}], "]"}],
"]"}]}], ",", " ",
RowBox[{"{",
RowBox[{"\[Theta]", ",", " ", "\[Theta]s"}], "}"}]}], "]"}]}]}],
";", "\[IndentingNewLine]",
RowBox[{"t3", " ", "=", " ",
RowBox[{"Plus", " ", "@@", " ",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Sin", "[",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}],
")"}]}], " ", "-", " ", "J"}], ")"}], "\[Tau]"}], "]"}]}],
"*",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}], "*",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"Cos", "[",
RowBox[{"ArcTan", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"dd",
RowBox[{"(",
RowBox[{"1", " ", "-", " ",
RowBox[{"3",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}],
")"}]}], " ", "+", " ",
RowBox[{"2", "J"}]}], ")"}], "/", "d\[CapitalOmega]"}],
"]"}], "]"}], "^", "2"}]}], ",", " ",
RowBox[{"{",
RowBox[{"\[Theta]", ",", " ", "\[Theta]s"}], "}"}]}], "]"}]}]}],
";", "\[IndentingNewLine]",
RowBox[{"t4", " ", "=", " ",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "/", "2"}], " ", "t1"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"t5", " ", "=", " ",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "/", "2"}], " ", "t2"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"xSignalPowder", "[", "\[Beta]_", "]"}], " ", ":=", " ",
RowBox[{"\[Pi]", "*",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"Sin", "[", "\[Beta]", "]"}],
RowBox[{"(",
RowBox[{"t1", " ", "+", " ", "t2"}], ")"}]}], " ", "+", " ",
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"2", "\[Beta]"}], "]"}],
RowBox[{"(",
RowBox[{"t3", " ", "+", " ", "t4", " ", "+", " ", "t5"}],
")"}]}]}], ")"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"nBeta", " ", "=", " ", "8000"}]}]}], ";",
"\[IndentingNewLine]",
RowBox[{"\[Beta]s", " ", "=", " ",
RowBox[{"Array", "[",
RowBox[{
RowBox[{"#", "&"}], ",", " ", "nBeta", ",", " ",
RowBox[{"{",
RowBox[{"0", ",", " ", "\[Pi]"}], "}"}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{"integUd", " ", "=", " ",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"xSignalUd", "[",
RowBox[{"beta", ",", " ", "\[Xi]Ud"}], "]"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"beta", ",", " ", "0", ",", " ", "\[Pi]"}], "}"}]}],
"]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"integDu", " ", "=", " ",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"xSignalUd", "[",
RowBox[{"beta", ",", " ",
RowBox[{"-", "\[Xi]Ud"}]}], "]"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"beta", ",", " ", "0", ",", " ", "\[Pi]"}], "}"}]}],
"]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"integS0", " ", "=", " ",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"xSignalS0", "[",
RowBox[{"beta", ",", " ", "\[Xi]Ud"}], "]"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"beta", ",", " ", "0", ",", " ", "\[Pi]"}], "}"}]}],
"]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"integPowder", " ", "=", " ",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"xSignalPowder", "[", "beta", "]"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"beta", ",", " ", "0", ",", " ", "\[Pi]"}], "}"}]}],
"]"}]}], ";"}], "*)"}], "\[IndentingNewLine]",
RowBox[{"integUd", " ", "=", " ",
RowBox[{
RowBox[{"Plus", " ", "@@", " ",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"xSignalUd", "[",
RowBox[{"\[Beta]", ",", " ", "\[Xi]Ud"}], "]"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"\[Beta]", ",", "\[Beta]s"}], "}"}]}], "]"}]}], "*",
RowBox[{"(",
RowBox[{"\[Pi]", "/", "nBeta"}], ")"}]}]}], ";",
"\[IndentingNewLine]",
RowBox[{"integDu", " ", "=", " ",
RowBox[{
RowBox[{"Plus", " ", "@@", " ",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"xSignalUd", "[",
RowBox[{"\[Beta]", ",", " ",
RowBox[{"-", "\[Xi]Ud"}]}], "]"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"\[Beta]", ",", "\[Beta]s"}], "}"}]}], "]"}]}], "*",
RowBox[{"(",
RowBox[{"\[Pi]", "/", "nBeta"}], ")"}]}]}], ";",
"\[IndentingNewLine]",
RowBox[{"integS0", " ", "=", " ",
RowBox[{
RowBox[{"Plus", " ", "@@", " ",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"xSignalS0", "[",
RowBox[{"\[Beta]", ",", " ", "\[Xi]Ud"}], "]"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"\[Beta]", ",", "\[Beta]s"}], "}"}]}], "]"}]}], "*",
RowBox[{"(",
RowBox[{"\[Pi]", "/", "nBeta"}], ")"}]}]}], ";",
"\[IndentingNewLine]",
RowBox[{"integPowder", " ", "=", " ",
RowBox[{
RowBox[{"Plus", " ", "@@", " ",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"xSignalPowder", "[", "\[Beta]", "]"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"\[Beta]", ",", "\[Beta]s"}], "}"}]}], "]"}]}], "*",
RowBox[{"(",
RowBox[{"\[Pi]", "/", "nBeta"}], ")"}]}]}], ";"}]}]}]}]}]], "Input",
CellChangeTimes->{{3.9163937302684803`*^9, 3.916393789539342*^9}, {
3.916395457000986*^9, 3.916395666472385*^9}, {3.916395737945644*^9,
3.916395897386197*^9}, {3.916395945688806*^9, 3.916395978096415*^9}, {
3.916396055721607*^9, 3.916396056113295*^9}, {3.916396089539307*^9,
3.916396102855833*^9}, {3.916396400469493*^9, 3.9163964404088306`*^9},
3.916396496024024*^9, 3.916396892306131*^9, {3.9163970212385283`*^9,
3.9163970233346863`*^9}, {3.916397155793157*^9, 3.916397185095731*^9}, {
3.916397223665463*^9, 3.916397223927697*^9}, {3.916397259064118*^9,
3.916397260088785*^9}, {3.916399005583267*^9, 3.916399008724667*^9}, {
3.9163990408465652`*^9, 3.916399048264076*^9}, {3.916399091964438*^9,
3.91639925496462*^9}, {3.916399336390561*^9, 3.916399337476449*^9}, {
3.916399564900099*^9, 3.9163996196361322`*^9}, {3.916399650332074*^9,
3.916399696524806*^9}, {3.916399729741062*^9, 3.9163997323889313`*^9}, {
3.916399861733108*^9, 3.91639986193314*^9}, {3.916459339998846*^9,
3.9164594261381273`*^9}, {3.916459481687921*^9, 3.916459920088002*^9}, {
3.916459957366891*^9, 3.916459965662881*^9}, {3.916460001527783*^9,
3.916460047086892*^9}, {3.916460114278419*^9, 3.9164601155253277`*^9}, {
3.916460151551512*^9, 3.916460211938319*^9}, {3.916460268142315*^9,
3.9164605026140747`*^9}, {3.9164611705112677`*^9, 3.91646122986865*^9}, {
3.9164612838081303`*^9, 3.916461283894438*^9}, {3.9164613352890387`*^9,
3.916461337638524*^9}, {3.916461476086728*^9, 3.916461525229425*^9}, {
3.916461790301509*^9, 3.9164618508224573`*^9}, {3.916461918750992*^9,
3.916461926078661*^9}, {3.9164619865834503`*^9, 3.916462015670877*^9}, {
3.916462068855147*^9, 3.916462135525106*^9}, {3.91646218312778*^9,
3.916462189670607*^9}, {3.916462346454254*^9, 3.916462409190194*^9}, {
3.916462535346735*^9, 3.9164625541754932`*^9}, {3.916463033773225*^9,
3.916463252751165*^9}, {3.916463327006172*^9, 3.91646332911684*^9}, {
3.916463381588971*^9, 3.9164633889006433`*^9}, {3.916463588216133*^9,
3.9164635883025923`*^9}, {3.916463825312687*^9, 3.9164638356214848`*^9}, {
3.9167417118658524`*^9, 3.9167417845846653`*^9}, {3.916741823928142*^9,
3.916741855983509*^9}, {3.91674190796159*^9, 3.9167419458324127`*^9}, {
3.9168044618145*^9, 3.916804918788116*^9}, {3.916804977625128*^9,
3.916804992702217*^9}, 3.9169176255793953`*^9, {3.916921214682989*^9,
3.916921294891244*^9}, {3.9169213495429077`*^9, 3.916921349995915*^9}, {
3.916921400115958*^9, 3.916921644474424*^9}, {3.9169217152039557`*^9,
3.916921717994781*^9}, {3.9169217702988234`*^9, 3.916921909994605*^9}, {
3.91692199838879*^9, 3.916922121417528*^9}, {3.91692217292935*^9,
3.916922419354519*^9}, 3.9169780033662853`*^9, {3.916978140634848*^9,
3.916978251504733*^9}, {3.9169783878167667`*^9, 3.916978392624208*^9},
3.9169784541508007`*^9, {3.916978660312846*^9, 3.91697868807203*^9}, {
3.9169787643044567`*^9, 3.916978775016548*^9}, {3.916978851712983*^9,
3.916978866038184*^9}, {3.916978918882639*^9, 3.916978940216015*^9}, {
3.916979161838489*^9, 3.916979168108508*^9}, {3.916992944874515*^9,
3.916993059407528*^9}, {3.916993109275483*^9, 3.916993111552355*^9}, {
3.9169931483204727`*^9, 3.916993350441084*^9}, {3.916993813057001*^9,
3.9169938546642303`*^9}, {3.91699397367304*^9, 3.916994034672371*^9}, {
3.9169946760155773`*^9, 3.916994678617371*^9}, 3.9169947539937477`*^9, {
3.916995214962222*^9, 3.916995215696632*^9}, {3.91699524637354*^9,
3.916995268776944*^9}, 3.916996345745707*^9, {3.9169999538345346`*^9,
3.9170000167931643`*^9}, {3.917000222053495*^9,
3.917000257399028*^9}},ExpressionUUID->"18ffe925-7d12-4146-80a7-\
0aedbe6771c5"]
}, Open ]]
}, Open ]]
}, Open ]]
},
WindowSize->{715.5, 876.75},
WindowMargins->{{Automatic, -720.75}, {0.75, Automatic}},
TaggingRules-><|"TryRealOnly" -> False|>,
FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"4ad8858f-4348-4107-83d1-3c00053acdad"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[422, 15, 389, 6, 160, "Title",ExpressionUUID->"bb41c43f-e470-4d10-9fa6-596602959a8a"],
Cell[CellGroupData[{
Cell[836, 25, 279, 5, 68, "Section",ExpressionUUID->"df6c81dc-2e23-4c97-ab9d-3affe9d5ec54"],
Cell[CellGroupData[{
Cell[1140, 34, 344, 5, 54, "Subsection",ExpressionUUID->"fbee9677-a13b-4e44-9619-dcbfd673cc4f"],
Cell[1487, 41, 6978, 199, 546, "Input",ExpressionUUID->"c41d3c71-ee28-4bc6-9e85-2bd1421c5b58"]
}, Open ]],
Cell[CellGroupData[{
Cell[8502, 245, 157, 3, 54, "Subsection",ExpressionUUID->"72667dd0-4e61-4cc6-a18d-8acd56165994"],
Cell[8662, 250, 5954, 128, 339, "Input",ExpressionUUID->"75e85bec-ac70-421b-a913-e5aa75ccda82"]
}, Open ]],
Cell[CellGroupData[{
Cell[14653, 383, 228, 4, 54, "Subsection",ExpressionUUID->"e8465a77-e541-4dfd-bb01-d24813cf3807"],
Cell[14884, 389, 4539, 95, 298, "Input",ExpressionUUID->"1ea62398-7f4d-44c3-8434-d71c110d66c1"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[19472, 490, 207, 4, 68, "Section",ExpressionUUID->"7f67e21e-e3fa-4d7d-86e8-5118b3890d45"],
Cell[CellGroupData[{
Cell[19704, 498, 160, 3, 54, "Subsection",ExpressionUUID->"8fba53ba-2aac-4b5f-a03c-b3cbea2f5663"],
Cell[19867, 503, 10817, 244, 467, "Input",ExpressionUUID->"c337890b-d1c7-4370-8e97-6da577e088c4"],
Cell[30687, 749, 12452, 274, 341, "Input",ExpressionUUID->"91f51bdd-73c9-42b5-a1b5-e7db64c90baf"]
}, Open ]],
Cell[CellGroupData[{
Cell[43176, 1028, 169, 3, 54, "Subsection",ExpressionUUID->"9c36c1b1-42af-4980-89c8-3ae4a95fe9d1"],
Cell[43348, 1033, 11812, 263, 429, "Input",ExpressionUUID->"5908c610-d9e0-4b8e-a103-fdc9495468c1"]
}, Open ]],
Cell[CellGroupData[{
Cell[55197, 1301, 156, 3, 54, "Subsection",ExpressionUUID->"73e0f8fe-657a-4aab-a349-27c85bab56c5"],
Cell[CellGroupData[{
Cell[55378, 1308, 11099, 248, 555, "Input",ExpressionUUID->"a6c9a54e-97e1-4266-86e8-25be65e222ae"],
Cell[66480, 1558, 59275, 1076, 242, "Output",ExpressionUUID->"f7c7dc4c-4f3b-4d9e-a01c-7f9c43116382"]
}, Open ]],
Cell[CellGroupData[{
Cell[125792, 2639, 1888, 48, 178, "Input",ExpressionUUID->"eff06dcb-a5af-4c84-901a-92fa4979a26a"],
Cell[127683, 2689, 27579, 518, 242, "Output",ExpressionUUID->"8fd5d6d0-c656-4d2d-9d58-9175fca0b53c"]
}, Open ]],
Cell[155277, 3210, 156, 3, 29, "Input",ExpressionUUID->"baeba0cf-680b-442c-9629-8c55af8efd0c"],
Cell[155436, 3215, 1601, 45, 71, "Input",ExpressionUUID->"fe5d8333-063c-4ef9-b9be-daf4490e0a36"],
Cell[157040, 3262, 276, 6, 29, "Input",ExpressionUUID->"fc638b42-321b-4e47-8eb9-8e5029047faf"],
Cell[157319, 3270, 186, 5, 30, InheritFromParent,ExpressionUUID->"9c4c92fc-3c18-46d6-a123-ff0e94519ed6"],
Cell[157508, 3277, 18869, 447, 834, "Input",ExpressionUUID->"18ffe925-7d12-4146-80a7-0aedbe6771c5"]
}, Open ]]
}, Open ]]
}, Open ]]
}
]
*)