Skip to content
Snippets Groups Projects
Commit d63d0b07 authored by Elias Pipping's avatar Elias Pipping Committed by Elias Pipping
Browse files

[Algorit] Add damping to EulerPair

parent e2b20f38
No related branches found
No related tags found
No related merge requests found
template <class VectorType, class MatrixType, class FunctionType, int dim>
EulerPair<VectorType, MatrixType, FunctionType, dim>::EulerPair(
MatrixType const &_A, MatrixType const &_B, VectorType const &_u_initial,
MatrixType const &_A, MatrixType const &_M, VectorType const &_u_initial,
VectorType const &_v_initial,
Dune::BitSetVector<dim> const &_dirichletNodes,
FunctionType const &_dirichletFunction)
: A(_A),
B(_B),
M(_M),
u(_u_initial),
v(_v_initial),
dirichletNodes(_dirichletNodes),
......@@ -21,26 +20,56 @@ void EulerPair<VectorType, MatrixType, FunctionType, dim>::nextTimeStep() {
template <class VectorType, class MatrixType, class FunctionType, int dim>
void EulerPair<VectorType, MatrixType, FunctionType, dim>::setup(
VectorType const &ell, double _tau, double time, VectorType &problem_rhs,
VectorType &problem_iterate, MatrixType &problem_AB) {
VectorType &problem_iterate, MatrixType &problem_AM) {
postProcessCalled = false;
tau = _tau;
problem_rhs = ell;
Arithmetic::addProduct(problem_rhs, 1.0 / tau, B, v_o);
Arithmetic::subtractProduct(problem_rhs, A, u_o);
MatrixType const &C = A;
double const wc = 0.0;
/* We start out with the formulation
M a + C v + A u = ell
Backward Euler means
a1 = 1.0/tau ( v1 - v0 )
u1 = tau v1 + u0
in summary, we get at time t=1
M [1.0/tau ( v1 - v0 )] + C v1
+ A [tau v1 + u0] = ell
or
1.0/tau M v1 + C v1 + tau A v1
= [1.0/tau M + C + tau A] v1
= ell + 1.0/tau M v0 - A u0
*/
// set up LHS (for fixed tau, we'd only really have to do this once)
{
Dune::MatrixIndexSet indices(A.N(), A.M());
indices.import(A);
indices.import(M);
indices.import(C);
indices.exportIdx(problem_AM);
}
problem_AM = 0.0;
Arithmetic::addProduct(problem_AM, (1.0 - wc) / tau, M);
Arithmetic::addProduct(problem_AM, wc, C);
Arithmetic::addProduct(problem_AM, tau, A);
// For fixed tau, we'd only really have to do this once
Dune::MatrixIndexSet indices(A.N(), A.M());
indices.import(A);
indices.import(B);
indices.exportIdx(problem_AB);
problem_AB = 0.0;
Arithmetic::addProduct(problem_AB, tau, A);
Arithmetic::addProduct(problem_AB, 1.0 / tau, B);
// set up RHS
{
problem_rhs = ell;
Arithmetic::addProduct(problem_rhs, (1.0 - wc) / tau, M, v_o);
Arithmetic::subtractProduct(problem_rhs, A, u_o);
}
// v_o makes a good initial iterate; we could use anything, though
problem_iterate = v_o;
problem_iterate = 0.0;
for (size_t i = 0; i < dirichletNodes.size(); ++i)
switch (dirichletNodes[i].count()) {
......
......@@ -5,7 +5,7 @@ template <class VectorType, class MatrixType, class FunctionType, int dim>
class EulerPair
: public TimeSteppingScheme<VectorType, MatrixType, FunctionType, dim> {
public:
EulerPair(MatrixType const &_A, MatrixType const &_B,
EulerPair(MatrixType const &_A, MatrixType const &_M,
VectorType const &_u_initial, VectorType const &_v_initial,
Dune::BitSetVector<dim> const &_dirichletNodes,
FunctionType const &_dirichletFunction);
......@@ -19,7 +19,7 @@ class EulerPair
private:
MatrixType const &A;
MatrixType const &B;
MatrixType const &M;
VectorType u;
VectorType v;
Dune::BitSetVector<dim> const &dirichletNodes;
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment