Skip to content
Snippets Groups Projects
Select Git revision
  • abdb1631c07571d4248485df927805880fc84aa7
  • master default protected
2 results

codeStyleConfig.xml

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    blk-mq.c 68.93 KiB
    /*
     * Block multiqueue core code
     *
     * Copyright (C) 2013-2014 Jens Axboe
     * Copyright (C) 2013-2014 Christoph Hellwig
     */
    #include <linux/kernel.h>
    #include <linux/module.h>
    #include <linux/backing-dev.h>
    #include <linux/bio.h>
    #include <linux/blkdev.h>
    #include <linux/kmemleak.h>
    #include <linux/mm.h>
    #include <linux/init.h>
    #include <linux/slab.h>
    #include <linux/workqueue.h>
    #include <linux/smp.h>
    #include <linux/llist.h>
    #include <linux/list_sort.h>
    #include <linux/cpu.h>
    #include <linux/cache.h>
    #include <linux/sched/sysctl.h>
    #include <linux/sched/topology.h>
    #include <linux/sched/signal.h>
    #include <linux/delay.h>
    #include <linux/crash_dump.h>
    #include <linux/prefetch.h>
    
    #include <trace/events/block.h>
    
    #include <linux/blk-mq.h>
    #include "blk.h"
    #include "blk-mq.h"
    #include "blk-mq-debugfs.h"
    #include "blk-mq-tag.h"
    #include "blk-stat.h"
    #include "blk-wbt.h"
    #include "blk-mq-sched.h"
    
    static void blk_mq_poll_stats_start(struct request_queue *q);
    static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
    
    static int blk_mq_poll_stats_bkt(const struct request *rq)
    {
    	int ddir, bytes, bucket;
    
    	ddir = rq_data_dir(rq);
    	bytes = blk_rq_bytes(rq);
    
    	bucket = ddir + 2*(ilog2(bytes) - 9);
    
    	if (bucket < 0)
    		return -1;
    	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
    		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
    
    	return bucket;
    }
    
    /*
     * Check if any of the ctx's have pending work in this hardware queue
     */
    bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
    {
    	return sbitmap_any_bit_set(&hctx->ctx_map) ||
    			!list_empty_careful(&hctx->dispatch) ||
    			blk_mq_sched_has_work(hctx);
    }
    
    /*
     * Mark this ctx as having pending work in this hardware queue
     */
    static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
    				     struct blk_mq_ctx *ctx)
    {
    	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
    		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
    }
    
    static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
    				      struct blk_mq_ctx *ctx)
    {
    	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
    }
    
    void blk_freeze_queue_start(struct request_queue *q)
    {
    	int freeze_depth;
    
    	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
    	if (freeze_depth == 1) {
    		percpu_ref_kill(&q->q_usage_counter);
    		blk_mq_run_hw_queues(q, false);
    	}
    }
    EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
    
    void blk_mq_freeze_queue_wait(struct request_queue *q)
    {
    	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
    }
    EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
    
    int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
    				     unsigned long timeout)
    {
    	return wait_event_timeout(q->mq_freeze_wq,
    					percpu_ref_is_zero(&q->q_usage_counter),
    					timeout);
    }
    EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
    
    /*
     * Guarantee no request is in use, so we can change any data structure of
     * the queue afterward.
     */
    void blk_freeze_queue(struct request_queue *q)
    {
    	/*
    	 * In the !blk_mq case we are only calling this to kill the
    	 * q_usage_counter, otherwise this increases the freeze depth
    	 * and waits for it to return to zero.  For this reason there is
    	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
    	 * exported to drivers as the only user for unfreeze is blk_mq.
    	 */
    	blk_freeze_queue_start(q);
    	blk_mq_freeze_queue_wait(q);
    }
    
    void blk_mq_freeze_queue(struct request_queue *q)
    {
    	/*
    	 * ...just an alias to keep freeze and unfreeze actions balanced
    	 * in the blk_mq_* namespace
    	 */
    	blk_freeze_queue(q);
    }
    EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
    
    void blk_mq_unfreeze_queue(struct request_queue *q)
    {
    	int freeze_depth;
    
    	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
    	WARN_ON_ONCE(freeze_depth < 0);
    	if (!freeze_depth) {
    		percpu_ref_reinit(&q->q_usage_counter);
    		wake_up_all(&q->mq_freeze_wq);
    	}
    }
    EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
    
    /*
     * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
     * mpt3sas driver such that this function can be removed.
     */
    void blk_mq_quiesce_queue_nowait(struct request_queue *q)
    {
    	unsigned long flags;
    
    	spin_lock_irqsave(q->queue_lock, flags);
    	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
    	spin_unlock_irqrestore(q->queue_lock, flags);
    }
    EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
    
    /**
     * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
     * @q: request queue.
     *
     * Note: this function does not prevent that the struct request end_io()
     * callback function is invoked. Once this function is returned, we make
     * sure no dispatch can happen until the queue is unquiesced via
     * blk_mq_unquiesce_queue().
     */
    void blk_mq_quiesce_queue(struct request_queue *q)
    {
    	struct blk_mq_hw_ctx *hctx;
    	unsigned int i;
    	bool rcu = false;
    
    	blk_mq_quiesce_queue_nowait(q);
    
    	queue_for_each_hw_ctx(q, hctx, i) {
    		if (hctx->flags & BLK_MQ_F_BLOCKING)
    			synchronize_srcu(hctx->queue_rq_srcu);
    		else
    			rcu = true;
    	}
    	if (rcu)
    		synchronize_rcu();
    }
    EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
    
    /*
     * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
     * @q: request queue.
     *
     * This function recovers queue into the state before quiescing
     * which is done by blk_mq_quiesce_queue.
     */
    void blk_mq_unquiesce_queue(struct request_queue *q)
    {
    	unsigned long flags;
    
    	spin_lock_irqsave(q->queue_lock, flags);
    	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
    	spin_unlock_irqrestore(q->queue_lock, flags);
    
    	/* dispatch requests which are inserted during quiescing */
    	blk_mq_run_hw_queues(q, true);
    }
    EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
    
    void blk_mq_wake_waiters(struct request_queue *q)
    {
    	struct blk_mq_hw_ctx *hctx;
    	unsigned int i;
    
    	queue_for_each_hw_ctx(q, hctx, i)
    		if (blk_mq_hw_queue_mapped(hctx))
    			blk_mq_tag_wakeup_all(hctx->tags, true);
    
    	/*
    	 * If we are called because the queue has now been marked as
    	 * dying, we need to ensure that processes currently waiting on
    	 * the queue are notified as well.
    	 */
    	wake_up_all(&q->mq_freeze_wq);
    }
    
    bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
    {
    	return blk_mq_has_free_tags(hctx->tags);
    }
    EXPORT_SYMBOL(blk_mq_can_queue);
    
    static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
    		unsigned int tag, unsigned int op)
    {
    	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
    	struct request *rq = tags->static_rqs[tag];
    
    	rq->rq_flags = 0;
    
    	if (data->flags & BLK_MQ_REQ_INTERNAL) {
    		rq->tag = -1;
    		rq->internal_tag = tag;
    	} else {
    		if (blk_mq_tag_busy(data->hctx)) {
    			rq->rq_flags = RQF_MQ_INFLIGHT;
    			atomic_inc(&data->hctx->nr_active);
    		}
    		rq->tag = tag;
    		rq->internal_tag = -1;
    		data->hctx->tags->rqs[rq->tag] = rq;
    	}
    
    	INIT_LIST_HEAD(&rq->queuelist);
    	/* csd/requeue_work/fifo_time is initialized before use */
    	rq->q = data->q;
    	rq->mq_ctx = data->ctx;
    	rq->cmd_flags = op;
    	if (blk_queue_io_stat(data->q))
    		rq->rq_flags |= RQF_IO_STAT;
    	/* do not touch atomic flags, it needs atomic ops against the timer */
    	rq->cpu = -1;
    	INIT_HLIST_NODE(&rq->hash);
    	RB_CLEAR_NODE(&rq->rb_node);
    	rq->rq_disk = NULL;
    	rq->part = NULL;
    	rq->start_time = jiffies;
    #ifdef CONFIG_BLK_CGROUP
    	rq->rl = NULL;
    	set_start_time_ns(rq);
    	rq->io_start_time_ns = 0;
    #endif
    	rq->nr_phys_segments = 0;
    #if defined(CONFIG_BLK_DEV_INTEGRITY)
    	rq->nr_integrity_segments = 0;
    #endif
    	rq->special = NULL;
    	/* tag was already set */
    	rq->extra_len = 0;
    
    	INIT_LIST_HEAD(&rq->timeout_list);
    	rq->timeout = 0;
    
    	rq->end_io = NULL;
    	rq->end_io_data = NULL;
    	rq->next_rq = NULL;
    
    	data->ctx->rq_dispatched[op_is_sync(op)]++;
    	return rq;
    }
    
    static struct request *blk_mq_get_request(struct request_queue *q,
    		struct bio *bio, unsigned int op,
    		struct blk_mq_alloc_data *data)
    {
    	struct elevator_queue *e = q->elevator;
    	struct request *rq;
    	unsigned int tag;
    	struct blk_mq_ctx *local_ctx = NULL;
    
    	blk_queue_enter_live(q);
    	data->q = q;
    	if (likely(!data->ctx))
    		data->ctx = local_ctx = blk_mq_get_ctx(q);
    	if (likely(!data->hctx))
    		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
    	if (op & REQ_NOWAIT)
    		data->flags |= BLK_MQ_REQ_NOWAIT;
    
    	if (e) {
    		data->flags |= BLK_MQ_REQ_INTERNAL;
    
    		/*
    		 * Flush requests are special and go directly to the
    		 * dispatch list.
    		 */
    		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
    			e->type->ops.mq.limit_depth(op, data);
    	}
    
    	tag = blk_mq_get_tag(data);
    	if (tag == BLK_MQ_TAG_FAIL) {
    		if (local_ctx) {
    			blk_mq_put_ctx(local_ctx);
    			data->ctx = NULL;
    		}
    		blk_queue_exit(q);
    		return NULL;
    	}
    
    	rq = blk_mq_rq_ctx_init(data, tag, op);
    	if (!op_is_flush(op)) {
    		rq->elv.icq = NULL;
    		if (e && e->type->ops.mq.prepare_request) {
    			if (e->type->icq_cache && rq_ioc(bio))
    				blk_mq_sched_assign_ioc(rq, bio);
    
    			e->type->ops.mq.prepare_request(rq, bio);
    			rq->rq_flags |= RQF_ELVPRIV;
    		}
    	}
    	data->hctx->queued++;
    	return rq;
    }
    
    struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
    		unsigned int flags)
    {
    	struct blk_mq_alloc_data alloc_data = { .flags = flags };
    	struct request *rq;
    	int ret;
    
    	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
    	if (ret)
    		return ERR_PTR(ret);
    
    	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
    	blk_queue_exit(q);
    
    	if (!rq)
    		return ERR_PTR(-EWOULDBLOCK);
    
    	blk_mq_put_ctx(alloc_data.ctx);
    
    	rq->__data_len = 0;
    	rq->__sector = (sector_t) -1;
    	rq->bio = rq->biotail = NULL;
    	return rq;
    }
    EXPORT_SYMBOL(blk_mq_alloc_request);
    
    struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
    		unsigned int op, unsigned int flags, unsigned int hctx_idx)
    {
    	struct blk_mq_alloc_data alloc_data = { .flags = flags };
    	struct request *rq;
    	unsigned int cpu;
    	int ret;
    
    	/*
    	 * If the tag allocator sleeps we could get an allocation for a
    	 * different hardware context.  No need to complicate the low level
    	 * allocator for this for the rare use case of a command tied to
    	 * a specific queue.
    	 */
    	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
    		return ERR_PTR(-EINVAL);
    
    	if (hctx_idx >= q->nr_hw_queues)
    		return ERR_PTR(-EIO);
    
    	ret = blk_queue_enter(q, true);
    	if (ret)
    		return ERR_PTR(ret);
    
    	/*
    	 * Check if the hardware context is actually mapped to anything.
    	 * If not tell the caller that it should skip this queue.
    	 */
    	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
    	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
    		blk_queue_exit(q);
    		return ERR_PTR(-EXDEV);
    	}
    	cpu = cpumask_first(alloc_data.hctx->cpumask);
    	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
    
    	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
    	blk_queue_exit(q);
    
    	if (!rq)
    		return ERR_PTR(-EWOULDBLOCK);
    
    	return rq;
    }
    EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
    
    void blk_mq_free_request(struct request *rq)
    {
    	struct request_queue *q = rq->q;
    	struct elevator_queue *e = q->elevator;
    	struct blk_mq_ctx *ctx = rq->mq_ctx;
    	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
    	const int sched_tag = rq->internal_tag;
    
    	if (rq->rq_flags & RQF_ELVPRIV) {
    		if (e && e->type->ops.mq.finish_request)
    			e->type->ops.mq.finish_request(rq);
    		if (rq->elv.icq) {
    			put_io_context(rq->elv.icq->ioc);
    			rq->elv.icq = NULL;
    		}
    	}
    
    	ctx->rq_completed[rq_is_sync(rq)]++;
    	if (rq->rq_flags & RQF_MQ_INFLIGHT)
    		atomic_dec(&hctx->nr_active);
    
    	wbt_done(q->rq_wb, &rq->issue_stat);
    
    	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
    	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
    	if (rq->tag != -1)
    		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
    	if (sched_tag != -1)
    		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
    	blk_mq_sched_restart(hctx);
    	blk_queue_exit(q);
    }
    EXPORT_SYMBOL_GPL(blk_mq_free_request);
    
    inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
    {
    	blk_account_io_done(rq);
    
    	if (rq->end_io) {
    		wbt_done(rq->q->rq_wb, &rq->issue_stat);
    		rq->end_io(rq, error);
    	} else {
    		if (unlikely(blk_bidi_rq(rq)))
    			blk_mq_free_request(rq->next_rq);
    		blk_mq_free_request(rq);
    	}
    }
    EXPORT_SYMBOL(__blk_mq_end_request);
    
    void blk_mq_end_request(struct request *rq, blk_status_t error)
    {
    	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
    		BUG();
    	__blk_mq_end_request(rq, error);
    }
    EXPORT_SYMBOL(blk_mq_end_request);
    
    static void __blk_mq_complete_request_remote(void *data)
    {
    	struct request *rq = data;
    
    	rq->q->softirq_done_fn(rq);
    }
    
    static void __blk_mq_complete_request(struct request *rq)
    {
    	struct blk_mq_ctx *ctx = rq->mq_ctx;
    	bool shared = false;
    	int cpu;
    
    	if (rq->internal_tag != -1)
    		blk_mq_sched_completed_request(rq);
    	if (rq->rq_flags & RQF_STATS) {
    		blk_mq_poll_stats_start(rq->q);
    		blk_stat_add(rq);
    	}
    
    	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
    		rq->q->softirq_done_fn(rq);
    		return;
    	}
    
    	cpu = get_cpu();
    	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
    		shared = cpus_share_cache(cpu, ctx->cpu);
    
    	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
    		rq->csd.func = __blk_mq_complete_request_remote;
    		rq->csd.info = rq;
    		rq->csd.flags = 0;
    		smp_call_function_single_async(ctx->cpu, &rq->csd);
    	} else {
    		rq->q->softirq_done_fn(rq);
    	}
    	put_cpu();
    }
    
    /**
     * blk_mq_complete_request - end I/O on a request
     * @rq:		the request being processed
     *
     * Description:
     *	Ends all I/O on a request. It does not handle partial completions.
     *	The actual completion happens out-of-order, through a IPI handler.
     **/
    void blk_mq_complete_request(struct request *rq)
    {
    	struct request_queue *q = rq->q;
    
    	if (unlikely(blk_should_fake_timeout(q)))
    		return;
    	if (!blk_mark_rq_complete(rq))
    		__blk_mq_complete_request(rq);
    }
    EXPORT_SYMBOL(blk_mq_complete_request);
    
    int blk_mq_request_started(struct request *rq)
    {
    	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
    }
    EXPORT_SYMBOL_GPL(blk_mq_request_started);
    
    void blk_mq_start_request(struct request *rq)
    {
    	struct request_queue *q = rq->q;
    
    	blk_mq_sched_started_request(rq);
    
    	trace_block_rq_issue(q, rq);
    
    	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
    		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
    		rq->rq_flags |= RQF_STATS;
    		wbt_issue(q->rq_wb, &rq->issue_stat);
    	}
    
    	blk_add_timer(rq);
    
    	/*
    	 * Ensure that ->deadline is visible before set the started
    	 * flag and clear the completed flag.
    	 */
    	smp_mb__before_atomic();
    
    	/*
    	 * Mark us as started and clear complete. Complete might have been
    	 * set if requeue raced with timeout, which then marked it as
    	 * complete. So be sure to clear complete again when we start
    	 * the request, otherwise we'll ignore the completion event.
    	 */
    	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
    		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
    	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
    		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
    
    	if (q->dma_drain_size && blk_rq_bytes(rq)) {
    		/*
    		 * Make sure space for the drain appears.  We know we can do
    		 * this because max_hw_segments has been adjusted to be one
    		 * fewer than the device can handle.
    		 */
    		rq->nr_phys_segments++;
    	}
    }
    EXPORT_SYMBOL(blk_mq_start_request);
    
    /*
     * When we reach here because queue is busy, REQ_ATOM_COMPLETE
     * flag isn't set yet, so there may be race with timeout handler,
     * but given rq->deadline is just set in .queue_rq() under
     * this situation, the race won't be possible in reality because
     * rq->timeout should be set as big enough to cover the window
     * between blk_mq_start_request() called from .queue_rq() and
     * clearing REQ_ATOM_STARTED here.
     */
    static void __blk_mq_requeue_request(struct request *rq)
    {
    	struct request_queue *q = rq->q;
    
    	trace_block_rq_requeue(q, rq);
    	wbt_requeue(q->rq_wb, &rq->issue_stat);
    	blk_mq_sched_requeue_request(rq);
    
    	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
    		if (q->dma_drain_size && blk_rq_bytes(rq))
    			rq->nr_phys_segments--;
    	}
    }
    
    void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
    {
    	__blk_mq_requeue_request(rq);
    
    	BUG_ON(blk_queued_rq(rq));
    	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
    }
    EXPORT_SYMBOL(blk_mq_requeue_request);
    
    static void blk_mq_requeue_work(struct work_struct *work)
    {
    	struct request_queue *q =
    		container_of(work, struct request_queue, requeue_work.work);
    	LIST_HEAD(rq_list);
    	struct request *rq, *next;
    	unsigned long flags;
    
    	spin_lock_irqsave(&q->requeue_lock, flags);
    	list_splice_init(&q->requeue_list, &rq_list);
    	spin_unlock_irqrestore(&q->requeue_lock, flags);
    
    	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
    		if (!(rq->rq_flags & RQF_SOFTBARRIER))
    			continue;
    
    		rq->rq_flags &= ~RQF_SOFTBARRIER;
    		list_del_init(&rq->queuelist);
    		blk_mq_sched_insert_request(rq, true, false, false, true);
    	}
    
    	while (!list_empty(&rq_list)) {
    		rq = list_entry(rq_list.next, struct request, queuelist);
    		list_del_init(&rq->queuelist);
    		blk_mq_sched_insert_request(rq, false, false, false, true);
    	}
    
    	blk_mq_run_hw_queues(q, false);
    }
    
    void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
    				bool kick_requeue_list)
    {
    	struct request_queue *q = rq->q;
    	unsigned long flags;
    
    	/*
    	 * We abuse this flag that is otherwise used by the I/O scheduler to
    	 * request head insertation from the workqueue.
    	 */
    	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
    
    	spin_lock_irqsave(&q->requeue_lock, flags);
    	if (at_head) {
    		rq->rq_flags |= RQF_SOFTBARRIER;
    		list_add(&rq->queuelist, &q->requeue_list);
    	} else {
    		list_add_tail(&rq->queuelist, &q->requeue_list);
    	}
    	spin_unlock_irqrestore(&q->requeue_lock, flags);
    
    	if (kick_requeue_list)
    		blk_mq_kick_requeue_list(q);
    }
    EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
    
    void blk_mq_kick_requeue_list(struct request_queue *q)
    {
    	kblockd_schedule_delayed_work(&q->requeue_work, 0);
    }
    EXPORT_SYMBOL(blk_mq_kick_requeue_list);
    
    void blk_mq_delay_kick_requeue_list(struct request_queue *q,
    				    unsigned long msecs)
    {
    	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
    				    msecs_to_jiffies(msecs));
    }
    EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
    
    struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
    {
    	if (tag < tags->nr_tags) {
    		prefetch(tags->rqs[tag]);
    		return tags->rqs[tag];
    	}
    
    	return NULL;
    }
    EXPORT_SYMBOL(blk_mq_tag_to_rq);
    
    struct blk_mq_timeout_data {
    	unsigned long next;
    	unsigned int next_set;
    };
    
    void blk_mq_rq_timed_out(struct request *req, bool reserved)
    {
    	const struct blk_mq_ops *ops = req->q->mq_ops;
    	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
    
    	/*
    	 * We know that complete is set at this point. If STARTED isn't set
    	 * anymore, then the request isn't active and the "timeout" should
    	 * just be ignored. This can happen due to the bitflag ordering.
    	 * Timeout first checks if STARTED is set, and if it is, assumes
    	 * the request is active. But if we race with completion, then
    	 * both flags will get cleared. So check here again, and ignore
    	 * a timeout event with a request that isn't active.
    	 */
    	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
    		return;
    
    	if (ops->timeout)
    		ret = ops->timeout(req, reserved);
    
    	switch (ret) {
    	case BLK_EH_HANDLED:
    		__blk_mq_complete_request(req);
    		break;
    	case BLK_EH_RESET_TIMER:
    		blk_add_timer(req);
    		blk_clear_rq_complete(req);
    		break;
    	case BLK_EH_NOT_HANDLED:
    		break;
    	default:
    		printk(KERN_ERR "block: bad eh return: %d\n", ret);
    		break;
    	}
    }
    
    static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
    		struct request *rq, void *priv, bool reserved)
    {
    	struct blk_mq_timeout_data *data = priv;
    
    	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
    		return;
    
    	/*
    	 * The rq being checked may have been freed and reallocated
    	 * out already here, we avoid this race by checking rq->deadline
    	 * and REQ_ATOM_COMPLETE flag together:
    	 *
    	 * - if rq->deadline is observed as new value because of
    	 *   reusing, the rq won't be timed out because of timing.
    	 * - if rq->deadline is observed as previous value,
    	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
    	 *   because we put a barrier between setting rq->deadline
    	 *   and clearing the flag in blk_mq_start_request(), so
    	 *   this rq won't be timed out too.
    	 */
    	if (time_after_eq(jiffies, rq->deadline)) {
    		if (!blk_mark_rq_complete(rq))
    			blk_mq_rq_timed_out(rq, reserved);
    	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
    		data->next = rq->deadline;
    		data->next_set = 1;
    	}
    }
    
    static void blk_mq_timeout_work(struct work_struct *work)
    {
    	struct request_queue *q =
    		container_of(work, struct request_queue, timeout_work);
    	struct blk_mq_timeout_data data = {
    		.next		= 0,
    		.next_set	= 0,
    	};
    	int i;
    
    	/* A deadlock might occur if a request is stuck requiring a
    	 * timeout at the same time a queue freeze is waiting
    	 * completion, since the timeout code would not be able to
    	 * acquire the queue reference here.
    	 *
    	 * That's why we don't use blk_queue_enter here; instead, we use
    	 * percpu_ref_tryget directly, because we need to be able to
    	 * obtain a reference even in the short window between the queue
    	 * starting to freeze, by dropping the first reference in
    	 * blk_freeze_queue_start, and the moment the last request is
    	 * consumed, marked by the instant q_usage_counter reaches
    	 * zero.
    	 */
    	if (!percpu_ref_tryget(&q->q_usage_counter))
    		return;
    
    	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
    
    	if (data.next_set) {
    		data.next = blk_rq_timeout(round_jiffies_up(data.next));
    		mod_timer(&q->timeout, data.next);
    	} else {
    		struct blk_mq_hw_ctx *hctx;
    
    		queue_for_each_hw_ctx(q, hctx, i) {
    			/* the hctx may be unmapped, so check it here */
    			if (blk_mq_hw_queue_mapped(hctx))
    				blk_mq_tag_idle(hctx);
    		}
    	}
    	blk_queue_exit(q);
    }
    
    struct flush_busy_ctx_data {
    	struct blk_mq_hw_ctx *hctx;
    	struct list_head *list;
    };
    
    static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
    {
    	struct flush_busy_ctx_data *flush_data = data;
    	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
    	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
    
    	sbitmap_clear_bit(sb, bitnr);
    	spin_lock(&ctx->lock);
    	list_splice_tail_init(&ctx->rq_list, flush_data->list);
    	spin_unlock(&ctx->lock);
    	return true;
    }
    
    /*
     * Process software queues that have been marked busy, splicing them
     * to the for-dispatch
     */
    void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
    {
    	struct flush_busy_ctx_data data = {
    		.hctx = hctx,
    		.list = list,
    	};
    
    	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
    }
    EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
    
    static inline unsigned int queued_to_index(unsigned int queued)
    {
    	if (!queued)
    		return 0;
    
    	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
    }
    
    bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
    			   bool wait)
    {
    	struct blk_mq_alloc_data data = {
    		.q = rq->q,
    		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
    		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
    	};
    
    	might_sleep_if(wait);
    
    	if (rq->tag != -1)
    		goto done;
    
    	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
    		data.flags |= BLK_MQ_REQ_RESERVED;
    
    	rq->tag = blk_mq_get_tag(&data);
    	if (rq->tag >= 0) {
    		if (blk_mq_tag_busy(data.hctx)) {
    			rq->rq_flags |= RQF_MQ_INFLIGHT;
    			atomic_inc(&data.hctx->nr_active);
    		}
    		data.hctx->tags->rqs[rq->tag] = rq;
    	}
    
    done:
    	if (hctx)
    		*hctx = data.hctx;
    	return rq->tag != -1;
    }
    
    static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
    				    struct request *rq)
    {
    	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
    	rq->tag = -1;
    
    	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
    		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
    		atomic_dec(&hctx->nr_active);
    	}
    }
    
    static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
    				       struct request *rq)
    {
    	if (rq->tag == -1 || rq->internal_tag == -1)
    		return;
    
    	__blk_mq_put_driver_tag(hctx, rq);
    }
    
    static void blk_mq_put_driver_tag(struct request *rq)
    {
    	struct blk_mq_hw_ctx *hctx;
    
    	if (rq->tag == -1 || rq->internal_tag == -1)
    		return;
    
    	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
    	__blk_mq_put_driver_tag(hctx, rq);
    }
    
    /*
     * If we fail getting a driver tag because all the driver tags are already
     * assigned and on the dispatch list, BUT the first entry does not have a
     * tag, then we could deadlock. For that case, move entries with assigned
     * driver tags to the front, leaving the set of tagged requests in the
     * same order, and the untagged set in the same order.
     */
    static bool reorder_tags_to_front(struct list_head *list)
    {
    	struct request *rq, *tmp, *first = NULL;
    
    	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
    		if (rq == first)
    			break;
    		if (rq->tag != -1) {
    			list_move(&rq->queuelist, list);
    			if (!first)
    				first = rq;
    		}
    	}
    
    	return first != NULL;
    }
    
    static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
    				void *key)
    {
    	struct blk_mq_hw_ctx *hctx;
    
    	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
    
    	list_del(&wait->entry);
    	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
    	blk_mq_run_hw_queue(hctx, true);
    	return 1;
    }
    
    static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
    {
    	struct sbq_wait_state *ws;
    
    	/*
    	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
    	 * The thread which wins the race to grab this bit adds the hardware
    	 * queue to the wait queue.
    	 */
    	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
    	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
    		return false;
    
    	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
    	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
    
    	/*
    	 * As soon as this returns, it's no longer safe to fiddle with
    	 * hctx->dispatch_wait, since a completion can wake up the wait queue
    	 * and unlock the bit.
    	 */
    	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
    	return true;
    }
    
    bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
    {
    	struct blk_mq_hw_ctx *hctx;
    	struct request *rq;
    	int errors, queued;
    
    	if (list_empty(list))
    		return false;
    
    	/*
    	 * Now process all the entries, sending them to the driver.
    	 */
    	errors = queued = 0;
    	do {
    		struct blk_mq_queue_data bd;
    		blk_status_t ret;
    
    		rq = list_first_entry(list, struct request, queuelist);
    		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
    			if (!queued && reorder_tags_to_front(list))
    				continue;
    
    			/*
    			 * The initial allocation attempt failed, so we need to
    			 * rerun the hardware queue when a tag is freed.
    			 */
    			if (!blk_mq_dispatch_wait_add(hctx))
    				break;
    
    			/*
    			 * It's possible that a tag was freed in the window
    			 * between the allocation failure and adding the
    			 * hardware queue to the wait queue.
    			 */
    			if (!blk_mq_get_driver_tag(rq, &hctx, false))
    				break;
    		}
    
    		list_del_init(&rq->queuelist);
    
    		bd.rq = rq;
    
    		/*
    		 * Flag last if we have no more requests, or if we have more
    		 * but can't assign a driver tag to it.
    		 */
    		if (list_empty(list))
    			bd.last = true;
    		else {
    			struct request *nxt;
    
    			nxt = list_first_entry(list, struct request, queuelist);
    			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
    		}
    
    		ret = q->mq_ops->queue_rq(hctx, &bd);
    		if (ret == BLK_STS_RESOURCE) {
    			blk_mq_put_driver_tag_hctx(hctx, rq);
    			list_add(&rq->queuelist, list);
    			__blk_mq_requeue_request(rq);
    			break;
    		}
    
    		if (unlikely(ret != BLK_STS_OK)) {
    			errors++;
    			blk_mq_end_request(rq, BLK_STS_IOERR);
    			continue;
    		}
    
    		queued++;
    	} while (!list_empty(list));
    
    	hctx->dispatched[queued_to_index(queued)]++;
    
    	/*
    	 * Any items that need requeuing? Stuff them into hctx->dispatch,
    	 * that is where we will continue on next queue run.
    	 */
    	if (!list_empty(list)) {
    		/*
    		 * If an I/O scheduler has been configured and we got a driver
    		 * tag for the next request already, free it again.
    		 */
    		rq = list_first_entry(list, struct request, queuelist);
    		blk_mq_put_driver_tag(rq);
    
    		spin_lock(&hctx->lock);
    		list_splice_init(list, &hctx->dispatch);
    		spin_unlock(&hctx->lock);
    
    		/*
    		 * If SCHED_RESTART was set by the caller of this function and
    		 * it is no longer set that means that it was cleared by another
    		 * thread and hence that a queue rerun is needed.
    		 *
    		 * If TAG_WAITING is set that means that an I/O scheduler has
    		 * been configured and another thread is waiting for a driver
    		 * tag. To guarantee fairness, do not rerun this hardware queue
    		 * but let the other thread grab the driver tag.
    		 *
    		 * If no I/O scheduler has been configured it is possible that
    		 * the hardware queue got stopped and restarted before requests
    		 * were pushed back onto the dispatch list. Rerun the queue to
    		 * avoid starvation. Notes:
    		 * - blk_mq_run_hw_queue() checks whether or not a queue has
    		 *   been stopped before rerunning a queue.
    		 * - Some but not all block drivers stop a queue before
    		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
    		 *   and dm-rq.
    		 */
    		if (!blk_mq_sched_needs_restart(hctx) &&
    		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
    			blk_mq_run_hw_queue(hctx, true);
    	}
    
    	return (queued + errors) != 0;
    }
    
    static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
    {
    	int srcu_idx;
    
    	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
    		cpu_online(hctx->next_cpu));
    
    	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
    		rcu_read_lock();
    		blk_mq_sched_dispatch_requests(hctx);
    		rcu_read_unlock();
    	} else {
    		might_sleep();
    
    		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
    		blk_mq_sched_dispatch_requests(hctx);
    		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
    	}
    }
    
    /*
     * It'd be great if the workqueue API had a way to pass
     * in a mask and had some smarts for more clever placement.
     * For now we just round-robin here, switching for every
     * BLK_MQ_CPU_WORK_BATCH queued items.
     */
    static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
    {
    	if (hctx->queue->nr_hw_queues == 1)
    		return WORK_CPU_UNBOUND;
    
    	if (--hctx->next_cpu_batch <= 0) {
    		int next_cpu;
    
    		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
    		if (next_cpu >= nr_cpu_ids)
    			next_cpu = cpumask_first(hctx->cpumask);
    
    		hctx->next_cpu = next_cpu;
    		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
    	}
    
    	return hctx->next_cpu;
    }
    
    static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
    					unsigned long msecs)
    {
    	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
    		return;
    
    	if (unlikely(blk_mq_hctx_stopped(hctx)))
    		return;
    
    	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
    		int cpu = get_cpu();
    		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
    			__blk_mq_run_hw_queue(hctx);
    			put_cpu();
    			return;
    		}
    
    		put_cpu();
    	}
    
    	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
    					 &hctx->run_work,
    					 msecs_to_jiffies(msecs));
    }
    
    void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
    {
    	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
    }
    EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
    
    void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
    {
    	__blk_mq_delay_run_hw_queue(hctx, async, 0);
    }
    EXPORT_SYMBOL(blk_mq_run_hw_queue);
    
    void blk_mq_run_hw_queues(struct request_queue *q, bool async)
    {
    	struct blk_mq_hw_ctx *hctx;
    	int i;
    
    	queue_for_each_hw_ctx(q, hctx, i) {
    		if (!blk_mq_hctx_has_pending(hctx) ||
    		    blk_mq_hctx_stopped(hctx))
    			continue;
    
    		blk_mq_run_hw_queue(hctx, async);
    	}
    }
    EXPORT_SYMBOL(blk_mq_run_hw_queues);
    
    /**
     * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
     * @q: request queue.
     *
     * The caller is responsible for serializing this function against
     * blk_mq_{start,stop}_hw_queue().
     */
    bool blk_mq_queue_stopped(struct request_queue *q)
    {
    	struct blk_mq_hw_ctx *hctx;
    	int i;
    
    	queue_for_each_hw_ctx(q, hctx, i)
    		if (blk_mq_hctx_stopped(hctx))
    			return true;
    
    	return false;
    }
    EXPORT_SYMBOL(blk_mq_queue_stopped);
    
    /*
     * This function is often used for pausing .queue_rq() by driver when
     * there isn't enough resource or some conditions aren't satisfied, and
     * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
     *
     * We do not guarantee that dispatch can be drained or blocked
     * after blk_mq_stop_hw_queue() returns. Please use
     * blk_mq_quiesce_queue() for that requirement.
     */
    void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
    {
    	cancel_delayed_work(&hctx->run_work);
    
    	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
    }
    EXPORT_SYMBOL(blk_mq_stop_hw_queue);
    
    /*
     * This function is often used for pausing .queue_rq() by driver when
     * there isn't enough resource or some conditions aren't satisfied, and
     * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
     *
     * We do not guarantee that dispatch can be drained or blocked
     * after blk_mq_stop_hw_queues() returns. Please use
     * blk_mq_quiesce_queue() for that requirement.
     */
    void blk_mq_stop_hw_queues(struct request_queue *q)
    {
    	struct blk_mq_hw_ctx *hctx;
    	int i;
    
    	queue_for_each_hw_ctx(q, hctx, i)
    		blk_mq_stop_hw_queue(hctx);
    }
    EXPORT_SYMBOL(blk_mq_stop_hw_queues);
    
    void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
    {
    	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
    
    	blk_mq_run_hw_queue(hctx, false);
    }
    EXPORT_SYMBOL(blk_mq_start_hw_queue);
    
    void blk_mq_start_hw_queues(struct request_queue *q)
    {
    	struct blk_mq_hw_ctx *hctx;
    	int i;
    
    	queue_for_each_hw_ctx(q, hctx, i)
    		blk_mq_start_hw_queue(hctx);
    }
    EXPORT_SYMBOL(blk_mq_start_hw_queues);
    
    void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
    {
    	if (!blk_mq_hctx_stopped(hctx))
    		return;
    
    	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
    	blk_mq_run_hw_queue(hctx, async);
    }
    EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
    
    void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
    {
    	struct blk_mq_hw_ctx *hctx;
    	int i;
    
    	queue_for_each_hw_ctx(q, hctx, i)
    		blk_mq_start_stopped_hw_queue(hctx, async);
    }
    EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
    
    static void blk_mq_run_work_fn(struct work_struct *work)
    {
    	struct blk_mq_hw_ctx *hctx;
    
    	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
    
    	/*
    	 * If we are stopped, don't run the queue. The exception is if
    	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
    	 * the STOPPED bit and run it.
    	 */
    	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
    		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
    			return;
    
    		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
    		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
    	}
    
    	__blk_mq_run_hw_queue(hctx);
    }
    
    
    void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
    {
    	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
    		return;
    
    	/*
    	 * Stop the hw queue, then modify currently delayed work.
    	 * This should prevent us from running the queue prematurely.
    	 * Mark the queue as auto-clearing STOPPED when it runs.
    	 */
    	blk_mq_stop_hw_queue(hctx);
    	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
    	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
    					&hctx->run_work,
    					msecs_to_jiffies(msecs));
    }
    EXPORT_SYMBOL(blk_mq_delay_queue);
    
    static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
    					    struct request *rq,
    					    bool at_head)
    {
    	struct blk_mq_ctx *ctx = rq->mq_ctx;
    
    	lockdep_assert_held(&ctx->lock);
    
    	trace_block_rq_insert(hctx->queue, rq);
    
    	if (at_head)
    		list_add(&rq->queuelist, &ctx->rq_list);
    	else
    		list_add_tail(&rq->queuelist, &ctx->rq_list);
    }
    
    void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
    			     bool at_head)
    {
    	struct blk_mq_ctx *ctx = rq->mq_ctx;
    
    	lockdep_assert_held(&ctx->lock);
    
    	__blk_mq_insert_req_list(hctx, rq, at_head);
    	blk_mq_hctx_mark_pending(hctx, ctx);
    }
    
    void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
    			    struct list_head *list)
    
    {
    	/*
    	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
    	 * offline now
    	 */
    	spin_lock(&ctx->lock);
    	while (!list_empty(list)) {
    		struct request *rq;
    
    		rq = list_first_entry(list, struct request, queuelist);
    		BUG_ON(rq->mq_ctx != ctx);
    		list_del_init(&rq->queuelist);
    		__blk_mq_insert_req_list(hctx, rq, false);
    	}
    	blk_mq_hctx_mark_pending(hctx, ctx);
    	spin_unlock(&ctx->lock);
    }
    
    static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
    {
    	struct request *rqa = container_of(a, struct request, queuelist);
    	struct request *rqb = container_of(b, struct request, queuelist);
    
    	return !(rqa->mq_ctx < rqb->mq_ctx ||
    		 (rqa->mq_ctx == rqb->mq_ctx &&
    		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
    }
    
    void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
    {
    	struct blk_mq_ctx *this_ctx;
    	struct request_queue *this_q;
    	struct request *rq;
    	LIST_HEAD(list);
    	LIST_HEAD(ctx_list);
    	unsigned int depth;
    
    	list_splice_init(&plug->mq_list, &list);
    
    	list_sort(NULL, &list, plug_ctx_cmp);
    
    	this_q = NULL;
    	this_ctx = NULL;
    	depth = 0;
    
    	while (!list_empty(&list)) {
    		rq = list_entry_rq(list.next);
    		list_del_init(&rq->queuelist);
    		BUG_ON(!rq->q);
    		if (rq->mq_ctx != this_ctx) {
    			if (this_ctx) {
    				trace_block_unplug(this_q, depth, from_schedule);
    				blk_mq_sched_insert_requests(this_q, this_ctx,
    								&ctx_list,
    								from_schedule);
    			}
    
    			this_ctx = rq->mq_ctx;
    			this_q = rq->q;
    			depth = 0;
    		}
    
    		depth++;
    		list_add_tail(&rq->queuelist, &ctx_list);
    	}
    
    	/*
    	 * If 'this_ctx' is set, we know we have entries to complete
    	 * on 'ctx_list'. Do those.
    	 */
    	if (this_ctx) {
    		trace_block_unplug(this_q, depth, from_schedule);
    		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
    						from_schedule);
    	}
    }
    
    static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
    {
    	blk_init_request_from_bio(rq, bio);
    
    	blk_account_io_start(rq, true);
    }
    
    static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
    {
    	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
    		!blk_queue_nomerges(hctx->queue);
    }
    
    static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
    				   struct blk_mq_ctx *ctx,
    				   struct request *rq)
    {
    	spin_lock(&ctx->lock);
    	__blk_mq_insert_request(hctx, rq, false);
    	spin_unlock(&ctx->lock);
    }
    
    static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
    {
    	if (rq->tag != -1)
    		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
    
    	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
    }
    
    static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
    					struct request *rq,
    					blk_qc_t *cookie, bool may_sleep)
    {
    	struct request_queue *q = rq->q;
    	struct blk_mq_queue_data bd = {
    		.rq = rq,
    		.last = true,
    	};
    	blk_qc_t new_cookie;
    	blk_status_t ret;
    	bool run_queue = true;
    
    	/* RCU or SRCU read lock is needed before checking quiesced flag */
    	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
    		run_queue = false;
    		goto insert;
    	}
    
    	if (q->elevator)
    		goto insert;
    
    	if (!blk_mq_get_driver_tag(rq, NULL, false))
    		goto insert;
    
    	new_cookie = request_to_qc_t(hctx, rq);
    
    	/*
    	 * For OK queue, we are done. For error, kill it. Any other
    	 * error (busy), just add it to our list as we previously
    	 * would have done
    	 */
    	ret = q->mq_ops->queue_rq(hctx, &bd);
    	switch (ret) {
    	case BLK_STS_OK:
    		*cookie = new_cookie;
    		return;
    	case BLK_STS_RESOURCE:
    		__blk_mq_requeue_request(rq);
    		goto insert;
    	default:
    		*cookie = BLK_QC_T_NONE;
    		blk_mq_end_request(rq, ret);
    		return;
    	}
    
    insert:
    	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
    }
    
    static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
    		struct request *rq, blk_qc_t *cookie)
    {
    	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
    		rcu_read_lock();
    		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
    		rcu_read_unlock();
    	} else {
    		unsigned int srcu_idx;
    
    		might_sleep();
    
    		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
    		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
    		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
    	}
    }
    
    static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
    {
    	const int is_sync = op_is_sync(bio->bi_opf);
    	const int is_flush_fua = op_is_flush(bio->bi_opf);
    	struct blk_mq_alloc_data data = { .flags = 0 };
    	struct request *rq;
    	unsigned int request_count = 0;
    	struct blk_plug *plug;
    	struct request *same_queue_rq = NULL;
    	blk_qc_t cookie;
    	unsigned int wb_acct;
    
    	blk_queue_bounce(q, &bio);
    
    	blk_queue_split(q, &bio);
    
    	if (!bio_integrity_prep(bio))
    		return BLK_QC_T_NONE;
    
    	if (!is_flush_fua && !blk_queue_nomerges(q) &&
    	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
    		return BLK_QC_T_NONE;
    
    	if (blk_mq_sched_bio_merge(q, bio))
    		return BLK_QC_T_NONE;
    
    	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
    
    	trace_block_getrq(q, bio, bio->bi_opf);
    
    	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
    	if (unlikely(!rq)) {
    		__wbt_done(q->rq_wb, wb_acct);
    		if (bio->bi_opf & REQ_NOWAIT)
    			bio_wouldblock_error(bio);
    		return BLK_QC_T_NONE;
    	}
    
    	wbt_track(&rq->issue_stat, wb_acct);
    
    	cookie = request_to_qc_t(data.hctx, rq);
    
    	plug = current->plug;
    	if (unlikely(is_flush_fua)) {
    		blk_mq_put_ctx(data.ctx);
    		blk_mq_bio_to_request(rq, bio);
    		if (q->elevator) {
    			blk_mq_sched_insert_request(rq, false, true, true,
    					true);
    		} else {
    			blk_insert_flush(rq);
    			blk_mq_run_hw_queue(data.hctx, true);
    		}
    	} else if (plug && q->nr_hw_queues == 1) {
    		struct request *last = NULL;
    
    		blk_mq_put_ctx(data.ctx);
    		blk_mq_bio_to_request(rq, bio);
    
    		/*
    		 * @request_count may become stale because of schedule
    		 * out, so check the list again.
    		 */
    		if (list_empty(&plug->mq_list))
    			request_count = 0;
    		else if (blk_queue_nomerges(q))
    			request_count = blk_plug_queued_count(q);
    
    		if (!request_count)
    			trace_block_plug(q);
    		else
    			last = list_entry_rq(plug->mq_list.prev);
    
    		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
    		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
    			blk_flush_plug_list(plug, false);
    			trace_block_plug(q);
    		}
    
    		list_add_tail(&rq->queuelist, &plug->mq_list);
    	} else if (plug && !blk_queue_nomerges(q)) {
    		blk_mq_bio_to_request(rq, bio);
    
    		/*
    		 * We do limited plugging. If the bio can be merged, do that.
    		 * Otherwise the existing request in the plug list will be
    		 * issued. So the plug list will have one request at most
    		 * The plug list might get flushed before this. If that happens,
    		 * the plug list is empty, and same_queue_rq is invalid.
    		 */
    		if (list_empty(&plug->mq_list))
    			same_queue_rq = NULL;
    		if (same_queue_rq)
    			list_del_init(&same_queue_rq->queuelist);
    		list_add_tail(&rq->queuelist, &plug->mq_list);
    
    		blk_mq_put_ctx(data.ctx);
    
    		if (same_queue_rq) {
    			data.hctx = blk_mq_map_queue(q,
    					same_queue_rq->mq_ctx->cpu);
    			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
    					&cookie);
    		}
    	} else if (q->nr_hw_queues > 1 && is_sync) {
    		blk_mq_put_ctx(data.ctx);
    		blk_mq_bio_to_request(rq, bio);
    		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
    	} else if (q->elevator) {
    		blk_mq_put_ctx(data.ctx);
    		blk_mq_bio_to_request(rq, bio);
    		blk_mq_sched_insert_request(rq, false, true, true, true);
    	} else {
    		blk_mq_put_ctx(data.ctx);
    		blk_mq_bio_to_request(rq, bio);
    		blk_mq_queue_io(data.hctx, data.ctx, rq);
    		blk_mq_run_hw_queue(data.hctx, true);
    	}
    
    	return cookie;
    }
    
    void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
    		     unsigned int hctx_idx)
    {
    	struct page *page;
    
    	if (tags->rqs && set->ops->exit_request) {
    		int i;
    
    		for (i = 0; i < tags->nr_tags; i++) {
    			struct request *rq = tags->static_rqs[i];
    
    			if (!rq)
    				continue;
    			set->ops->exit_request(set, rq, hctx_idx);
    			tags->static_rqs[i] = NULL;
    		}
    	}
    
    	while (!list_empty(&tags->page_list)) {
    		page = list_first_entry(&tags->page_list, struct page, lru);
    		list_del_init(&page->lru);
    		/*
    		 * Remove kmemleak object previously allocated in
    		 * blk_mq_init_rq_map().
    		 */
    		kmemleak_free(page_address(page));
    		__free_pages(page, page->private);
    	}
    }
    
    void blk_mq_free_rq_map(struct blk_mq_tags *tags)
    {
    	kfree(tags->rqs);
    	tags->rqs = NULL;
    	kfree(tags->static_rqs);
    	tags->static_rqs = NULL;
    
    	blk_mq_free_tags(tags);
    }
    
    struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
    					unsigned int hctx_idx,
    					unsigned int nr_tags,
    					unsigned int reserved_tags)
    {
    	struct blk_mq_tags *tags;
    	int node;
    
    	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
    	if (node == NUMA_NO_NODE)
    		node = set->numa_node;
    
    	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
    				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
    	if (!tags)
    		return NULL;
    
    	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
    				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
    				 node);
    	if (!tags->rqs) {
    		blk_mq_free_tags(tags);
    		return NULL;
    	}
    
    	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
    				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
    				 node);
    	if (!tags->static_rqs) {
    		kfree(tags->rqs);
    		blk_mq_free_tags(tags);
    		return NULL;
    	}
    
    	return tags;
    }
    
    static size_t order_to_size(unsigned int order)
    {
    	return (size_t)PAGE_SIZE << order;
    }
    
    int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
    		     unsigned int hctx_idx, unsigned int depth)
    {
    	unsigned int i, j, entries_per_page, max_order = 4;
    	size_t rq_size, left;
    	int node;
    
    	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
    	if (node == NUMA_NO_NODE)
    		node = set->numa_node;
    
    	INIT_LIST_HEAD(&tags->page_list);
    
    	/*
    	 * rq_size is the size of the request plus driver payload, rounded
    	 * to the cacheline size
    	 */
    	rq_size = round_up(sizeof(struct request) + set->cmd_size,
    				cache_line_size());
    	left = rq_size * depth;
    
    	for (i = 0; i < depth; ) {
    		int this_order = max_order;
    		struct page *page;
    		int to_do;
    		void *p;
    
    		while (this_order && left < order_to_size(this_order - 1))
    			this_order--;
    
    		do {
    			page = alloc_pages_node(node,
    				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
    				this_order);
    			if (page)
    				break;
    			if (!this_order--)
    				break;
    			if (order_to_size(this_order) < rq_size)
    				break;
    		} while (1);
    
    		if (!page)
    			goto fail;
    
    		page->private = this_order;
    		list_add_tail(&page->lru, &tags->page_list);
    
    		p = page_address(page);
    		/*
    		 * Allow kmemleak to scan these pages as they contain pointers
    		 * to additional allocations like via ops->init_request().
    		 */
    		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
    		entries_per_page = order_to_size(this_order) / rq_size;
    		to_do = min(entries_per_page, depth - i);
    		left -= to_do * rq_size;
    		for (j = 0; j < to_do; j++) {
    			struct request *rq = p;
    
    			tags->static_rqs[i] = rq;
    			if (set->ops->init_request) {
    				if (set->ops->init_request(set, rq, hctx_idx,
    						node)) {
    					tags->static_rqs[i] = NULL;
    					goto fail;
    				}
    			}
    
    			p += rq_size;
    			i++;
    		}
    	}
    	return 0;
    
    fail:
    	blk_mq_free_rqs(set, tags, hctx_idx);
    	return -ENOMEM;
    }
    
    /*
     * 'cpu' is going away. splice any existing rq_list entries from this
     * software queue to the hw queue dispatch list, and ensure that it
     * gets run.
     */
    static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
    {
    	struct blk_mq_hw_ctx *hctx;
    	struct blk_mq_ctx *ctx;
    	LIST_HEAD(tmp);
    
    	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
    	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
    
    	spin_lock(&ctx->lock);
    	if (!list_empty(&ctx->rq_list)) {
    		list_splice_init(&ctx->rq_list, &tmp);
    		blk_mq_hctx_clear_pending(hctx, ctx);
    	}
    	spin_unlock(&ctx->lock);
    
    	if (list_empty(&tmp))
    		return 0;
    
    	spin_lock(&hctx->lock);
    	list_splice_tail_init(&tmp, &hctx->dispatch);
    	spin_unlock(&hctx->lock);
    
    	blk_mq_run_hw_queue(hctx, true);
    	return 0;
    }
    
    static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
    {
    	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
    					    &hctx->cpuhp_dead);
    }
    
    /* hctx->ctxs will be freed in queue's release handler */
    static void blk_mq_exit_hctx(struct request_queue *q,
    		struct blk_mq_tag_set *set,
    		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
    {
    	blk_mq_debugfs_unregister_hctx(hctx);
    
    	blk_mq_tag_idle(hctx);
    
    	if (set->ops->exit_request)
    		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
    
    	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
    
    	if (set->ops->exit_hctx)
    		set->ops->exit_hctx(hctx, hctx_idx);
    
    	if (hctx->flags & BLK_MQ_F_BLOCKING)
    		cleanup_srcu_struct(hctx->queue_rq_srcu);
    
    	blk_mq_remove_cpuhp(hctx);
    	blk_free_flush_queue(hctx->fq);
    	sbitmap_free(&hctx->ctx_map);
    }
    
    static void blk_mq_exit_hw_queues(struct request_queue *q,
    		struct blk_mq_tag_set *set, int nr_queue)
    {
    	struct blk_mq_hw_ctx *hctx;
    	unsigned int i;
    
    	queue_for_each_hw_ctx(q, hctx, i) {
    		if (i == nr_queue)
    			break;
    		blk_mq_exit_hctx(q, set, hctx, i);
    	}
    }
    
    static int blk_mq_init_hctx(struct request_queue *q,
    		struct blk_mq_tag_set *set,
    		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
    {
    	int node;
    
    	node = hctx->numa_node;
    	if (node == NUMA_NO_NODE)
    		node = hctx->numa_node = set->numa_node;
    
    	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
    	spin_lock_init(&hctx->lock);
    	INIT_LIST_HEAD(&hctx->dispatch);
    	hctx->queue = q;
    	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
    
    	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
    
    	hctx->tags = set->tags[hctx_idx];
    
    	/*
    	 * Allocate space for all possible cpus to avoid allocation at
    	 * runtime
    	 */
    	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
    					GFP_KERNEL, node);
    	if (!hctx->ctxs)
    		goto unregister_cpu_notifier;
    
    	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
    			      node))
    		goto free_ctxs;
    
    	hctx->nr_ctx = 0;
    
    	if (set->ops->init_hctx &&
    	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
    		goto free_bitmap;
    
    	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
    		goto exit_hctx;
    
    	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
    	if (!hctx->fq)
    		goto sched_exit_hctx;
    
    	if (set->ops->init_request &&
    	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
    				   node))
    		goto free_fq;
    
    	if (hctx->flags & BLK_MQ_F_BLOCKING)
    		init_srcu_struct(hctx->queue_rq_srcu);
    
    	blk_mq_debugfs_register_hctx(q, hctx);
    
    	return 0;
    
     free_fq:
    	kfree(hctx->fq);
     sched_exit_hctx:
    	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
     exit_hctx:
    	if (set->ops->exit_hctx)
    		set->ops->exit_hctx(hctx, hctx_idx);
     free_bitmap:
    	sbitmap_free(&hctx->ctx_map);
     free_ctxs:
    	kfree(hctx->ctxs);
     unregister_cpu_notifier:
    	blk_mq_remove_cpuhp(hctx);
    	return -1;
    }
    
    static void blk_mq_init_cpu_queues(struct request_queue *q,
    				   unsigned int nr_hw_queues)
    {
    	unsigned int i;
    
    	for_each_possible_cpu(i) {
    		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
    		struct blk_mq_hw_ctx *hctx;
    
    		__ctx->cpu = i;
    		spin_lock_init(&__ctx->lock);
    		INIT_LIST_HEAD(&__ctx->rq_list);
    		__ctx->queue = q;
    
    		/* If the cpu isn't present, the cpu is mapped to first hctx */
    		if (!cpu_present(i))
    			continue;
    
    		hctx = blk_mq_map_queue(q, i);
    
    		/*
    		 * Set local node, IFF we have more than one hw queue. If
    		 * not, we remain on the home node of the device
    		 */
    		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
    			hctx->numa_node = local_memory_node(cpu_to_node(i));
    	}
    }
    
    static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
    {
    	int ret = 0;
    
    	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
    					set->queue_depth, set->reserved_tags);
    	if (!set->tags[hctx_idx])
    		return false;
    
    	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
    				set->queue_depth);
    	if (!ret)
    		return true;
    
    	blk_mq_free_rq_map(set->tags[hctx_idx]);
    	set->tags[hctx_idx] = NULL;
    	return false;
    }
    
    static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
    					 unsigned int hctx_idx)
    {
    	if (set->tags[hctx_idx]) {
    		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
    		blk_mq_free_rq_map(set->tags[hctx_idx]);
    		set->tags[hctx_idx] = NULL;
    	}
    }
    
    static void blk_mq_map_swqueue(struct request_queue *q)
    {
    	unsigned int i, hctx_idx;
    	struct blk_mq_hw_ctx *hctx;
    	struct blk_mq_ctx *ctx;
    	struct blk_mq_tag_set *set = q->tag_set;
    
    	/*
    	 * Avoid others reading imcomplete hctx->cpumask through sysfs
    	 */
    	mutex_lock(&q->sysfs_lock);
    
    	queue_for_each_hw_ctx(q, hctx, i) {
    		cpumask_clear(hctx->cpumask);
    		hctx->nr_ctx = 0;
    	}
    
    	/*
    	 * Map software to hardware queues.
    	 *
    	 * If the cpu isn't present, the cpu is mapped to first hctx.
    	 */
    	for_each_present_cpu(i) {
    		hctx_idx = q->mq_map[i];
    		/* unmapped hw queue can be remapped after CPU topo changed */
    		if (!set->tags[hctx_idx] &&
    		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
    			/*
    			 * If tags initialization fail for some hctx,
    			 * that hctx won't be brought online.  In this
    			 * case, remap the current ctx to hctx[0] which
    			 * is guaranteed to always have tags allocated
    			 */
    			q->mq_map[i] = 0;
    		}
    
    		ctx = per_cpu_ptr(q->queue_ctx, i);
    		hctx = blk_mq_map_queue(q, i);
    
    		cpumask_set_cpu(i, hctx->cpumask);
    		ctx->index_hw = hctx->nr_ctx;
    		hctx->ctxs[hctx->nr_ctx++] = ctx;
    	}
    
    	mutex_unlock(&q->sysfs_lock);
    
    	queue_for_each_hw_ctx(q, hctx, i) {
    		/*
    		 * If no software queues are mapped to this hardware queue,
    		 * disable it and free the request entries.
    		 */
    		if (!hctx->nr_ctx) {
    			/* Never unmap queue 0.  We need it as a
    			 * fallback in case of a new remap fails
    			 * allocation
    			 */
    			if (i && set->tags[i])
    				blk_mq_free_map_and_requests(set, i);
    
    			hctx->tags = NULL;
    			continue;
    		}
    
    		hctx->tags = set->tags[i];
    		WARN_ON(!hctx->tags);
    
    		/*
    		 * Set the map size to the number of mapped software queues.
    		 * This is more accurate and more efficient than looping
    		 * over all possibly mapped software queues.
    		 */
    		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
    
    		/*
    		 * Initialize batch roundrobin counts
    		 */
    		hctx->next_cpu = cpumask_first(hctx->cpumask);
    		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
    	}
    }
    
    /*
     * Caller needs to ensure that we're either frozen/quiesced, or that
     * the queue isn't live yet.
     */
    static void queue_set_hctx_shared(struct request_queue *q, bool shared)
    {
    	struct blk_mq_hw_ctx *hctx;
    	int i;
    
    	queue_for_each_hw_ctx(q, hctx, i) {
    		if (shared) {
    			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
    				atomic_inc(&q->shared_hctx_restart);
    			hctx->flags |= BLK_MQ_F_TAG_SHARED;
    		} else {
    			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
    				atomic_dec(&q->shared_hctx_restart);
    			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
    		}
    	}
    }
    
    static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
    					bool shared)
    {
    	struct request_queue *q;
    
    	lockdep_assert_held(&set->tag_list_lock);
    
    	list_for_each_entry(q, &set->tag_list, tag_set_list) {
    		blk_mq_freeze_queue(q);
    		queue_set_hctx_shared(q, shared);
    		blk_mq_unfreeze_queue(q);
    	}
    }
    
    static void blk_mq_del_queue_tag_set(struct request_queue *q)
    {
    	struct blk_mq_tag_set *set = q->tag_set;
    
    	mutex_lock(&set->tag_list_lock);
    	list_del_rcu(&q->tag_set_list);
    	INIT_LIST_HEAD(&q->tag_set_list);
    	if (list_is_singular(&set->tag_list)) {
    		/* just transitioned to unshared */
    		set->flags &= ~BLK_MQ_F_TAG_SHARED;
    		/* update existing queue */
    		blk_mq_update_tag_set_depth(set, false);
    	}
    	mutex_unlock(&set->tag_list_lock);
    
    	synchronize_rcu();
    }
    
    static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
    				     struct request_queue *q)
    {
    	q->tag_set = set;
    
    	mutex_lock(&set->tag_list_lock);
    
    	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
    	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
    		set->flags |= BLK_MQ_F_TAG_SHARED;
    		/* update existing queue */
    		blk_mq_update_tag_set_depth(set, true);
    	}
    	if (set->flags & BLK_MQ_F_TAG_SHARED)
    		queue_set_hctx_shared(q, true);
    	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
    
    	mutex_unlock(&set->tag_list_lock);
    }
    
    /*
     * It is the actual release handler for mq, but we do it from
     * request queue's release handler for avoiding use-after-free
     * and headache because q->mq_kobj shouldn't have been introduced,
     * but we can't group ctx/kctx kobj without it.
     */
    void blk_mq_release(struct request_queue *q)
    {
    	struct blk_mq_hw_ctx *hctx;
    	unsigned int i;
    
    	/* hctx kobj stays in hctx */
    	queue_for_each_hw_ctx(q, hctx, i) {
    		if (!hctx)
    			continue;
    		kobject_put(&hctx->kobj);
    	}
    
    	q->mq_map = NULL;
    
    	kfree(q->queue_hw_ctx);
    
    	/*
    	 * release .mq_kobj and sw queue's kobject now because
    	 * both share lifetime with request queue.
    	 */
    	blk_mq_sysfs_deinit(q);
    
    	free_percpu(q->queue_ctx);
    }
    
    struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
    {
    	struct request_queue *uninit_q, *q;
    
    	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
    	if (!uninit_q)
    		return ERR_PTR(-ENOMEM);
    
    	q = blk_mq_init_allocated_queue(set, uninit_q);
    	if (IS_ERR(q))
    		blk_cleanup_queue(uninit_q);
    
    	return q;
    }
    EXPORT_SYMBOL(blk_mq_init_queue);
    
    static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
    {
    	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
    
    	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
    			   __alignof__(struct blk_mq_hw_ctx)) !=
    		     sizeof(struct blk_mq_hw_ctx));
    
    	if (tag_set->flags & BLK_MQ_F_BLOCKING)
    		hw_ctx_size += sizeof(struct srcu_struct);
    
    	return hw_ctx_size;
    }
    
    static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
    						struct request_queue *q)
    {
    	int i, j;
    	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
    
    	blk_mq_sysfs_unregister(q);
    	for (i = 0; i < set->nr_hw_queues; i++) {
    		int node;
    
    		if (hctxs[i])
    			continue;
    
    		node = blk_mq_hw_queue_to_node(q->mq_map, i);
    		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
    					GFP_KERNEL, node);
    		if (!hctxs[i])
    			break;
    
    		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
    						node)) {
    			kfree(hctxs[i]);
    			hctxs[i] = NULL;
    			break;
    		}
    
    		atomic_set(&hctxs[i]->nr_active, 0);
    		hctxs[i]->numa_node = node;
    		hctxs[i]->queue_num = i;
    
    		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
    			free_cpumask_var(hctxs[i]->cpumask);
    			kfree(hctxs[i]);
    			hctxs[i] = NULL;
    			break;
    		}
    		blk_mq_hctx_kobj_init(hctxs[i]);
    	}
    	for (j = i; j < q->nr_hw_queues; j++) {
    		struct blk_mq_hw_ctx *hctx = hctxs[j];
    
    		if (hctx) {
    			if (hctx->tags)
    				blk_mq_free_map_and_requests(set, j);
    			blk_mq_exit_hctx(q, set, hctx, j);
    			kobject_put(&hctx->kobj);
    			hctxs[j] = NULL;
    
    		}
    	}
    	q->nr_hw_queues = i;
    	blk_mq_sysfs_register(q);
    }
    
    struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
    						  struct request_queue *q)
    {
    	/* mark the queue as mq asap */
    	q->mq_ops = set->ops;
    
    	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
    					     blk_mq_poll_stats_bkt,
    					     BLK_MQ_POLL_STATS_BKTS, q);
    	if (!q->poll_cb)
    		goto err_exit;
    
    	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
    	if (!q->queue_ctx)
    		goto err_exit;
    
    	/* init q->mq_kobj and sw queues' kobjects */
    	blk_mq_sysfs_init(q);
    
    	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
    						GFP_KERNEL, set->numa_node);
    	if (!q->queue_hw_ctx)
    		goto err_percpu;
    
    	q->mq_map = set->mq_map;
    
    	blk_mq_realloc_hw_ctxs(set, q);
    	if (!q->nr_hw_queues)
    		goto err_hctxs;
    
    	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
    	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
    
    	q->nr_queues = nr_cpu_ids;
    
    	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
    
    	if (!(set->flags & BLK_MQ_F_SG_MERGE))
    		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
    
    	q->sg_reserved_size = INT_MAX;
    
    	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
    	INIT_LIST_HEAD(&q->requeue_list);
    	spin_lock_init(&q->requeue_lock);
    
    	blk_queue_make_request(q, blk_mq_make_request);
    
    	/*
    	 * Do this after blk_queue_make_request() overrides it...
    	 */
    	q->nr_requests = set->queue_depth;
    
    	/*
    	 * Default to classic polling
    	 */
    	q->poll_nsec = -1;
    
    	if (set->ops->complete)
    		blk_queue_softirq_done(q, set->ops->complete);
    
    	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
    	blk_mq_add_queue_tag_set(set, q);
    	blk_mq_map_swqueue(q);
    
    	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
    		int ret;
    
    		ret = blk_mq_sched_init(q);
    		if (ret)
    			return ERR_PTR(ret);
    	}
    
    	return q;
    
    err_hctxs:
    	kfree(q->queue_hw_ctx);
    err_percpu:
    	free_percpu(q->queue_ctx);
    err_exit:
    	q->mq_ops = NULL;
    	return ERR_PTR(-ENOMEM);
    }
    EXPORT_SYMBOL(blk_mq_init_allocated_queue);
    
    void blk_mq_free_queue(struct request_queue *q)
    {
    	struct blk_mq_tag_set	*set = q->tag_set;
    
    	blk_mq_del_queue_tag_set(q);
    	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
    }
    
    /* Basically redo blk_mq_init_queue with queue frozen */
    static void blk_mq_queue_reinit(struct request_queue *q)
    {
    	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
    
    	blk_mq_debugfs_unregister_hctxs(q);
    	blk_mq_sysfs_unregister(q);
    
    	/*
    	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
    	 * we should change hctx numa_node according to new topology (this
    	 * involves free and re-allocate memory, worthy doing?)
    	 */
    
    	blk_mq_map_swqueue(q);
    
    	blk_mq_sysfs_register(q);
    	blk_mq_debugfs_register_hctxs(q);
    }
    
    static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
    {
    	int i;
    
    	for (i = 0; i < set->nr_hw_queues; i++)
    		if (!__blk_mq_alloc_rq_map(set, i))
    			goto out_unwind;
    
    	return 0;
    
    out_unwind:
    	while (--i >= 0)
    		blk_mq_free_rq_map(set->tags[i]);
    
    	return -ENOMEM;
    }
    
    /*
     * Allocate the request maps associated with this tag_set. Note that this
     * may reduce the depth asked for, if memory is tight. set->queue_depth
     * will be updated to reflect the allocated depth.
     */
    static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
    {
    	unsigned int depth;
    	int err;
    
    	depth = set->queue_depth;
    	do {
    		err = __blk_mq_alloc_rq_maps(set);
    		if (!err)
    			break;
    
    		set->queue_depth >>= 1;
    		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
    			err = -ENOMEM;
    			break;
    		}
    	} while (set->queue_depth);
    
    	if (!set->queue_depth || err) {
    		pr_err("blk-mq: failed to allocate request map\n");
    		return -ENOMEM;
    	}
    
    	if (depth != set->queue_depth)
    		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
    						depth, set->queue_depth);
    
    	return 0;
    }
    
    static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
    {
    	if (set->ops->map_queues)
    		return set->ops->map_queues(set);
    	else
    		return blk_mq_map_queues(set);
    }
    
    /*
     * Alloc a tag set to be associated with one or more request queues.
     * May fail with EINVAL for various error conditions. May adjust the
     * requested depth down, if if it too large. In that case, the set
     * value will be stored in set->queue_depth.
     */
    int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
    {
    	int ret;
    
    	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
    
    	if (!set->nr_hw_queues)
    		return -EINVAL;
    	if (!set->queue_depth)
    		return -EINVAL;
    	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
    		return -EINVAL;
    
    	if (!set->ops->queue_rq)
    		return -EINVAL;
    
    	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
    		pr_info("blk-mq: reduced tag depth to %u\n",
    			BLK_MQ_MAX_DEPTH);
    		set->queue_depth = BLK_MQ_MAX_DEPTH;
    	}
    
    	/*
    	 * If a crashdump is active, then we are potentially in a very
    	 * memory constrained environment. Limit us to 1 queue and
    	 * 64 tags to prevent using too much memory.
    	 */
    	if (is_kdump_kernel()) {
    		set->nr_hw_queues = 1;
    		set->queue_depth = min(64U, set->queue_depth);
    	}
    	/*
    	 * There is no use for more h/w queues than cpus.
    	 */
    	if (set->nr_hw_queues > nr_cpu_ids)
    		set->nr_hw_queues = nr_cpu_ids;
    
    	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
    				 GFP_KERNEL, set->numa_node);
    	if (!set->tags)
    		return -ENOMEM;
    
    	ret = -ENOMEM;
    	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
    			GFP_KERNEL, set->numa_node);
    	if (!set->mq_map)
    		goto out_free_tags;
    
    	ret = blk_mq_update_queue_map(set);
    	if (ret)
    		goto out_free_mq_map;
    
    	ret = blk_mq_alloc_rq_maps(set);
    	if (ret)
    		goto out_free_mq_map;
    
    	mutex_init(&set->tag_list_lock);
    	INIT_LIST_HEAD(&set->tag_list);
    
    	return 0;
    
    out_free_mq_map:
    	kfree(set->mq_map);
    	set->mq_map = NULL;
    out_free_tags:
    	kfree(set->tags);
    	set->tags = NULL;
    	return ret;
    }
    EXPORT_SYMBOL(blk_mq_alloc_tag_set);
    
    void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
    {
    	int i;
    
    	for (i = 0; i < nr_cpu_ids; i++)
    		blk_mq_free_map_and_requests(set, i);
    
    	kfree(set->mq_map);
    	set->mq_map = NULL;
    
    	kfree(set->tags);
    	set->tags = NULL;
    }
    EXPORT_SYMBOL(blk_mq_free_tag_set);
    
    int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
    {
    	struct blk_mq_tag_set *set = q->tag_set;
    	struct blk_mq_hw_ctx *hctx;
    	int i, ret;
    
    	if (!set)
    		return -EINVAL;
    
    	blk_mq_freeze_queue(q);
    
    	ret = 0;
    	queue_for_each_hw_ctx(q, hctx, i) {
    		if (!hctx->tags)
    			continue;
    		/*
    		 * If we're using an MQ scheduler, just update the scheduler
    		 * queue depth. This is similar to what the old code would do.
    		 */
    		if (!hctx->sched_tags) {
    			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
    							min(nr, set->queue_depth),
    							false);
    		} else {
    			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
    							nr, true);
    		}
    		if (ret)
    			break;
    	}
    
    	if (!ret)
    		q->nr_requests = nr;
    
    	blk_mq_unfreeze_queue(q);
    
    	return ret;
    }
    
    static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
    							int nr_hw_queues)
    {
    	struct request_queue *q;
    
    	lockdep_assert_held(&set->tag_list_lock);
    
    	if (nr_hw_queues > nr_cpu_ids)
    		nr_hw_queues = nr_cpu_ids;
    	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
    		return;
    
    	list_for_each_entry(q, &set->tag_list, tag_set_list)
    		blk_mq_freeze_queue(q);
    
    	set->nr_hw_queues = nr_hw_queues;
    	blk_mq_update_queue_map(set);
    	list_for_each_entry(q, &set->tag_list, tag_set_list) {
    		blk_mq_realloc_hw_ctxs(set, q);
    		blk_mq_queue_reinit(q);
    	}
    
    	list_for_each_entry(q, &set->tag_list, tag_set_list)
    		blk_mq_unfreeze_queue(q);
    }
    
    void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
    {
    	mutex_lock(&set->tag_list_lock);
    	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
    	mutex_unlock(&set->tag_list_lock);
    }
    EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
    
    /* Enable polling stats and return whether they were already enabled. */
    static bool blk_poll_stats_enable(struct request_queue *q)
    {
    	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
    	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
    		return true;
    	blk_stat_add_callback(q, q->poll_cb);
    	return false;
    }
    
    static void blk_mq_poll_stats_start(struct request_queue *q)
    {
    	/*
    	 * We don't arm the callback if polling stats are not enabled or the
    	 * callback is already active.
    	 */
    	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
    	    blk_stat_is_active(q->poll_cb))
    		return;
    
    	blk_stat_activate_msecs(q->poll_cb, 100);
    }
    
    static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
    {
    	struct request_queue *q = cb->data;
    	int bucket;
    
    	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
    		if (cb->stat[bucket].nr_samples)
    			q->poll_stat[bucket] = cb->stat[bucket];
    	}
    }
    
    static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
    				       struct blk_mq_hw_ctx *hctx,
    				       struct request *rq)
    {
    	unsigned long ret = 0;
    	int bucket;
    
    	/*
    	 * If stats collection isn't on, don't sleep but turn it on for
    	 * future users
    	 */
    	if (!blk_poll_stats_enable(q))
    		return 0;
    
    	/*
    	 * As an optimistic guess, use half of the mean service time
    	 * for this type of request. We can (and should) make this smarter.
    	 * For instance, if the completion latencies are tight, we can
    	 * get closer than just half the mean. This is especially
    	 * important on devices where the completion latencies are longer
    	 * than ~10 usec. We do use the stats for the relevant IO size
    	 * if available which does lead to better estimates.
    	 */
    	bucket = blk_mq_poll_stats_bkt(rq);
    	if (bucket < 0)
    		return ret;
    
    	if (q->poll_stat[bucket].nr_samples)
    		ret = (q->poll_stat[bucket].mean + 1) / 2;
    
    	return ret;
    }
    
    static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
    				     struct blk_mq_hw_ctx *hctx,
    				     struct request *rq)
    {
    	struct hrtimer_sleeper hs;
    	enum hrtimer_mode mode;
    	unsigned int nsecs;
    	ktime_t kt;
    
    	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
    		return false;
    
    	/*
    	 * poll_nsec can be:
    	 *
    	 * -1:	don't ever hybrid sleep
    	 *  0:	use half of prev avg
    	 * >0:	use this specific value
    	 */
    	if (q->poll_nsec == -1)
    		return false;
    	else if (q->poll_nsec > 0)
    		nsecs = q->poll_nsec;
    	else
    		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
    
    	if (!nsecs)
    		return false;
    
    	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
    
    	/*
    	 * This will be replaced with the stats tracking code, using
    	 * 'avg_completion_time / 2' as the pre-sleep target.
    	 */
    	kt = nsecs;
    
    	mode = HRTIMER_MODE_REL;
    	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
    	hrtimer_set_expires(&hs.timer, kt);
    
    	hrtimer_init_sleeper(&hs, current);
    	do {
    		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
    			break;
    		set_current_state(TASK_UNINTERRUPTIBLE);
    		hrtimer_start_expires(&hs.timer, mode);
    		if (hs.task)
    			io_schedule();
    		hrtimer_cancel(&hs.timer);
    		mode = HRTIMER_MODE_ABS;
    	} while (hs.task && !signal_pending(current));
    
    	__set_current_state(TASK_RUNNING);
    	destroy_hrtimer_on_stack(&hs.timer);
    	return true;
    }
    
    static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
    {
    	struct request_queue *q = hctx->queue;
    	long state;
    
    	/*
    	 * If we sleep, have the caller restart the poll loop to reset
    	 * the state. Like for the other success return cases, the
    	 * caller is responsible for checking if the IO completed. If
    	 * the IO isn't complete, we'll get called again and will go
    	 * straight to the busy poll loop.
    	 */
    	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
    		return true;
    
    	hctx->poll_considered++;
    
    	state = current->state;
    	while (!need_resched()) {
    		int ret;
    
    		hctx->poll_invoked++;
    
    		ret = q->mq_ops->poll(hctx, rq->tag);
    		if (ret > 0) {
    			hctx->poll_success++;
    			set_current_state(TASK_RUNNING);
    			return true;
    		}
    
    		if (signal_pending_state(state, current))
    			set_current_state(TASK_RUNNING);
    
    		if (current->state == TASK_RUNNING)
    			return true;
    		if (ret < 0)
    			break;
    		cpu_relax();
    	}
    
    	return false;
    }
    
    bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
    {
    	struct blk_mq_hw_ctx *hctx;
    	struct blk_plug *plug;
    	struct request *rq;
    
    	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
    	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
    		return false;
    
    	plug = current->plug;
    	if (plug)
    		blk_flush_plug_list(plug, false);
    
    	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
    	if (!blk_qc_t_is_internal(cookie))
    		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
    	else {
    		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
    		/*
    		 * With scheduling, if the request has completed, we'll
    		 * get a NULL return here, as we clear the sched tag when
    		 * that happens. The request still remains valid, like always,
    		 * so we should be safe with just the NULL check.
    		 */
    		if (!rq)
    			return false;
    	}
    
    	return __blk_mq_poll(hctx, rq);
    }
    EXPORT_SYMBOL_GPL(blk_mq_poll);
    
    static int __init blk_mq_init(void)
    {
    	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
    				blk_mq_hctx_notify_dead);
    	return 0;
    }
    subsys_initcall(blk_mq_init);