Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-elasticity
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
Show more breadcrumbs
Ansgar Burchardt
dune-elasticity
Commits
56079287
Commit
56079287
authored
10 years ago
by
Oliver Sander
Browse files
Options
Downloads
Patches
Plain Diff
Remove obsolete implementation of NeoHookean material
parent
f803dcd2
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
dune/elasticity/materials/neohookeanmaterial.hh
+1
-143
1 addition, 143 deletions
dune/elasticity/materials/neohookeanmaterial.hh
with
1 addition
and
143 deletions
dune/elasticity/materials/neohookeanmaterial.hh
+
1
−
143
View file @
56079287
...
@@ -35,148 +35,6 @@
...
@@ -35,148 +35,6 @@
* - \f$J\f$ the determinant of the deformation gradient
* - \f$J\f$ the determinant of the deformation gradient
* - \f$\lambda\f$,\f$\mu\f$ material parameters (first lame and shear modulus)
* - \f$\lambda\f$,\f$\mu\f$ material parameters (first lame and shear modulus)
*/
*/
template
<
class
Basis
>
class
NeoHookeanMaterial
:
public
Material
<
Basis
>
{
public:
typedef
Material
<
Basis
>
Base
;
typedef
typename
Base
::
GridType
GridType
;
typedef
typename
Base
::
GlobalBasis
GlobalBasis
;
typedef
typename
Base
::
Lfe
Lfe
;
typedef
typename
Base
::
LocalLinearization
LocalLinearization
;
typedef
typename
Base
::
LocalHessian
LocalHessian
;
typedef
typename
Base
::
VectorType
VectorType
;
typedef
typename
Base
::
GridFunction
GridFunction
;
typedef
typename
Base
::
ReturnType
ReturnType
;
private:
using
Base
::
dim
;
typedef
typename
GridType
::
ctype
ctype
;
typedef
NeoHookeFunctionalAssembler
<
GridType
,
Lfe
>
NeoLinearization
;
typedef
NeoHookeOperatorAssembler
<
GridType
,
Lfe
,
Lfe
>
NeoHessian
;
typedef
typename
GridType
::
template
Codim
<
0
>
::
Geometry
::
LocalCoordinate
LocalCoordinate
;
typedef
typename
GridType
::
template
Codim
<
0
>
::
LeafIterator
ElementIterator
;
public:
NeoHookeanMaterial
()
:
lambda_
(
1.0
),
mu_
(
0.3
)
{}
NeoHookeanMaterial
(
const
Basis
&
basis
,
ReturnType
E
,
ReturnType
nu
)
:
Base
(
basis
)
{
lambda_
=
E
*
nu
/
((
1
+
nu
)
*
(
1
-
2
*
nu
));
mu_
=
E
/
(
2
*
(
1
+
nu
));
localLinearization_
=
std
::
shared_ptr
<
NeoLinearization
>
(
new
NeoLinearization
(
lambda_
,
mu_
));
localHessian_
=
std
::
shared_ptr
<
NeoHessian
>
(
new
NeoHessian
(
lambda_
,
mu_
));
}
void
setup
(
ReturnType
E
,
ReturnType
nu
,
const
Basis
&
basis
)
{
lambda_
=
E
*
nu
/
((
1
+
nu
)
*
(
1
-
2
*
nu
));
mu_
=
E
/
(
2
*
(
1
+
nu
));
localLinearization_
=
std
::
shared_ptr
<
NeoLinearization
>
(
new
NeoLinearization
(
lambda_
,
mu_
));
localHessian_
=
std
::
shared_ptr
<
NeoHessian
>
(
new
NeoHessian
(
lambda_
,
mu_
));
this
->
basis_
=
&
basis
;
}
//! Evaluate the strain energy
ReturnType
energy
(
std
::
shared_ptr
<
GridFunction
>
displace
)
{
ReturnType
energy
=
0
;
const
GridType
&
grid
=
this
->
basis
().
getGridView
().
grid
();
ElementIterator
eIt
=
grid
.
template
leafbegin
<
0
>();
ElementIterator
eItEnd
=
grid
.
template
leafend
<
0
>();
for
(;
eIt
!=
eItEnd
;
++
eIt
)
{
// TODO Get proper quadrature rule
// get quadrature rule
const
int
order
=
(
eIt
->
type
().
isSimplex
())
?
4
:
4
*
dim
;
const
Dune
::
template
QuadratureRule
<
ctype
,
dim
>
&
quad
=
QuadratureRuleCache
<
ctype
,
dim
>::
rule
(
eIt
->
type
(),
order
,
0
);
// loop over quadrature points
for
(
size_t
pt
=
0
;
pt
<
quad
.
size
();
++
pt
)
{
// get quadrature point
const
LocalCoordinate
&
quadPos
=
quad
[
pt
].
position
();
// get integration factor
const
ctype
integrationElement
=
eIt
->
geometry
().
integrationElement
(
quadPos
);
// evaluate displacement gradient at the quadrature point
typename
BasisGridFunction
<
Basis
,
VectorType
>::
DerivativeType
localDispGrad
;
if
(
displace
->
isDefinedOn
(
*
eIt
))
displace
->
evaluateDerivativeLocal
(
*
eIt
,
quadPos
,
localDispGrad
);
else
displace
->
evaluateDerivative
(
eIt
->
geometry
().
global
(
quadPos
),
localDispGrad
);
SymmetricTensor
<
dim
>
strain
;
Dune
::
Elasticity
::
computeNonlinearStrain
(
localDispGrad
,
strain
);
// the trace
ReturnType
trE
(
0
);
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
trE
+=
strain
(
i
,
i
);
// turn displacement gradient into deformation gradient
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
localDispGrad
[
i
][
i
]
+=
1
;
// evaluate the derminante of the deformation gradient
const
ReturnType
J
=
localDispGrad
.
determinant
();
ctype
z
=
quad
[
pt
].
weight
()
*
integrationElement
;
#ifdef LAURSEN
energy
+=
z
*
(
0.25
*
lambda_
*
(
J
*
J
-
1
)
-
(
lambda_
*
0.5
+
mu_
)
*
std
::
log
(
J
)
+
mu_
*
trE
);
#else
energy
+=
z
*
(
0.5
*
lambda_
*
(
J
-
1
)
*
(
J
-
1
)
-
2
*
mu_
*
std
::
log
(
J
)
+
mu_
*
trE
);
#endif
}
}
return
energy
;
}
//! Return the local assembler of the first derivative of the strain energy
LocalLinearization
&
firstDerivative
(
std
::
shared_ptr
<
GridFunction
>
displace
)
{
localLinearization_
->
setConfiguration
(
displace
);
return
*
localLinearization_
;
}
//! Return the local assembler of the second derivative of the strain energy
LocalHessian
&
secondDerivative
(
std
::
shared_ptr
<
GridFunction
>
displace
)
{
localHessian_
->
setConfiguration
(
displace
);
return
*
localHessian_
;
}
private
:
//! First derivative of the strain energy
std
::
shared_ptr
<
NeoLinearization
>
localLinearization_
;
//! Second derivative of the strain energy
std
::
shared_ptr
<
NeoHessian
>
localHessian_
;
//! First Lame constant
ReturnType
lambda_
;
//! Second Lame constant
ReturnType
mu_
;
};
//! Local energy for a geometric exact St. Venant--Kirchhoff material
template
<
class
GridType
,
class
LocalFiniteElement
>
template
<
class
GridType
,
class
LocalFiniteElement
>
class
LocalNeoHookeanEnergy
:
public
Adolc
::
LocalEnergy
<
GridType
,
LocalFiniteElement
,
GridType
::
dimension
>
class
LocalNeoHookeanEnergy
:
public
Adolc
::
LocalEnergy
<
GridType
,
LocalFiniteElement
,
GridType
::
dimension
>
{
{
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment