Skip to content
Snippets Groups Projects
Commit 39102690 authored by Elias Pipping's avatar Elias Pipping Committed by pipping
Browse files

Match internal representation of symmetrictensor.hh

cf. Dietrich Braess - Finite Elemente, ISBN 978-3-540-72449-0

The definition of the isotropic Hooke tensor in 3D (Voigt notation)
can be found on p287 of the fourth edition.

[[Imported from SVN: r4608]]
parent 1f049a11
No related branches found
No related tags found
No related merge requests found
...@@ -17,6 +17,15 @@ template <> ...@@ -17,6 +17,15 @@ template <>
class IsotropicTensor<3> : public ElasticityTensor<3> class IsotropicTensor<3> : public ElasticityTensor<3>
{ {
public: public:
/* Same representation as in symmetrictensor.hh:
[s11] [ * * * ] [e11]
[s22] [ * * * ] [e22]
[s33] = [ * * * ] * [e33]
[s12] [ * ] [e12]
[s13] [ * ] [e13]
[s23] [ * ] [e23]
*/
IsotropicTensor(double E, double nu) IsotropicTensor(double E, double nu)
{ {
ElasticityTensor<3>::operator=(0.0); ElasticityTensor<3>::operator=(0.0);
...@@ -33,9 +42,9 @@ public: ...@@ -33,9 +42,9 @@ public:
(*this)[2][1] = nu; (*this)[2][1] = nu;
(*this)[2][2] = 1 - nu; (*this)[2][2] = 1 - nu;
(*this)[3][3] = 0.5 - nu; (*this)[3][3] = 1 - 2*nu;
(*this)[4][4] = 0.5 - nu; (*this)[4][4] = 1 - 2*nu;
(*this)[5][5] = 0.5 - nu; (*this)[5][5] = 1 - 2*nu;
(*this) *= E/(1 + nu)/(1 - 2*nu); (*this) *= E/(1 + nu)/(1 - 2*nu);
} }
...@@ -55,7 +64,7 @@ public: ...@@ -55,7 +64,7 @@ public:
(*this)[1][0] = nu; (*this)[1][0] = nu;
(*this)[1][1] = 1 - nu; (*this)[1][1] = 1 - nu;
(*this)[2][2] = 0.5 - nu; (*this)[2][2] = 1 - 2*nu;
(*this) *= (E/(1 + nu)/(1 - 2*nu)); (*this) *= (E/(1 + nu)/(1 - 2*nu));
} }
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment