Skip to content
Snippets Groups Projects
Select Git revision
  • 32e585452c9323be547c1f95a8f6459f01c3e01a
  • pred_err_handling default protected
  • pred_err_handling_more_prints
  • pbm_no_preemption_fix_test_input
  • pbm_no_preemption_fix_test
  • libpbm_kernel_fix
  • libpbm_kernel
  • bugfix/setup
  • libpbm_kernel_fix_bak
  • pbm_no_preemption
  • pbm
  • testing
  • sose22results
  • sose22
  • master protected
  • err_detect
  • kelvin
17 results

kyber-iosched.c

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    kyber-iosched.c 20.95 KiB
    /*
     * The Kyber I/O scheduler. Controls latency by throttling queue depths using
     * scalable techniques.
     *
     * Copyright (C) 2017 Facebook
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public
     * License v2 as published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program.  If not, see <https://www.gnu.org/licenses/>.
     */
    
    #include <linux/kernel.h>
    #include <linux/blkdev.h>
    #include <linux/blk-mq.h>
    #include <linux/elevator.h>
    #include <linux/module.h>
    #include <linux/sbitmap.h>
    
    #include "blk.h"
    #include "blk-mq.h"
    #include "blk-mq-debugfs.h"
    #include "blk-mq-sched.h"
    #include "blk-mq-tag.h"
    #include "blk-stat.h"
    
    /* Scheduling domains. */
    enum {
    	KYBER_READ,
    	KYBER_SYNC_WRITE,
    	KYBER_OTHER, /* Async writes, discard, etc. */
    	KYBER_NUM_DOMAINS,
    };
    
    enum {
    	KYBER_MIN_DEPTH = 256,
    
    	/*
    	 * In order to prevent starvation of synchronous requests by a flood of
    	 * asynchronous requests, we reserve 25% of requests for synchronous
    	 * operations.
    	 */
    	KYBER_ASYNC_PERCENT = 75,
    };
    
    /*
     * Initial device-wide depths for each scheduling domain.
     *
     * Even for fast devices with lots of tags like NVMe, you can saturate
     * the device with only a fraction of the maximum possible queue depth.
     * So, we cap these to a reasonable value.
     */
    static const unsigned int kyber_depth[] = {
    	[KYBER_READ] = 256,
    	[KYBER_SYNC_WRITE] = 128,
    	[KYBER_OTHER] = 64,
    };
    
    /*
     * Scheduling domain batch sizes. We favor reads.
     */
    static const unsigned int kyber_batch_size[] = {
    	[KYBER_READ] = 16,
    	[KYBER_SYNC_WRITE] = 8,
    	[KYBER_OTHER] = 8,
    };
    
    struct kyber_queue_data {
    	struct request_queue *q;
    
    	struct blk_stat_callback *cb;
    
    	/*
    	 * The device is divided into multiple scheduling domains based on the
    	 * request type. Each domain has a fixed number of in-flight requests of
    	 * that type device-wide, limited by these tokens.
    	 */
    	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
    
    	/*
    	 * Async request percentage, converted to per-word depth for
    	 * sbitmap_get_shallow().
    	 */
    	unsigned int async_depth;
    
    	/* Target latencies in nanoseconds. */
    	u64 read_lat_nsec, write_lat_nsec;
    };
    
    struct kyber_hctx_data {
    	spinlock_t lock;
    	struct list_head rqs[KYBER_NUM_DOMAINS];
    	unsigned int cur_domain;
    	unsigned int batching;
    	wait_queue_entry_t domain_wait[KYBER_NUM_DOMAINS];
    	atomic_t wait_index[KYBER_NUM_DOMAINS];
    };
    
    static int rq_sched_domain(const struct request *rq)
    {
    	unsigned int op = rq->cmd_flags;
    
    	if ((op & REQ_OP_MASK) == REQ_OP_READ)
    		return KYBER_READ;
    	else if ((op & REQ_OP_MASK) == REQ_OP_WRITE && op_is_sync(op))
    		return KYBER_SYNC_WRITE;
    	else
    		return KYBER_OTHER;
    }
    
    enum {
    	NONE = 0,
    	GOOD = 1,
    	GREAT = 2,
    	BAD = -1,
    	AWFUL = -2,
    };
    
    #define IS_GOOD(status) ((status) > 0)
    #define IS_BAD(status) ((status) < 0)
    
    static int kyber_lat_status(struct blk_stat_callback *cb,
    			    unsigned int sched_domain, u64 target)
    {
    	u64 latency;
    
    	if (!cb->stat[sched_domain].nr_samples)
    		return NONE;
    
    	latency = cb->stat[sched_domain].mean;
    	if (latency >= 2 * target)
    		return AWFUL;
    	else if (latency > target)
    		return BAD;
    	else if (latency <= target / 2)
    		return GREAT;
    	else /* (latency <= target) */
    		return GOOD;
    }
    
    /*
     * Adjust the read or synchronous write depth given the status of reads and
     * writes. The goal is that the latencies of the two domains are fair (i.e., if
     * one is good, then the other is good).
     */
    static void kyber_adjust_rw_depth(struct kyber_queue_data *kqd,
    				  unsigned int sched_domain, int this_status,
    				  int other_status)
    {
    	unsigned int orig_depth, depth;
    
    	/*
    	 * If this domain had no samples, or reads and writes are both good or
    	 * both bad, don't adjust the depth.
    	 */
    	if (this_status == NONE ||
    	    (IS_GOOD(this_status) && IS_GOOD(other_status)) ||
    	    (IS_BAD(this_status) && IS_BAD(other_status)))
    		return;
    
    	orig_depth = depth = kqd->domain_tokens[sched_domain].sb.depth;
    
    	if (other_status == NONE) {
    		depth++;
    	} else {
    		switch (this_status) {
    		case GOOD:
    			if (other_status == AWFUL)
    				depth -= max(depth / 4, 1U);
    			else
    				depth -= max(depth / 8, 1U);
    			break;
    		case GREAT:
    			if (other_status == AWFUL)
    				depth /= 2;
    			else
    				depth -= max(depth / 4, 1U);
    			break;
    		case BAD:
    			depth++;
    			break;
    		case AWFUL:
    			if (other_status == GREAT)
    				depth += 2;
    			else
    				depth++;
    			break;
    		}
    	}
    
    	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
    	if (depth != orig_depth)
    		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
    }
    
    /*
     * Adjust the depth of other requests given the status of reads and synchronous
     * writes. As long as either domain is doing fine, we don't throttle, but if
     * both domains are doing badly, we throttle heavily.
     */
    static void kyber_adjust_other_depth(struct kyber_queue_data *kqd,
    				     int read_status, int write_status,
    				     bool have_samples)
    {
    	unsigned int orig_depth, depth;
    	int status;
    
    	orig_depth = depth = kqd->domain_tokens[KYBER_OTHER].sb.depth;
    
    	if (read_status == NONE && write_status == NONE) {
    		depth += 2;
    	} else if (have_samples) {
    		if (read_status == NONE)
    			status = write_status;
    		else if (write_status == NONE)
    			status = read_status;
    		else
    			status = max(read_status, write_status);
    		switch (status) {
    		case GREAT:
    			depth += 2;
    			break;
    		case GOOD:
    			depth++;
    			break;
    		case BAD:
    			depth -= max(depth / 4, 1U);
    			break;
    		case AWFUL:
    			depth /= 2;
    			break;
    		}
    	}
    
    	depth = clamp(depth, 1U, kyber_depth[KYBER_OTHER]);
    	if (depth != orig_depth)
    		sbitmap_queue_resize(&kqd->domain_tokens[KYBER_OTHER], depth);
    }
    
    /*
     * Apply heuristics for limiting queue depths based on gathered latency
     * statistics.
     */
    static void kyber_stat_timer_fn(struct blk_stat_callback *cb)
    {
    	struct kyber_queue_data *kqd = cb->data;
    	int read_status, write_status;
    
    	read_status = kyber_lat_status(cb, KYBER_READ, kqd->read_lat_nsec);
    	write_status = kyber_lat_status(cb, KYBER_SYNC_WRITE, kqd->write_lat_nsec);
    
    	kyber_adjust_rw_depth(kqd, KYBER_READ, read_status, write_status);
    	kyber_adjust_rw_depth(kqd, KYBER_SYNC_WRITE, write_status, read_status);
    	kyber_adjust_other_depth(kqd, read_status, write_status,
    				 cb->stat[KYBER_OTHER].nr_samples != 0);
    
    	/*
    	 * Continue monitoring latencies if we aren't hitting the targets or
    	 * we're still throttling other requests.
    	 */
    	if (!blk_stat_is_active(kqd->cb) &&
    	    ((IS_BAD(read_status) || IS_BAD(write_status) ||
    	      kqd->domain_tokens[KYBER_OTHER].sb.depth < kyber_depth[KYBER_OTHER])))
    		blk_stat_activate_msecs(kqd->cb, 100);
    }
    
    static unsigned int kyber_sched_tags_shift(struct kyber_queue_data *kqd)
    {
    	/*
    	 * All of the hardware queues have the same depth, so we can just grab
    	 * the shift of the first one.
    	 */
    	return kqd->q->queue_hw_ctx[0]->sched_tags->bitmap_tags.sb.shift;
    }
    
    static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
    {
    	struct kyber_queue_data *kqd;
    	unsigned int max_tokens;
    	unsigned int shift;
    	int ret = -ENOMEM;
    	int i;
    
    	kqd = kmalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
    	if (!kqd)
    		goto err;
    	kqd->q = q;
    
    	kqd->cb = blk_stat_alloc_callback(kyber_stat_timer_fn, rq_sched_domain,
    					  KYBER_NUM_DOMAINS, kqd);
    	if (!kqd->cb)
    		goto err_kqd;
    
    	/*
    	 * The maximum number of tokens for any scheduling domain is at least
    	 * the queue depth of a single hardware queue. If the hardware doesn't
    	 * have many tags, still provide a reasonable number.
    	 */
    	max_tokens = max_t(unsigned int, q->tag_set->queue_depth,
    			   KYBER_MIN_DEPTH);
    	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
    		WARN_ON(!kyber_depth[i]);
    		WARN_ON(!kyber_batch_size[i]);
    		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
    					      max_tokens, -1, false, GFP_KERNEL,
    					      q->node);
    		if (ret) {
    			while (--i >= 0)
    				sbitmap_queue_free(&kqd->domain_tokens[i]);
    			goto err_cb;
    		}
    		sbitmap_queue_resize(&kqd->domain_tokens[i], kyber_depth[i]);
    	}
    
    	shift = kyber_sched_tags_shift(kqd);
    	kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
    
    	kqd->read_lat_nsec = 2000000ULL;
    	kqd->write_lat_nsec = 10000000ULL;
    
    	return kqd;
    
    err_cb:
    	blk_stat_free_callback(kqd->cb);
    err_kqd:
    	kfree(kqd);
    err:
    	return ERR_PTR(ret);
    }
    
    static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
    {
    	struct kyber_queue_data *kqd;
    	struct elevator_queue *eq;
    
    	eq = elevator_alloc(q, e);
    	if (!eq)
    		return -ENOMEM;
    
    	kqd = kyber_queue_data_alloc(q);
    	if (IS_ERR(kqd)) {
    		kobject_put(&eq->kobj);
    		return PTR_ERR(kqd);
    	}
    
    	eq->elevator_data = kqd;
    	q->elevator = eq;
    
    	blk_stat_add_callback(q, kqd->cb);
    
    	return 0;
    }
    
    static void kyber_exit_sched(struct elevator_queue *e)
    {
    	struct kyber_queue_data *kqd = e->elevator_data;
    	struct request_queue *q = kqd->q;
    	int i;
    
    	blk_stat_remove_callback(q, kqd->cb);
    
    	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
    		sbitmap_queue_free(&kqd->domain_tokens[i]);
    	blk_stat_free_callback(kqd->cb);
    	kfree(kqd);
    }
    
    static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
    {
    	struct kyber_hctx_data *khd;
    	int i;
    
    	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
    	if (!khd)
    		return -ENOMEM;
    
    	spin_lock_init(&khd->lock);
    
    	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
    		INIT_LIST_HEAD(&khd->rqs[i]);
    		INIT_LIST_HEAD(&khd->domain_wait[i].entry);
    		atomic_set(&khd->wait_index[i], 0);
    	}
    
    	khd->cur_domain = 0;
    	khd->batching = 0;
    
    	hctx->sched_data = khd;
    
    	return 0;
    }
    
    static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
    {
    	kfree(hctx->sched_data);
    }
    
    static int rq_get_domain_token(struct request *rq)
    {
    	return (long)rq->elv.priv[0];
    }
    
    static void rq_set_domain_token(struct request *rq, int token)
    {
    	rq->elv.priv[0] = (void *)(long)token;
    }
    
    static void rq_clear_domain_token(struct kyber_queue_data *kqd,
    				  struct request *rq)
    {
    	unsigned int sched_domain;
    	int nr;
    
    	nr = rq_get_domain_token(rq);
    	if (nr != -1) {
    		sched_domain = rq_sched_domain(rq);
    		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
    				    rq->mq_ctx->cpu);
    	}
    }
    
    static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
    {
    	/*
    	 * We use the scheduler tags as per-hardware queue queueing tokens.
    	 * Async requests can be limited at this stage.
    	 */
    	if (!op_is_sync(op)) {
    		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
    
    		data->shallow_depth = kqd->async_depth;
    	}
    }
    
    static void kyber_prepare_request(struct request *rq, struct bio *bio)
    {
    	rq_set_domain_token(rq, -1);
    }
    
    static void kyber_finish_request(struct request *rq)
    {
    	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
    
    	rq_clear_domain_token(kqd, rq);
    }
    
    static void kyber_completed_request(struct request *rq)
    {
    	struct request_queue *q = rq->q;
    	struct kyber_queue_data *kqd = q->elevator->elevator_data;
    	unsigned int sched_domain;
    	u64 now, latency, target;
    
    	/*
    	 * Check if this request met our latency goal. If not, quickly gather
    	 * some statistics and start throttling.
    	 */
    	sched_domain = rq_sched_domain(rq);
    	switch (sched_domain) {
    	case KYBER_READ:
    		target = kqd->read_lat_nsec;
    		break;
    	case KYBER_SYNC_WRITE:
    		target = kqd->write_lat_nsec;
    		break;
    	default:
    		return;
    	}
    
    	/* If we are already monitoring latencies, don't check again. */
    	if (blk_stat_is_active(kqd->cb))
    		return;
    
    	now = __blk_stat_time(ktime_to_ns(ktime_get()));
    	if (now < blk_stat_time(&rq->issue_stat))
    		return;
    
    	latency = now - blk_stat_time(&rq->issue_stat);
    
    	if (latency > target)
    		blk_stat_activate_msecs(kqd->cb, 10);
    }
    
    static void kyber_flush_busy_ctxs(struct kyber_hctx_data *khd,
    				  struct blk_mq_hw_ctx *hctx)
    {
    	LIST_HEAD(rq_list);
    	struct request *rq, *next;
    
    	blk_mq_flush_busy_ctxs(hctx, &rq_list);
    	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
    		unsigned int sched_domain;
    
    		sched_domain = rq_sched_domain(rq);
    		list_move_tail(&rq->queuelist, &khd->rqs[sched_domain]);
    	}
    }
    
    static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
    			     void *key)
    {
    	struct blk_mq_hw_ctx *hctx = READ_ONCE(wait->private);
    
    	list_del_init(&wait->entry);
    	blk_mq_run_hw_queue(hctx, true);
    	return 1;
    }
    
    static int kyber_get_domain_token(struct kyber_queue_data *kqd,
    				  struct kyber_hctx_data *khd,
    				  struct blk_mq_hw_ctx *hctx)
    {
    	unsigned int sched_domain = khd->cur_domain;
    	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
    	wait_queue_entry_t *wait = &khd->domain_wait[sched_domain];
    	struct sbq_wait_state *ws;
    	int nr;
    
    	nr = __sbitmap_queue_get(domain_tokens);
    	if (nr >= 0)
    		return nr;
    
    	/*
    	 * If we failed to get a domain token, make sure the hardware queue is
    	 * run when one becomes available. Note that this is serialized on
    	 * khd->lock, but we still need to be careful about the waker.
    	 */
    	if (list_empty_careful(&wait->entry)) {
    		init_waitqueue_func_entry(wait, kyber_domain_wake);
    		wait->private = hctx;
    		ws = sbq_wait_ptr(domain_tokens,
    				  &khd->wait_index[sched_domain]);
    		add_wait_queue(&ws->wait, wait);
    
    		/*
    		 * Try again in case a token was freed before we got on the wait
    		 * queue.
    		 */
    		nr = __sbitmap_queue_get(domain_tokens);
    	}
    	return nr;
    }
    
    static struct request *
    kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
    			  struct kyber_hctx_data *khd,
    			  struct blk_mq_hw_ctx *hctx,
    			  bool *flushed)
    {
    	struct list_head *rqs;
    	struct request *rq;
    	int nr;
    
    	rqs = &khd->rqs[khd->cur_domain];
    	rq = list_first_entry_or_null(rqs, struct request, queuelist);
    
    	/*
    	 * If there wasn't already a pending request and we haven't flushed the
    	 * software queues yet, flush the software queues and check again.
    	 */
    	if (!rq && !*flushed) {
    		kyber_flush_busy_ctxs(khd, hctx);
    		*flushed = true;
    		rq = list_first_entry_or_null(rqs, struct request, queuelist);
    	}
    
    	if (rq) {
    		nr = kyber_get_domain_token(kqd, khd, hctx);
    		if (nr >= 0) {
    			khd->batching++;
    			rq_set_domain_token(rq, nr);
    			list_del_init(&rq->queuelist);
    			return rq;
    		}
    	}
    
    	/* There were either no pending requests or no tokens. */
    	return NULL;
    }
    
    static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
    {
    	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
    	struct kyber_hctx_data *khd = hctx->sched_data;
    	bool flushed = false;
    	struct request *rq;
    	int i;
    
    	spin_lock(&khd->lock);
    
    	/*
    	 * First, if we are still entitled to batch, try to dispatch a request
    	 * from the batch.
    	 */
    	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
    		rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed);
    		if (rq)
    			goto out;
    	}
    
    	/*
    	 * Either,
    	 * 1. We were no longer entitled to a batch.
    	 * 2. The domain we were batching didn't have any requests.
    	 * 3. The domain we were batching was out of tokens.
    	 *
    	 * Start another batch. Note that this wraps back around to the original
    	 * domain if no other domains have requests or tokens.
    	 */
    	khd->batching = 0;
    	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
    		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
    			khd->cur_domain = 0;
    		else
    			khd->cur_domain++;
    
    		rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed);
    		if (rq)
    			goto out;
    	}
    
    	rq = NULL;
    out:
    	spin_unlock(&khd->lock);
    	return rq;
    }
    
    static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
    {
    	struct kyber_hctx_data *khd = hctx->sched_data;
    	int i;
    
    	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
    		if (!list_empty_careful(&khd->rqs[i]))
    			return true;
    	}
    	return false;
    }
    
    #define KYBER_LAT_SHOW_STORE(op)					\
    static ssize_t kyber_##op##_lat_show(struct elevator_queue *e,		\
    				     char *page)			\
    {									\
    	struct kyber_queue_data *kqd = e->elevator_data;		\
    									\
    	return sprintf(page, "%llu\n", kqd->op##_lat_nsec);		\
    }									\
    									\
    static ssize_t kyber_##op##_lat_store(struct elevator_queue *e,		\
    				      const char *page, size_t count)	\
    {									\
    	struct kyber_queue_data *kqd = e->elevator_data;		\
    	unsigned long long nsec;					\
    	int ret;							\
    									\
    	ret = kstrtoull(page, 10, &nsec);				\
    	if (ret)							\
    		return ret;						\
    									\
    	kqd->op##_lat_nsec = nsec;					\
    									\
    	return count;							\
    }
    KYBER_LAT_SHOW_STORE(read);
    KYBER_LAT_SHOW_STORE(write);
    #undef KYBER_LAT_SHOW_STORE
    
    #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
    static struct elv_fs_entry kyber_sched_attrs[] = {
    	KYBER_LAT_ATTR(read),
    	KYBER_LAT_ATTR(write),
    	__ATTR_NULL
    };
    #undef KYBER_LAT_ATTR
    
    #ifdef CONFIG_BLK_DEBUG_FS
    #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
    static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
    {									\
    	struct request_queue *q = data;					\
    	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
    									\
    	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
    	return 0;							\
    }									\
    									\
    static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
    	__acquires(&khd->lock)						\
    {									\
    	struct blk_mq_hw_ctx *hctx = m->private;			\
    	struct kyber_hctx_data *khd = hctx->sched_data;			\
    									\
    	spin_lock(&khd->lock);						\
    	return seq_list_start(&khd->rqs[domain], *pos);			\
    }									\
    									\
    static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
    				     loff_t *pos)			\
    {									\
    	struct blk_mq_hw_ctx *hctx = m->private;			\
    	struct kyber_hctx_data *khd = hctx->sched_data;			\
    									\
    	return seq_list_next(v, &khd->rqs[domain], pos);		\
    }									\
    									\
    static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
    	__releases(&khd->lock)						\
    {									\
    	struct blk_mq_hw_ctx *hctx = m->private;			\
    	struct kyber_hctx_data *khd = hctx->sched_data;			\
    									\
    	spin_unlock(&khd->lock);					\
    }									\
    									\
    static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
    	.start	= kyber_##name##_rqs_start,				\
    	.next	= kyber_##name##_rqs_next,				\
    	.stop	= kyber_##name##_rqs_stop,				\
    	.show	= blk_mq_debugfs_rq_show,				\
    };									\
    									\
    static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
    {									\
    	struct blk_mq_hw_ctx *hctx = data;				\
    	struct kyber_hctx_data *khd = hctx->sched_data;			\
    	wait_queue_entry_t *wait = &khd->domain_wait[domain];		\
    									\
    	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
    	return 0;							\
    }
    KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
    KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_SYNC_WRITE, sync_write)
    KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
    #undef KYBER_DEBUGFS_DOMAIN_ATTRS
    
    static int kyber_async_depth_show(void *data, struct seq_file *m)
    {
    	struct request_queue *q = data;
    	struct kyber_queue_data *kqd = q->elevator->elevator_data;
    
    	seq_printf(m, "%u\n", kqd->async_depth);
    	return 0;
    }
    
    static int kyber_cur_domain_show(void *data, struct seq_file *m)
    {
    	struct blk_mq_hw_ctx *hctx = data;
    	struct kyber_hctx_data *khd = hctx->sched_data;
    
    	switch (khd->cur_domain) {
    	case KYBER_READ:
    		seq_puts(m, "READ\n");
    		break;
    	case KYBER_SYNC_WRITE:
    		seq_puts(m, "SYNC_WRITE\n");
    		break;
    	case KYBER_OTHER:
    		seq_puts(m, "OTHER\n");
    		break;
    	default:
    		seq_printf(m, "%u\n", khd->cur_domain);
    		break;
    	}
    	return 0;
    }
    
    static int kyber_batching_show(void *data, struct seq_file *m)
    {
    	struct blk_mq_hw_ctx *hctx = data;
    	struct kyber_hctx_data *khd = hctx->sched_data;
    
    	seq_printf(m, "%u\n", khd->batching);
    	return 0;
    }
    
    #define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
    	{#name "_tokens", 0400, kyber_##name##_tokens_show}
    static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
    	KYBER_QUEUE_DOMAIN_ATTRS(read),
    	KYBER_QUEUE_DOMAIN_ATTRS(sync_write),
    	KYBER_QUEUE_DOMAIN_ATTRS(other),
    	{"async_depth", 0400, kyber_async_depth_show},
    	{},
    };
    #undef KYBER_QUEUE_DOMAIN_ATTRS
    
    #define KYBER_HCTX_DOMAIN_ATTRS(name)					\
    	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
    	{#name "_waiting", 0400, kyber_##name##_waiting_show}
    static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
    	KYBER_HCTX_DOMAIN_ATTRS(read),
    	KYBER_HCTX_DOMAIN_ATTRS(sync_write),
    	KYBER_HCTX_DOMAIN_ATTRS(other),
    	{"cur_domain", 0400, kyber_cur_domain_show},
    	{"batching", 0400, kyber_batching_show},
    	{},
    };
    #undef KYBER_HCTX_DOMAIN_ATTRS
    #endif
    
    static struct elevator_type kyber_sched = {
    	.ops.mq = {
    		.init_sched = kyber_init_sched,
    		.exit_sched = kyber_exit_sched,
    		.init_hctx = kyber_init_hctx,
    		.exit_hctx = kyber_exit_hctx,
    		.limit_depth = kyber_limit_depth,
    		.prepare_request = kyber_prepare_request,
    		.finish_request = kyber_finish_request,
    		.completed_request = kyber_completed_request,
    		.dispatch_request = kyber_dispatch_request,
    		.has_work = kyber_has_work,
    	},
    	.uses_mq = true,
    #ifdef CONFIG_BLK_DEBUG_FS
    	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
    	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
    #endif
    	.elevator_attrs = kyber_sched_attrs,
    	.elevator_name = "kyber",
    	.elevator_owner = THIS_MODULE,
    };
    
    static int __init kyber_init(void)
    {
    	return elv_register(&kyber_sched);
    }
    
    static void __exit kyber_exit(void)
    {
    	elv_unregister(&kyber_sched);
    }
    
    module_init(kyber_init);
    module_exit(kyber_exit);
    
    MODULE_AUTHOR("Omar Sandoval");
    MODULE_LICENSE("GPL");
    MODULE_DESCRIPTION("Kyber I/O scheduler");