Skip to content
Snippets Groups Projects
Select Git revision
  • 32e585452c9323be547c1f95a8f6459f01c3e01a
  • pred_err_handling default protected
  • pred_err_handling_more_prints
  • pbm_no_preemption_fix_test_input
  • pbm_no_preemption_fix_test
  • libpbm_kernel_fix
  • libpbm_kernel
  • bugfix/setup
  • libpbm_kernel_fix_bak
  • pbm_no_preemption
  • pbm
  • testing
  • sose22results
  • sose22
  • master protected
  • err_detect
  • kelvin
17 results

partition-generic.c

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    partition-generic.c 16.32 KiB
    /*
     *  Code extracted from drivers/block/genhd.c
     *  Copyright (C) 1991-1998  Linus Torvalds
     *  Re-organised Feb 1998 Russell King
     *
     *  We now have independent partition support from the
     *  block drivers, which allows all the partition code to
     *  be grouped in one location, and it to be mostly self
     *  contained.
     */
    
    #include <linux/init.h>
    #include <linux/module.h>
    #include <linux/fs.h>
    #include <linux/slab.h>
    #include <linux/kmod.h>
    #include <linux/ctype.h>
    #include <linux/genhd.h>
    #include <linux/blktrace_api.h>
    
    #include "partitions/check.h"
    
    #ifdef CONFIG_BLK_DEV_MD
    extern void md_autodetect_dev(dev_t dev);
    #endif
     
    /*
     * disk_name() is used by partition check code and the genhd driver.
     * It formats the devicename of the indicated disk into
     * the supplied buffer (of size at least 32), and returns
     * a pointer to that same buffer (for convenience).
     */
    
    char *disk_name(struct gendisk *hd, int partno, char *buf)
    {
    	if (!partno)
    		snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name);
    	else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1]))
    		snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno);
    	else
    		snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno);
    
    	return buf;
    }
    
    const char *bdevname(struct block_device *bdev, char *buf)
    {
    	return disk_name(bdev->bd_disk, bdev->bd_part->partno, buf);
    }
    
    EXPORT_SYMBOL(bdevname);
    
    /*
     * There's very little reason to use this, you should really
     * have a struct block_device just about everywhere and use
     * bdevname() instead.
     */
    const char *__bdevname(dev_t dev, char *buffer)
    {
    	scnprintf(buffer, BDEVNAME_SIZE, "unknown-block(%u,%u)",
    				MAJOR(dev), MINOR(dev));
    	return buffer;
    }
    
    EXPORT_SYMBOL(__bdevname);
    
    static ssize_t part_partition_show(struct device *dev,
    				   struct device_attribute *attr, char *buf)
    {
    	struct hd_struct *p = dev_to_part(dev);
    
    	return sprintf(buf, "%d\n", p->partno);
    }
    
    static ssize_t part_start_show(struct device *dev,
    			       struct device_attribute *attr, char *buf)
    {
    	struct hd_struct *p = dev_to_part(dev);
    
    	return sprintf(buf, "%llu\n",(unsigned long long)p->start_sect);
    }
    
    ssize_t part_size_show(struct device *dev,
    		       struct device_attribute *attr, char *buf)
    {
    	struct hd_struct *p = dev_to_part(dev);
    	return sprintf(buf, "%llu\n",(unsigned long long)part_nr_sects_read(p));
    }
    
    static ssize_t part_ro_show(struct device *dev,
    			    struct device_attribute *attr, char *buf)
    {
    	struct hd_struct *p = dev_to_part(dev);
    	return sprintf(buf, "%d\n", p->policy ? 1 : 0);
    }
    
    static ssize_t part_alignment_offset_show(struct device *dev,
    					  struct device_attribute *attr, char *buf)
    {
    	struct hd_struct *p = dev_to_part(dev);
    	return sprintf(buf, "%llu\n", (unsigned long long)p->alignment_offset);
    }
    
    static ssize_t part_discard_alignment_show(struct device *dev,
    					   struct device_attribute *attr, char *buf)
    {
    	struct hd_struct *p = dev_to_part(dev);
    	return sprintf(buf, "%u\n", p->discard_alignment);
    }
    
    ssize_t part_stat_show(struct device *dev,
    		       struct device_attribute *attr, char *buf)
    {
    	struct hd_struct *p = dev_to_part(dev);
    	int cpu;
    
    	cpu = part_stat_lock();
    	part_round_stats(cpu, p);
    	part_stat_unlock();
    	return sprintf(buf,
    		"%8lu %8lu %8llu %8u "
    		"%8lu %8lu %8llu %8u "
    		"%8u %8u %8u"
    		"\n",
    		part_stat_read(p, ios[READ]),
    		part_stat_read(p, merges[READ]),
    		(unsigned long long)part_stat_read(p, sectors[READ]),
    		jiffies_to_msecs(part_stat_read(p, ticks[READ])),
    		part_stat_read(p, ios[WRITE]),
    		part_stat_read(p, merges[WRITE]),
    		(unsigned long long)part_stat_read(p, sectors[WRITE]),
    		jiffies_to_msecs(part_stat_read(p, ticks[WRITE])),
    		part_in_flight(p),
    		jiffies_to_msecs(part_stat_read(p, io_ticks)),
    		jiffies_to_msecs(part_stat_read(p, time_in_queue)));
    }
    
    ssize_t part_inflight_show(struct device *dev,
    			struct device_attribute *attr, char *buf)
    {
    	struct hd_struct *p = dev_to_part(dev);
    
    	return sprintf(buf, "%8u %8u\n", atomic_read(&p->in_flight[0]),
    		atomic_read(&p->in_flight[1]));
    }
    
    #ifdef CONFIG_FAIL_MAKE_REQUEST
    ssize_t part_fail_show(struct device *dev,
    		       struct device_attribute *attr, char *buf)
    {
    	struct hd_struct *p = dev_to_part(dev);
    
    	return sprintf(buf, "%d\n", p->make_it_fail);
    }
    
    ssize_t part_fail_store(struct device *dev,
    			struct device_attribute *attr,
    			const char *buf, size_t count)
    {
    	struct hd_struct *p = dev_to_part(dev);
    	int i;
    
    	if (count > 0 && sscanf(buf, "%d", &i) > 0)
    		p->make_it_fail = (i == 0) ? 0 : 1;
    
    	return count;
    }
    #endif
    
    static DEVICE_ATTR(partition, S_IRUGO, part_partition_show, NULL);
    static DEVICE_ATTR(start, S_IRUGO, part_start_show, NULL);
    static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
    static DEVICE_ATTR(ro, S_IRUGO, part_ro_show, NULL);
    static DEVICE_ATTR(alignment_offset, S_IRUGO, part_alignment_offset_show, NULL);
    static DEVICE_ATTR(discard_alignment, S_IRUGO, part_discard_alignment_show,
    		   NULL);
    static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
    static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
    #ifdef CONFIG_FAIL_MAKE_REQUEST
    static struct device_attribute dev_attr_fail =
    	__ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
    #endif
    
    static struct attribute *part_attrs[] = {
    	&dev_attr_partition.attr,
    	&dev_attr_start.attr,
    	&dev_attr_size.attr,
    	&dev_attr_ro.attr,
    	&dev_attr_alignment_offset.attr,
    	&dev_attr_discard_alignment.attr,
    	&dev_attr_stat.attr,
    	&dev_attr_inflight.attr,
    #ifdef CONFIG_FAIL_MAKE_REQUEST
    	&dev_attr_fail.attr,
    #endif
    	NULL
    };
    
    static struct attribute_group part_attr_group = {
    	.attrs = part_attrs,
    };
    
    static const struct attribute_group *part_attr_groups[] = {
    	&part_attr_group,
    #ifdef CONFIG_BLK_DEV_IO_TRACE
    	&blk_trace_attr_group,
    #endif
    	NULL
    };
    
    static void part_release(struct device *dev)
    {
    	struct hd_struct *p = dev_to_part(dev);
    	blk_free_devt(dev->devt);
    	hd_free_part(p);
    	kfree(p);
    }
    
    static int part_uevent(struct device *dev, struct kobj_uevent_env *env)
    {
    	struct hd_struct *part = dev_to_part(dev);
    
    	add_uevent_var(env, "PARTN=%u", part->partno);
    	if (part->info && part->info->volname[0])
    		add_uevent_var(env, "PARTNAME=%s", part->info->volname);
    	return 0;
    }
    
    struct device_type part_type = {
    	.name		= "partition",
    	.groups		= part_attr_groups,
    	.release	= part_release,
    	.uevent		= part_uevent,
    };
    
    static void delete_partition_rcu_cb(struct rcu_head *head)
    {
    	struct hd_struct *part = container_of(head, struct hd_struct, rcu_head);
    
    	part->start_sect = 0;
    	part->nr_sects = 0;
    	part_stat_set_all(part, 0);
    	put_device(part_to_dev(part));
    }
    
    void __delete_partition(struct percpu_ref *ref)
    {
    	struct hd_struct *part = container_of(ref, struct hd_struct, ref);
    	call_rcu(&part->rcu_head, delete_partition_rcu_cb);
    }
    
    void delete_partition(struct gendisk *disk, int partno)
    {
    	struct disk_part_tbl *ptbl = disk->part_tbl;
    	struct hd_struct *part;
    
    	if (partno >= ptbl->len)
    		return;
    
    	part = ptbl->part[partno];
    	if (!part)
    		return;
    
    	rcu_assign_pointer(ptbl->part[partno], NULL);
    	rcu_assign_pointer(ptbl->last_lookup, NULL);
    	kobject_put(part->holder_dir);
    	device_del(part_to_dev(part));
    
    	hd_struct_kill(part);
    }
    
    static ssize_t whole_disk_show(struct device *dev,
    			       struct device_attribute *attr, char *buf)
    {
    	return 0;
    }
    static DEVICE_ATTR(whole_disk, S_IRUSR | S_IRGRP | S_IROTH,
    		   whole_disk_show, NULL);
    
    struct hd_struct *add_partition(struct gendisk *disk, int partno,
    				sector_t start, sector_t len, int flags,
    				struct partition_meta_info *info)
    {
    	struct hd_struct *p;
    	dev_t devt = MKDEV(0, 0);
    	struct device *ddev = disk_to_dev(disk);
    	struct device *pdev;
    	struct disk_part_tbl *ptbl;
    	const char *dname;
    	int err;
    
    	err = disk_expand_part_tbl(disk, partno);
    	if (err)
    		return ERR_PTR(err);
    	ptbl = disk->part_tbl;
    
    	if (ptbl->part[partno])
    		return ERR_PTR(-EBUSY);
    
    	p = kzalloc(sizeof(*p), GFP_KERNEL);
    	if (!p)
    		return ERR_PTR(-EBUSY);
    
    	if (!init_part_stats(p)) {
    		err = -ENOMEM;
    		goto out_free;
    	}
    
    	seqcount_init(&p->nr_sects_seq);
    	pdev = part_to_dev(p);
    
    	p->start_sect = start;
    	p->alignment_offset =
    		queue_limit_alignment_offset(&disk->queue->limits, start);
    	p->discard_alignment =
    		queue_limit_discard_alignment(&disk->queue->limits, start);
    	p->nr_sects = len;
    	p->partno = partno;
    	p->policy = get_disk_ro(disk);
    
    	if (info) {
    		struct partition_meta_info *pinfo = alloc_part_info(disk);
    		if (!pinfo) {
    			err = -ENOMEM;
    			goto out_free_stats;
    		}
    		memcpy(pinfo, info, sizeof(*info));
    		p->info = pinfo;
    	}
    
    	dname = dev_name(ddev);
    	if (isdigit(dname[strlen(dname) - 1]))
    		dev_set_name(pdev, "%sp%d", dname, partno);
    	else
    		dev_set_name(pdev, "%s%d", dname, partno);
    
    	device_initialize(pdev);
    	pdev->class = &block_class;
    	pdev->type = &part_type;
    	pdev->parent = ddev;
    
    	err = blk_alloc_devt(p, &devt);
    	if (err)
    		goto out_free_info;
    	pdev->devt = devt;
    
    	/* delay uevent until 'holders' subdir is created */
    	dev_set_uevent_suppress(pdev, 1);
    	err = device_add(pdev);
    	if (err)
    		goto out_put;
    
    	err = -ENOMEM;
    	p->holder_dir = kobject_create_and_add("holders", &pdev->kobj);
    	if (!p->holder_dir)
    		goto out_del;
    
    	dev_set_uevent_suppress(pdev, 0);
    	if (flags & ADDPART_FLAG_WHOLEDISK) {
    		err = device_create_file(pdev, &dev_attr_whole_disk);
    		if (err)
    			goto out_del;
    	}
    
    	err = hd_ref_init(p);
    	if (err) {
    		if (flags & ADDPART_FLAG_WHOLEDISK)
    			goto out_remove_file;
    		goto out_del;
    	}
    
    	/* everything is up and running, commence */
    	rcu_assign_pointer(ptbl->part[partno], p);
    
    	/* suppress uevent if the disk suppresses it */
    	if (!dev_get_uevent_suppress(ddev))
    		kobject_uevent(&pdev->kobj, KOBJ_ADD);
    	return p;
    
    out_free_info:
    	free_part_info(p);
    out_free_stats:
    	free_part_stats(p);
    out_free:
    	kfree(p);
    	return ERR_PTR(err);
    out_remove_file:
    	device_remove_file(pdev, &dev_attr_whole_disk);
    out_del:
    	kobject_put(p->holder_dir);
    	device_del(pdev);
    out_put:
    	put_device(pdev);
    	blk_free_devt(devt);
    	return ERR_PTR(err);
    }
    
    static bool disk_unlock_native_capacity(struct gendisk *disk)
    {
    	const struct block_device_operations *bdops = disk->fops;
    
    	if (bdops->unlock_native_capacity &&
    	    !(disk->flags & GENHD_FL_NATIVE_CAPACITY)) {
    		printk(KERN_CONT "enabling native capacity\n");
    		bdops->unlock_native_capacity(disk);
    		disk->flags |= GENHD_FL_NATIVE_CAPACITY;
    		return true;
    	} else {
    		printk(KERN_CONT "truncated\n");
    		return false;
    	}
    }
    
    static int drop_partitions(struct gendisk *disk, struct block_device *bdev)
    {
    	struct disk_part_iter piter;
    	struct hd_struct *part;
    	int res;
    
    	if (bdev->bd_part_count || bdev->bd_super)
    		return -EBUSY;
    	res = invalidate_partition(disk, 0);
    	if (res)
    		return res;
    
    	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
    	while ((part = disk_part_iter_next(&piter)))
    		delete_partition(disk, part->partno);
    	disk_part_iter_exit(&piter);
    
    	return 0;
    }
    
    static bool part_zone_aligned(struct gendisk *disk,
    			      struct block_device *bdev,
    			      sector_t from, sector_t size)
    {
    	unsigned int zone_sectors = bdev_zone_sectors(bdev);
    
    	/*
    	 * If this function is called, then the disk is a zoned block device
    	 * (host-aware or host-managed). This can be detected even if the
    	 * zoned block device support is disabled (CONFIG_BLK_DEV_ZONED not
    	 * set). In this case, however, only host-aware devices will be seen
    	 * as a block device is not created for host-managed devices. Without
    	 * zoned block device support, host-aware drives can still be used as
    	 * regular block devices (no zone operation) and their zone size will
    	 * be reported as 0. Allow this case.
    	 */
    	if (!zone_sectors)
    		return true;
    
    	/*
    	 * Check partition start and size alignement. If the drive has a
    	 * smaller last runt zone, ignore it and allow the partition to
    	 * use it. Check the zone size too: it should be a power of 2 number
    	 * of sectors.
    	 */
    	if (WARN_ON_ONCE(!is_power_of_2(zone_sectors))) {
    		u32 rem;
    
    		div_u64_rem(from, zone_sectors, &rem);
    		if (rem)
    			return false;
    		if ((from + size) < get_capacity(disk)) {
    			div_u64_rem(size, zone_sectors, &rem);
    			if (rem)
    				return false;
    		}
    
    	} else {
    
    		if (from & (zone_sectors - 1))
    			return false;
    		if ((from + size) < get_capacity(disk) &&
    		    (size & (zone_sectors - 1)))
    			return false;
    
    	}
    
    	return true;
    }
    
    int rescan_partitions(struct gendisk *disk, struct block_device *bdev)
    {
    	struct parsed_partitions *state = NULL;
    	struct hd_struct *part;
    	int p, highest, res;
    rescan:
    	if (state && !IS_ERR(state)) {
    		free_partitions(state);
    		state = NULL;
    	}
    
    	res = drop_partitions(disk, bdev);
    	if (res)
    		return res;
    
    	if (disk->fops->revalidate_disk)
    		disk->fops->revalidate_disk(disk);
    	check_disk_size_change(disk, bdev);
    	bdev->bd_invalidated = 0;
    	if (!get_capacity(disk) || !(state = check_partition(disk, bdev)))
    		return 0;
    	if (IS_ERR(state)) {
    		/*
    		 * I/O error reading the partition table.  If any
    		 * partition code tried to read beyond EOD, retry
    		 * after unlocking native capacity.
    		 */
    		if (PTR_ERR(state) == -ENOSPC) {
    			printk(KERN_WARNING "%s: partition table beyond EOD, ",
    			       disk->disk_name);
    			if (disk_unlock_native_capacity(disk))
    				goto rescan;
    		}
    		return -EIO;
    	}
    	/*
    	 * If any partition code tried to read beyond EOD, try
    	 * unlocking native capacity even if partition table is
    	 * successfully read as we could be missing some partitions.
    	 */
    	if (state->access_beyond_eod) {
    		printk(KERN_WARNING
    		       "%s: partition table partially beyond EOD, ",
    		       disk->disk_name);
    		if (disk_unlock_native_capacity(disk))
    			goto rescan;
    	}
    
    	/* tell userspace that the media / partition table may have changed */
    	kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
    
    	/* Detect the highest partition number and preallocate
    	 * disk->part_tbl.  This is an optimization and not strictly
    	 * necessary.
    	 */
    	for (p = 1, highest = 0; p < state->limit; p++)
    		if (state->parts[p].size)
    			highest = p;
    
    	disk_expand_part_tbl(disk, highest);
    
    	/* add partitions */
    	for (p = 1; p < state->limit; p++) {
    		sector_t size, from;
    
    		size = state->parts[p].size;
    		if (!size)
    			continue;
    
    		from = state->parts[p].from;
    		if (from >= get_capacity(disk)) {
    			printk(KERN_WARNING
    			       "%s: p%d start %llu is beyond EOD, ",
    			       disk->disk_name, p, (unsigned long long) from);
    			if (disk_unlock_native_capacity(disk))
    				goto rescan;
    			continue;
    		}
    
    		if (from + size > get_capacity(disk)) {
    			printk(KERN_WARNING
    			       "%s: p%d size %llu extends beyond EOD, ",
    			       disk->disk_name, p, (unsigned long long) size);
    
    			if (disk_unlock_native_capacity(disk)) {
    				/* free state and restart */
    				goto rescan;
    			} else {
    				/*
    				 * we can not ignore partitions of broken tables
    				 * created by for example camera firmware, but
    				 * we limit them to the end of the disk to avoid
    				 * creating invalid block devices
    				 */
    				size = get_capacity(disk) - from;
    			}
    		}
    
    		/*
    		 * On a zoned block device, partitions should be aligned on the
    		 * device zone size (i.e. zone boundary crossing not allowed).
    		 * Otherwise, resetting the write pointer of the last zone of
    		 * one partition may impact the following partition.
    		 */
    		if (bdev_is_zoned(bdev) &&
    		    !part_zone_aligned(disk, bdev, from, size)) {
    			printk(KERN_WARNING
    			       "%s: p%d start %llu+%llu is not zone aligned\n",
    			       disk->disk_name, p, (unsigned long long) from,
    			       (unsigned long long) size);
    			continue;
    		}
    
    		part = add_partition(disk, p, from, size,
    				     state->parts[p].flags,
    				     &state->parts[p].info);
    		if (IS_ERR(part)) {
    			printk(KERN_ERR " %s: p%d could not be added: %ld\n",
    			       disk->disk_name, p, -PTR_ERR(part));
    			continue;
    		}
    #ifdef CONFIG_BLK_DEV_MD
    		if (state->parts[p].flags & ADDPART_FLAG_RAID)
    			md_autodetect_dev(part_to_dev(part)->devt);
    #endif
    	}
    	free_partitions(state);
    	return 0;
    }
    
    int invalidate_partitions(struct gendisk *disk, struct block_device *bdev)
    {
    	int res;
    
    	if (!bdev->bd_invalidated)
    		return 0;
    
    	res = drop_partitions(disk, bdev);
    	if (res)
    		return res;
    
    	set_capacity(disk, 0);
    	check_disk_size_change(disk, bdev);
    	bdev->bd_invalidated = 0;
    	/* tell userspace that the media / partition table may have changed */
    	kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
    
    	return 0;
    }
    
    unsigned char *read_dev_sector(struct block_device *bdev, sector_t n, Sector *p)
    {
    	struct address_space *mapping = bdev->bd_inode->i_mapping;
    	struct page *page;
    
    	page = read_mapping_page(mapping, (pgoff_t)(n >> (PAGE_SHIFT-9)), NULL);
    	if (!IS_ERR(page)) {
    		if (PageError(page))
    			goto fail;
    		p->v = page;
    		return (unsigned char *)page_address(page) +  ((n & ((1 << (PAGE_SHIFT - 9)) - 1)) << 9);
    fail:
    		put_page(page);
    	}
    	p->v = NULL;
    	return NULL;
    }
    
    EXPORT_SYMBOL(read_dev_sector);