Skip to content
Snippets Groups Projects
Select Git revision
  • e6ec8eb9cdb950ec3a4982dc0f1fa67c71ae1a77
  • main default protected
2 results

2_fundamentals.tex

Blame
  • Forked from agse / thesis-template
    Source project has a limited visibility.
    Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    blk-core.c 95.21 KiB
    /*
     * Copyright (C) 1991, 1992 Linus Torvalds
     * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
     * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
     * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
     * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
     *	-  July2000
     * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
     */
    
    /*
     * This handles all read/write requests to block devices
     */
    #include <linux/kernel.h>
    #include <linux/module.h>
    #include <linux/backing-dev.h>
    #include <linux/bio.h>
    #include <linux/blkdev.h>
    #include <linux/blk-mq.h>
    #include <linux/highmem.h>
    #include <linux/mm.h>
    #include <linux/kernel_stat.h>
    #include <linux/string.h>
    #include <linux/init.h>
    #include <linux/completion.h>
    #include <linux/slab.h>
    #include <linux/swap.h>
    #include <linux/writeback.h>
    #include <linux/task_io_accounting_ops.h>
    #include <linux/fault-inject.h>
    #include <linux/list_sort.h>
    #include <linux/delay.h>
    #include <linux/ratelimit.h>
    #include <linux/pm_runtime.h>
    #include <linux/blk-cgroup.h>
    #include <linux/debugfs.h>
    
    #define CREATE_TRACE_POINTS
    #include <trace/events/block.h>
    
    #include "blk.h"
    #include "blk-mq.h"
    #include "blk-mq-sched.h"
    #include "blk-wbt.h"
    
    #ifdef CONFIG_DEBUG_FS
    struct dentry *blk_debugfs_root;
    #endif
    
    EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
    EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
    EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
    EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
    EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
    
    DEFINE_IDA(blk_queue_ida);
    
    /*
     * For the allocated request tables
     */
    struct kmem_cache *request_cachep;
    
    /*
     * For queue allocation
     */
    struct kmem_cache *blk_requestq_cachep;
    
    /*
     * Controlling structure to kblockd
     */
    static struct workqueue_struct *kblockd_workqueue;
    
    static void blk_clear_congested(struct request_list *rl, int sync)
    {
    #ifdef CONFIG_CGROUP_WRITEBACK
    	clear_wb_congested(rl->blkg->wb_congested, sync);
    #else
    	/*
    	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
    	 * flip its congestion state for events on other blkcgs.
    	 */
    	if (rl == &rl->q->root_rl)
    		clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
    #endif
    }
    
    static void blk_set_congested(struct request_list *rl, int sync)
    {
    #ifdef CONFIG_CGROUP_WRITEBACK
    	set_wb_congested(rl->blkg->wb_congested, sync);
    #else
    	/* see blk_clear_congested() */
    	if (rl == &rl->q->root_rl)
    		set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
    #endif
    }
    
    void blk_queue_congestion_threshold(struct request_queue *q)
    {
    	int nr;
    
    	nr = q->nr_requests - (q->nr_requests / 8) + 1;
    	if (nr > q->nr_requests)
    		nr = q->nr_requests;
    	q->nr_congestion_on = nr;
    
    	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
    	if (nr < 1)
    		nr = 1;
    	q->nr_congestion_off = nr;
    }
    
    void blk_rq_init(struct request_queue *q, struct request *rq)
    {
    	memset(rq, 0, sizeof(*rq));
    
    	INIT_LIST_HEAD(&rq->queuelist);
    	INIT_LIST_HEAD(&rq->timeout_list);
    	rq->cpu = -1;
    	rq->q = q;
    	rq->__sector = (sector_t) -1;
    	INIT_HLIST_NODE(&rq->hash);
    	RB_CLEAR_NODE(&rq->rb_node);
    	rq->tag = -1;
    	rq->internal_tag = -1;
    	rq->start_time = jiffies;
    	set_start_time_ns(rq);
    	rq->part = NULL;
    }
    EXPORT_SYMBOL(blk_rq_init);
    
    static const struct {
    	int		errno;
    	const char	*name;
    } blk_errors[] = {
    	[BLK_STS_OK]		= { 0,		"" },
    	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
    	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
    	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
    	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
    	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
    	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
    	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
    	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
    	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
    	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
    
    	/* device mapper special case, should not leak out: */
    	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
    
    	/* everything else not covered above: */
    	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
    };
    
    blk_status_t errno_to_blk_status(int errno)
    {
    	int i;
    
    	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
    		if (blk_errors[i].errno == errno)
    			return (__force blk_status_t)i;
    	}
    
    	return BLK_STS_IOERR;
    }
    EXPORT_SYMBOL_GPL(errno_to_blk_status);
    
    int blk_status_to_errno(blk_status_t status)
    {
    	int idx = (__force int)status;
    
    	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
    		return -EIO;
    	return blk_errors[idx].errno;
    }
    EXPORT_SYMBOL_GPL(blk_status_to_errno);
    
    static void print_req_error(struct request *req, blk_status_t status)
    {
    	int idx = (__force int)status;
    
    	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
    		return;
    
    	printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
    			   __func__, blk_errors[idx].name, req->rq_disk ?
    			   req->rq_disk->disk_name : "?",
    			   (unsigned long long)blk_rq_pos(req));
    }
    
    static void req_bio_endio(struct request *rq, struct bio *bio,
    			  unsigned int nbytes, blk_status_t error)
    {
    	if (error)
    		bio->bi_status = error;
    
    	if (unlikely(rq->rq_flags & RQF_QUIET))
    		bio_set_flag(bio, BIO_QUIET);
    
    	bio_advance(bio, nbytes);
    
    	/* don't actually finish bio if it's part of flush sequence */
    	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
    		bio_endio(bio);
    }
    
    void blk_dump_rq_flags(struct request *rq, char *msg)
    {
    	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
    		rq->rq_disk ? rq->rq_disk->disk_name : "?",
    		(unsigned long long) rq->cmd_flags);
    
    	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
    	       (unsigned long long)blk_rq_pos(rq),
    	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
    	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
    	       rq->bio, rq->biotail, blk_rq_bytes(rq));
    }
    EXPORT_SYMBOL(blk_dump_rq_flags);
    
    static void blk_delay_work(struct work_struct *work)
    {
    	struct request_queue *q;
    
    	q = container_of(work, struct request_queue, delay_work.work);
    	spin_lock_irq(q->queue_lock);
    	__blk_run_queue(q);
    	spin_unlock_irq(q->queue_lock);
    }
    
    /**
     * blk_delay_queue - restart queueing after defined interval
     * @q:		The &struct request_queue in question
     * @msecs:	Delay in msecs
     *
     * Description:
     *   Sometimes queueing needs to be postponed for a little while, to allow
     *   resources to come back. This function will make sure that queueing is
     *   restarted around the specified time.
     */
    void blk_delay_queue(struct request_queue *q, unsigned long msecs)
    {
    	lockdep_assert_held(q->queue_lock);
    	WARN_ON_ONCE(q->mq_ops);
    
    	if (likely(!blk_queue_dead(q)))
    		queue_delayed_work(kblockd_workqueue, &q->delay_work,
    				   msecs_to_jiffies(msecs));
    }
    EXPORT_SYMBOL(blk_delay_queue);
    
    /**
     * blk_start_queue_async - asynchronously restart a previously stopped queue
     * @q:    The &struct request_queue in question
     *
     * Description:
     *   blk_start_queue_async() will clear the stop flag on the queue, and
     *   ensure that the request_fn for the queue is run from an async
     *   context.
     **/
    void blk_start_queue_async(struct request_queue *q)
    {
    	lockdep_assert_held(q->queue_lock);
    	WARN_ON_ONCE(q->mq_ops);
    
    	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
    	blk_run_queue_async(q);
    }
    EXPORT_SYMBOL(blk_start_queue_async);
    
    /**
     * blk_start_queue - restart a previously stopped queue
     * @q:    The &struct request_queue in question
     *
     * Description:
     *   blk_start_queue() will clear the stop flag on the queue, and call
     *   the request_fn for the queue if it was in a stopped state when
     *   entered. Also see blk_stop_queue().
     **/
    void blk_start_queue(struct request_queue *q)
    {
    	lockdep_assert_held(q->queue_lock);
    	WARN_ON(!irqs_disabled());
    	WARN_ON_ONCE(q->mq_ops);
    
    	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
    	__blk_run_queue(q);
    }
    EXPORT_SYMBOL(blk_start_queue);
    
    /**
     * blk_stop_queue - stop a queue
     * @q:    The &struct request_queue in question
     *
     * Description:
     *   The Linux block layer assumes that a block driver will consume all
     *   entries on the request queue when the request_fn strategy is called.
     *   Often this will not happen, because of hardware limitations (queue
     *   depth settings). If a device driver gets a 'queue full' response,
     *   or if it simply chooses not to queue more I/O at one point, it can
     *   call this function to prevent the request_fn from being called until
     *   the driver has signalled it's ready to go again. This happens by calling
     *   blk_start_queue() to restart queue operations.
     **/
    void blk_stop_queue(struct request_queue *q)
    {
    	lockdep_assert_held(q->queue_lock);
    	WARN_ON_ONCE(q->mq_ops);
    
    	cancel_delayed_work(&q->delay_work);
    	queue_flag_set(QUEUE_FLAG_STOPPED, q);
    }
    EXPORT_SYMBOL(blk_stop_queue);
    
    /**
     * blk_sync_queue - cancel any pending callbacks on a queue
     * @q: the queue
     *
     * Description:
     *     The block layer may perform asynchronous callback activity
     *     on a queue, such as calling the unplug function after a timeout.
     *     A block device may call blk_sync_queue to ensure that any
     *     such activity is cancelled, thus allowing it to release resources
     *     that the callbacks might use. The caller must already have made sure
     *     that its ->make_request_fn will not re-add plugging prior to calling
     *     this function.
     *
     *     This function does not cancel any asynchronous activity arising
     *     out of elevator or throttling code. That would require elevator_exit()
     *     and blkcg_exit_queue() to be called with queue lock initialized.
     *
     */
    void blk_sync_queue(struct request_queue *q)
    {
    	del_timer_sync(&q->timeout);
    
    	if (q->mq_ops) {
    		struct blk_mq_hw_ctx *hctx;
    		int i;
    
    		queue_for_each_hw_ctx(q, hctx, i)
    			cancel_delayed_work_sync(&hctx->run_work);
    	} else {
    		cancel_delayed_work_sync(&q->delay_work);
    	}
    }
    EXPORT_SYMBOL(blk_sync_queue);
    
    /**
     * __blk_run_queue_uncond - run a queue whether or not it has been stopped
     * @q:	The queue to run
     *
     * Description:
     *    Invoke request handling on a queue if there are any pending requests.
     *    May be used to restart request handling after a request has completed.
     *    This variant runs the queue whether or not the queue has been
     *    stopped. Must be called with the queue lock held and interrupts
     *    disabled. See also @blk_run_queue.
     */
    inline void __blk_run_queue_uncond(struct request_queue *q)
    {
    	lockdep_assert_held(q->queue_lock);
    	WARN_ON_ONCE(q->mq_ops);
    
    	if (unlikely(blk_queue_dead(q)))
    		return;
    
    	/*
    	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
    	 * the queue lock internally. As a result multiple threads may be
    	 * running such a request function concurrently. Keep track of the
    	 * number of active request_fn invocations such that blk_drain_queue()
    	 * can wait until all these request_fn calls have finished.
    	 */
    	q->request_fn_active++;
    	q->request_fn(q);
    	q->request_fn_active--;
    }
    EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
    
    /**
     * __blk_run_queue - run a single device queue
     * @q:	The queue to run
     *
     * Description:
     *    See @blk_run_queue.
     */
    void __blk_run_queue(struct request_queue *q)
    {
    	lockdep_assert_held(q->queue_lock);
    	WARN_ON_ONCE(q->mq_ops);
    
    	if (unlikely(blk_queue_stopped(q)))
    		return;
    
    	__blk_run_queue_uncond(q);
    }
    EXPORT_SYMBOL(__blk_run_queue);
    
    /**
     * blk_run_queue_async - run a single device queue in workqueue context
     * @q:	The queue to run
     *
     * Description:
     *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
     *    of us.
     *
     * Note:
     *    Since it is not allowed to run q->delay_work after blk_cleanup_queue()
     *    has canceled q->delay_work, callers must hold the queue lock to avoid
     *    race conditions between blk_cleanup_queue() and blk_run_queue_async().
     */
    void blk_run_queue_async(struct request_queue *q)
    {
    	lockdep_assert_held(q->queue_lock);
    	WARN_ON_ONCE(q->mq_ops);
    
    	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
    		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
    }
    EXPORT_SYMBOL(blk_run_queue_async);
    
    /**
     * blk_run_queue - run a single device queue
     * @q: The queue to run
     *
     * Description:
     *    Invoke request handling on this queue, if it has pending work to do.
     *    May be used to restart queueing when a request has completed.
     */
    void blk_run_queue(struct request_queue *q)
    {
    	unsigned long flags;
    
    	WARN_ON_ONCE(q->mq_ops);
    
    	spin_lock_irqsave(q->queue_lock, flags);
    	__blk_run_queue(q);
    	spin_unlock_irqrestore(q->queue_lock, flags);
    }
    EXPORT_SYMBOL(blk_run_queue);
    
    void blk_put_queue(struct request_queue *q)
    {
    	kobject_put(&q->kobj);
    }
    EXPORT_SYMBOL(blk_put_queue);
    
    /**
     * __blk_drain_queue - drain requests from request_queue
     * @q: queue to drain
     * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
     *
     * Drain requests from @q.  If @drain_all is set, all requests are drained.
     * If not, only ELVPRIV requests are drained.  The caller is responsible
     * for ensuring that no new requests which need to be drained are queued.
     */
    static void __blk_drain_queue(struct request_queue *q, bool drain_all)
    	__releases(q->queue_lock)
    	__acquires(q->queue_lock)
    {
    	int i;
    
    	lockdep_assert_held(q->queue_lock);
    	WARN_ON_ONCE(q->mq_ops);
    
    	while (true) {
    		bool drain = false;
    
    		/*
    		 * The caller might be trying to drain @q before its
    		 * elevator is initialized.
    		 */
    		if (q->elevator)
    			elv_drain_elevator(q);
    
    		blkcg_drain_queue(q);
    
    		/*
    		 * This function might be called on a queue which failed
    		 * driver init after queue creation or is not yet fully
    		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
    		 * in such cases.  Kick queue iff dispatch queue has
    		 * something on it and @q has request_fn set.
    		 */
    		if (!list_empty(&q->queue_head) && q->request_fn)
    			__blk_run_queue(q);
    
    		drain |= q->nr_rqs_elvpriv;
    		drain |= q->request_fn_active;
    
    		/*
    		 * Unfortunately, requests are queued at and tracked from
    		 * multiple places and there's no single counter which can
    		 * be drained.  Check all the queues and counters.
    		 */
    		if (drain_all) {
    			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
    			drain |= !list_empty(&q->queue_head);
    			for (i = 0; i < 2; i++) {
    				drain |= q->nr_rqs[i];
    				drain |= q->in_flight[i];
    				if (fq)
    				    drain |= !list_empty(&fq->flush_queue[i]);
    			}
    		}
    
    		if (!drain)
    			break;
    
    		spin_unlock_irq(q->queue_lock);
    
    		msleep(10);
    
    		spin_lock_irq(q->queue_lock);
    	}
    
    	/*
    	 * With queue marked dead, any woken up waiter will fail the
    	 * allocation path, so the wakeup chaining is lost and we're
    	 * left with hung waiters. We need to wake up those waiters.
    	 */
    	if (q->request_fn) {
    		struct request_list *rl;
    
    		blk_queue_for_each_rl(rl, q)
    			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
    				wake_up_all(&rl->wait[i]);
    	}
    }
    
    /**
     * blk_queue_bypass_start - enter queue bypass mode
     * @q: queue of interest
     *
     * In bypass mode, only the dispatch FIFO queue of @q is used.  This
     * function makes @q enter bypass mode and drains all requests which were
     * throttled or issued before.  On return, it's guaranteed that no request
     * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
     * inside queue or RCU read lock.
     */
    void blk_queue_bypass_start(struct request_queue *q)
    {
    	WARN_ON_ONCE(q->mq_ops);
    
    	spin_lock_irq(q->queue_lock);
    	q->bypass_depth++;
    	queue_flag_set(QUEUE_FLAG_BYPASS, q);
    	spin_unlock_irq(q->queue_lock);
    
    	/*
    	 * Queues start drained.  Skip actual draining till init is
    	 * complete.  This avoids lenghty delays during queue init which
    	 * can happen many times during boot.
    	 */
    	if (blk_queue_init_done(q)) {
    		spin_lock_irq(q->queue_lock);
    		__blk_drain_queue(q, false);
    		spin_unlock_irq(q->queue_lock);
    
    		/* ensure blk_queue_bypass() is %true inside RCU read lock */
    		synchronize_rcu();
    	}
    }
    EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
    
    /**
     * blk_queue_bypass_end - leave queue bypass mode
     * @q: queue of interest
     *
     * Leave bypass mode and restore the normal queueing behavior.
     *
     * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
     * this function is called for both blk-sq and blk-mq queues.
     */
    void blk_queue_bypass_end(struct request_queue *q)
    {
    	spin_lock_irq(q->queue_lock);
    	if (!--q->bypass_depth)
    		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
    	WARN_ON_ONCE(q->bypass_depth < 0);
    	spin_unlock_irq(q->queue_lock);
    }
    EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
    
    void blk_set_queue_dying(struct request_queue *q)
    {
    	spin_lock_irq(q->queue_lock);
    	queue_flag_set(QUEUE_FLAG_DYING, q);
    	spin_unlock_irq(q->queue_lock);
    
    	/*
    	 * When queue DYING flag is set, we need to block new req
    	 * entering queue, so we call blk_freeze_queue_start() to
    	 * prevent I/O from crossing blk_queue_enter().
    	 */
    	blk_freeze_queue_start(q);
    
    	if (q->mq_ops)
    		blk_mq_wake_waiters(q);
    	else {
    		struct request_list *rl;
    
    		spin_lock_irq(q->queue_lock);
    		blk_queue_for_each_rl(rl, q) {
    			if (rl->rq_pool) {
    				wake_up(&rl->wait[BLK_RW_SYNC]);
    				wake_up(&rl->wait[BLK_RW_ASYNC]);
    			}
    		}
    		spin_unlock_irq(q->queue_lock);
    	}
    }
    EXPORT_SYMBOL_GPL(blk_set_queue_dying);
    
    /**
     * blk_cleanup_queue - shutdown a request queue
     * @q: request queue to shutdown
     *
     * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
     * put it.  All future requests will be failed immediately with -ENODEV.
     */
    void blk_cleanup_queue(struct request_queue *q)
    {
    	spinlock_t *lock = q->queue_lock;
    
    	/* mark @q DYING, no new request or merges will be allowed afterwards */
    	mutex_lock(&q->sysfs_lock);
    	blk_set_queue_dying(q);
    	spin_lock_irq(lock);
    
    	/*
    	 * A dying queue is permanently in bypass mode till released.  Note
    	 * that, unlike blk_queue_bypass_start(), we aren't performing
    	 * synchronize_rcu() after entering bypass mode to avoid the delay
    	 * as some drivers create and destroy a lot of queues while
    	 * probing.  This is still safe because blk_release_queue() will be
    	 * called only after the queue refcnt drops to zero and nothing,
    	 * RCU or not, would be traversing the queue by then.
    	 */
    	q->bypass_depth++;
    	queue_flag_set(QUEUE_FLAG_BYPASS, q);
    
    	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
    	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
    	queue_flag_set(QUEUE_FLAG_DYING, q);
    	spin_unlock_irq(lock);
    	mutex_unlock(&q->sysfs_lock);
    
    	/*
    	 * Drain all requests queued before DYING marking. Set DEAD flag to
    	 * prevent that q->request_fn() gets invoked after draining finished.
    	 */
    	blk_freeze_queue(q);
    	spin_lock_irq(lock);
    	if (!q->mq_ops)
    		__blk_drain_queue(q, true);
    	queue_flag_set(QUEUE_FLAG_DEAD, q);
    	spin_unlock_irq(lock);
    
    	/* for synchronous bio-based driver finish in-flight integrity i/o */
    	blk_flush_integrity();
    
    	/* @q won't process any more request, flush async actions */
    	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
    	blk_sync_queue(q);
    
    	if (q->mq_ops)
    		blk_mq_free_queue(q);
    	percpu_ref_exit(&q->q_usage_counter);
    
    	spin_lock_irq(lock);
    	if (q->queue_lock != &q->__queue_lock)
    		q->queue_lock = &q->__queue_lock;
    	spin_unlock_irq(lock);
    
    	/* @q is and will stay empty, shutdown and put */
    	blk_put_queue(q);
    }
    EXPORT_SYMBOL(blk_cleanup_queue);
    
    /* Allocate memory local to the request queue */
    static void *alloc_request_simple(gfp_t gfp_mask, void *data)
    {
    	struct request_queue *q = data;
    
    	return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
    }
    
    static void free_request_simple(void *element, void *data)
    {
    	kmem_cache_free(request_cachep, element);
    }
    
    static void *alloc_request_size(gfp_t gfp_mask, void *data)
    {
    	struct request_queue *q = data;
    	struct request *rq;
    
    	rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
    			q->node);
    	if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
    		kfree(rq);
    		rq = NULL;
    	}
    	return rq;
    }
    
    static void free_request_size(void *element, void *data)
    {
    	struct request_queue *q = data;
    
    	if (q->exit_rq_fn)
    		q->exit_rq_fn(q, element);
    	kfree(element);
    }
    
    int blk_init_rl(struct request_list *rl, struct request_queue *q,
    		gfp_t gfp_mask)
    {
    	if (unlikely(rl->rq_pool))
    		return 0;
    
    	rl->q = q;
    	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
    	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
    	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
    	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
    
    	if (q->cmd_size) {
    		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
    				alloc_request_size, free_request_size,
    				q, gfp_mask, q->node);
    	} else {
    		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
    				alloc_request_simple, free_request_simple,
    				q, gfp_mask, q->node);
    	}
    	if (!rl->rq_pool)
    		return -ENOMEM;
    
    	if (rl != &q->root_rl)
    		WARN_ON_ONCE(!blk_get_queue(q));
    
    	return 0;
    }
    
    void blk_exit_rl(struct request_queue *q, struct request_list *rl)
    {
    	if (rl->rq_pool) {
    		mempool_destroy(rl->rq_pool);
    		if (rl != &q->root_rl)
    			blk_put_queue(q);
    	}
    }
    
    struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
    {
    	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
    }
    EXPORT_SYMBOL(blk_alloc_queue);
    
    int blk_queue_enter(struct request_queue *q, bool nowait)
    {
    	while (true) {
    		int ret;
    
    		if (percpu_ref_tryget_live(&q->q_usage_counter))
    			return 0;
    
    		if (nowait)
    			return -EBUSY;
    
    		/*
    		 * read pair of barrier in blk_freeze_queue_start(),
    		 * we need to order reading __PERCPU_REF_DEAD flag of
    		 * .q_usage_counter and reading .mq_freeze_depth or
    		 * queue dying flag, otherwise the following wait may
    		 * never return if the two reads are reordered.
    		 */
    		smp_rmb();
    
    		ret = wait_event_interruptible(q->mq_freeze_wq,
    				!atomic_read(&q->mq_freeze_depth) ||
    				blk_queue_dying(q));
    		if (blk_queue_dying(q))
    			return -ENODEV;
    		if (ret)
    			return ret;
    	}
    }
    
    void blk_queue_exit(struct request_queue *q)
    {
    	percpu_ref_put(&q->q_usage_counter);
    }
    
    static void blk_queue_usage_counter_release(struct percpu_ref *ref)
    {
    	struct request_queue *q =
    		container_of(ref, struct request_queue, q_usage_counter);
    
    	wake_up_all(&q->mq_freeze_wq);
    }
    
    static void blk_rq_timed_out_timer(unsigned long data)
    {
    	struct request_queue *q = (struct request_queue *)data;
    
    	kblockd_schedule_work(&q->timeout_work);
    }
    
    struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
    {
    	struct request_queue *q;
    
    	q = kmem_cache_alloc_node(blk_requestq_cachep,
    				gfp_mask | __GFP_ZERO, node_id);
    	if (!q)
    		return NULL;
    
    	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
    	if (q->id < 0)
    		goto fail_q;
    
    	q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
    	if (!q->bio_split)
    		goto fail_id;
    
    	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
    	if (!q->backing_dev_info)
    		goto fail_split;
    
    	q->stats = blk_alloc_queue_stats();
    	if (!q->stats)
    		goto fail_stats;
    
    	q->backing_dev_info->ra_pages =
    			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
    	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
    	q->backing_dev_info->name = "block";
    	q->node = node_id;
    
    	setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
    		    laptop_mode_timer_fn, (unsigned long) q);
    	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
    	INIT_LIST_HEAD(&q->queue_head);
    	INIT_LIST_HEAD(&q->timeout_list);
    	INIT_LIST_HEAD(&q->icq_list);
    #ifdef CONFIG_BLK_CGROUP
    	INIT_LIST_HEAD(&q->blkg_list);
    #endif
    	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
    
    	kobject_init(&q->kobj, &blk_queue_ktype);
    
    	mutex_init(&q->sysfs_lock);
    	spin_lock_init(&q->__queue_lock);
    
    	/*
    	 * By default initialize queue_lock to internal lock and driver can
    	 * override it later if need be.
    	 */
    	q->queue_lock = &q->__queue_lock;
    
    	/*
    	 * A queue starts its life with bypass turned on to avoid
    	 * unnecessary bypass on/off overhead and nasty surprises during
    	 * init.  The initial bypass will be finished when the queue is
    	 * registered by blk_register_queue().
    	 */
    	q->bypass_depth = 1;
    	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
    
    	init_waitqueue_head(&q->mq_freeze_wq);
    
    	/*
    	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
    	 * See blk_register_queue() for details.
    	 */
    	if (percpu_ref_init(&q->q_usage_counter,
    				blk_queue_usage_counter_release,
    				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
    		goto fail_bdi;
    
    	if (blkcg_init_queue(q))
    		goto fail_ref;
    
    	return q;
    
    fail_ref:
    	percpu_ref_exit(&q->q_usage_counter);
    fail_bdi:
    	blk_free_queue_stats(q->stats);
    fail_stats:
    	bdi_put(q->backing_dev_info);
    fail_split:
    	bioset_free(q->bio_split);
    fail_id:
    	ida_simple_remove(&blk_queue_ida, q->id);
    fail_q:
    	kmem_cache_free(blk_requestq_cachep, q);
    	return NULL;
    }
    EXPORT_SYMBOL(blk_alloc_queue_node);
    
    /**
     * blk_init_queue  - prepare a request queue for use with a block device
     * @rfn:  The function to be called to process requests that have been
     *        placed on the queue.
     * @lock: Request queue spin lock
     *
     * Description:
     *    If a block device wishes to use the standard request handling procedures,
     *    which sorts requests and coalesces adjacent requests, then it must
     *    call blk_init_queue().  The function @rfn will be called when there
     *    are requests on the queue that need to be processed.  If the device
     *    supports plugging, then @rfn may not be called immediately when requests
     *    are available on the queue, but may be called at some time later instead.
     *    Plugged queues are generally unplugged when a buffer belonging to one
     *    of the requests on the queue is needed, or due to memory pressure.
     *
     *    @rfn is not required, or even expected, to remove all requests off the
     *    queue, but only as many as it can handle at a time.  If it does leave
     *    requests on the queue, it is responsible for arranging that the requests
     *    get dealt with eventually.
     *
     *    The queue spin lock must be held while manipulating the requests on the
     *    request queue; this lock will be taken also from interrupt context, so irq
     *    disabling is needed for it.
     *
     *    Function returns a pointer to the initialized request queue, or %NULL if
     *    it didn't succeed.
     *
     * Note:
     *    blk_init_queue() must be paired with a blk_cleanup_queue() call
     *    when the block device is deactivated (such as at module unload).
     **/
    
    struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
    {
    	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
    }
    EXPORT_SYMBOL(blk_init_queue);
    
    struct request_queue *
    blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
    {
    	struct request_queue *q;
    
    	q = blk_alloc_queue_node(GFP_KERNEL, node_id);
    	if (!q)
    		return NULL;
    
    	q->request_fn = rfn;
    	if (lock)
    		q->queue_lock = lock;
    	if (blk_init_allocated_queue(q) < 0) {
    		blk_cleanup_queue(q);
    		return NULL;
    	}
    
    	return q;
    }
    EXPORT_SYMBOL(blk_init_queue_node);
    
    static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
    
    
    int blk_init_allocated_queue(struct request_queue *q)
    {
    	WARN_ON_ONCE(q->mq_ops);
    
    	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
    	if (!q->fq)
    		return -ENOMEM;
    
    	if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
    		goto out_free_flush_queue;
    
    	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
    		goto out_exit_flush_rq;
    
    	INIT_WORK(&q->timeout_work, blk_timeout_work);
    	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
    
    	/*
    	 * This also sets hw/phys segments, boundary and size
    	 */
    	blk_queue_make_request(q, blk_queue_bio);
    
    	q->sg_reserved_size = INT_MAX;
    
    	/* Protect q->elevator from elevator_change */
    	mutex_lock(&q->sysfs_lock);
    
    	/* init elevator */
    	if (elevator_init(q, NULL)) {
    		mutex_unlock(&q->sysfs_lock);
    		goto out_exit_flush_rq;
    	}
    
    	mutex_unlock(&q->sysfs_lock);
    	return 0;
    
    out_exit_flush_rq:
    	if (q->exit_rq_fn)
    		q->exit_rq_fn(q, q->fq->flush_rq);
    out_free_flush_queue:
    	blk_free_flush_queue(q->fq);
    	return -ENOMEM;
    }
    EXPORT_SYMBOL(blk_init_allocated_queue);
    
    bool blk_get_queue(struct request_queue *q)
    {
    	if (likely(!blk_queue_dying(q))) {
    		__blk_get_queue(q);
    		return true;
    	}
    
    	return false;
    }
    EXPORT_SYMBOL(blk_get_queue);
    
    static inline void blk_free_request(struct request_list *rl, struct request *rq)
    {
    	if (rq->rq_flags & RQF_ELVPRIV) {
    		elv_put_request(rl->q, rq);
    		if (rq->elv.icq)
    			put_io_context(rq->elv.icq->ioc);
    	}
    
    	mempool_free(rq, rl->rq_pool);
    }
    
    /*
     * ioc_batching returns true if the ioc is a valid batching request and
     * should be given priority access to a request.
     */
    static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
    {
    	if (!ioc)
    		return 0;
    
    	/*
    	 * Make sure the process is able to allocate at least 1 request
    	 * even if the batch times out, otherwise we could theoretically
    	 * lose wakeups.
    	 */
    	return ioc->nr_batch_requests == q->nr_batching ||
    		(ioc->nr_batch_requests > 0
    		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
    }
    
    /*
     * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
     * will cause the process to be a "batcher" on all queues in the system. This
     * is the behaviour we want though - once it gets a wakeup it should be given
     * a nice run.
     */
    static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
    {
    	if (!ioc || ioc_batching(q, ioc))
    		return;
    
    	ioc->nr_batch_requests = q->nr_batching;
    	ioc->last_waited = jiffies;
    }
    
    static void __freed_request(struct request_list *rl, int sync)
    {
    	struct request_queue *q = rl->q;
    
    	if (rl->count[sync] < queue_congestion_off_threshold(q))
    		blk_clear_congested(rl, sync);
    
    	if (rl->count[sync] + 1 <= q->nr_requests) {
    		if (waitqueue_active(&rl->wait[sync]))
    			wake_up(&rl->wait[sync]);
    
    		blk_clear_rl_full(rl, sync);
    	}
    }
    
    /*
     * A request has just been released.  Account for it, update the full and
     * congestion status, wake up any waiters.   Called under q->queue_lock.
     */
    static void freed_request(struct request_list *rl, bool sync,
    		req_flags_t rq_flags)
    {
    	struct request_queue *q = rl->q;
    
    	q->nr_rqs[sync]--;
    	rl->count[sync]--;
    	if (rq_flags & RQF_ELVPRIV)
    		q->nr_rqs_elvpriv--;
    
    	__freed_request(rl, sync);
    
    	if (unlikely(rl->starved[sync ^ 1]))
    		__freed_request(rl, sync ^ 1);
    }
    
    int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
    {
    	struct request_list *rl;
    	int on_thresh, off_thresh;
    
    	WARN_ON_ONCE(q->mq_ops);
    
    	spin_lock_irq(q->queue_lock);
    	q->nr_requests = nr;
    	blk_queue_congestion_threshold(q);
    	on_thresh = queue_congestion_on_threshold(q);
    	off_thresh = queue_congestion_off_threshold(q);
    
    	blk_queue_for_each_rl(rl, q) {
    		if (rl->count[BLK_RW_SYNC] >= on_thresh)
    			blk_set_congested(rl, BLK_RW_SYNC);
    		else if (rl->count[BLK_RW_SYNC] < off_thresh)
    			blk_clear_congested(rl, BLK_RW_SYNC);
    
    		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
    			blk_set_congested(rl, BLK_RW_ASYNC);
    		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
    			blk_clear_congested(rl, BLK_RW_ASYNC);
    
    		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
    			blk_set_rl_full(rl, BLK_RW_SYNC);
    		} else {
    			blk_clear_rl_full(rl, BLK_RW_SYNC);
    			wake_up(&rl->wait[BLK_RW_SYNC]);
    		}
    
    		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
    			blk_set_rl_full(rl, BLK_RW_ASYNC);
    		} else {
    			blk_clear_rl_full(rl, BLK_RW_ASYNC);
    			wake_up(&rl->wait[BLK_RW_ASYNC]);
    		}
    	}
    
    	spin_unlock_irq(q->queue_lock);
    	return 0;
    }
    
    /**
     * __get_request - get a free request
     * @rl: request list to allocate from
     * @op: operation and flags
     * @bio: bio to allocate request for (can be %NULL)
     * @gfp_mask: allocation mask
     *
     * Get a free request from @q.  This function may fail under memory
     * pressure or if @q is dead.
     *
     * Must be called with @q->queue_lock held and,
     * Returns ERR_PTR on failure, with @q->queue_lock held.
     * Returns request pointer on success, with @q->queue_lock *not held*.
     */
    static struct request *__get_request(struct request_list *rl, unsigned int op,
    		struct bio *bio, gfp_t gfp_mask)
    {
    	struct request_queue *q = rl->q;
    	struct request *rq;
    	struct elevator_type *et = q->elevator->type;
    	struct io_context *ioc = rq_ioc(bio);
    	struct io_cq *icq = NULL;
    	const bool is_sync = op_is_sync(op);
    	int may_queue;
    	req_flags_t rq_flags = RQF_ALLOCED;
    
    	lockdep_assert_held(q->queue_lock);
    
    	if (unlikely(blk_queue_dying(q)))
    		return ERR_PTR(-ENODEV);
    
    	may_queue = elv_may_queue(q, op);
    	if (may_queue == ELV_MQUEUE_NO)
    		goto rq_starved;
    
    	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
    		if (rl->count[is_sync]+1 >= q->nr_requests) {
    			/*
    			 * The queue will fill after this allocation, so set
    			 * it as full, and mark this process as "batching".
    			 * This process will be allowed to complete a batch of
    			 * requests, others will be blocked.
    			 */
    			if (!blk_rl_full(rl, is_sync)) {
    				ioc_set_batching(q, ioc);
    				blk_set_rl_full(rl, is_sync);
    			} else {
    				if (may_queue != ELV_MQUEUE_MUST
    						&& !ioc_batching(q, ioc)) {
    					/*
    					 * The queue is full and the allocating
    					 * process is not a "batcher", and not
    					 * exempted by the IO scheduler
    					 */
    					return ERR_PTR(-ENOMEM);
    				}
    			}
    		}
    		blk_set_congested(rl, is_sync);
    	}
    
    	/*
    	 * Only allow batching queuers to allocate up to 50% over the defined
    	 * limit of requests, otherwise we could have thousands of requests
    	 * allocated with any setting of ->nr_requests
    	 */
    	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
    		return ERR_PTR(-ENOMEM);
    
    	q->nr_rqs[is_sync]++;
    	rl->count[is_sync]++;
    	rl->starved[is_sync] = 0;
    
    	/*
    	 * Decide whether the new request will be managed by elevator.  If
    	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
    	 * prevent the current elevator from being destroyed until the new
    	 * request is freed.  This guarantees icq's won't be destroyed and
    	 * makes creating new ones safe.
    	 *
    	 * Flush requests do not use the elevator so skip initialization.
    	 * This allows a request to share the flush and elevator data.
    	 *
    	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
    	 * it will be created after releasing queue_lock.
    	 */
    	if (!op_is_flush(op) && !blk_queue_bypass(q)) {
    		rq_flags |= RQF_ELVPRIV;
    		q->nr_rqs_elvpriv++;
    		if (et->icq_cache && ioc)
    			icq = ioc_lookup_icq(ioc, q);
    	}
    
    	if (blk_queue_io_stat(q))
    		rq_flags |= RQF_IO_STAT;
    	spin_unlock_irq(q->queue_lock);
    
    	/* allocate and init request */
    	rq = mempool_alloc(rl->rq_pool, gfp_mask);
    	if (!rq)
    		goto fail_alloc;
    
    	blk_rq_init(q, rq);
    	blk_rq_set_rl(rq, rl);
    	rq->cmd_flags = op;
    	rq->rq_flags = rq_flags;
    
    	/* init elvpriv */
    	if (rq_flags & RQF_ELVPRIV) {
    		if (unlikely(et->icq_cache && !icq)) {
    			if (ioc)
    				icq = ioc_create_icq(ioc, q, gfp_mask);
    			if (!icq)
    				goto fail_elvpriv;
    		}
    
    		rq->elv.icq = icq;
    		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
    			goto fail_elvpriv;
    
    		/* @rq->elv.icq holds io_context until @rq is freed */
    		if (icq)
    			get_io_context(icq->ioc);
    	}
    out:
    	/*
    	 * ioc may be NULL here, and ioc_batching will be false. That's
    	 * OK, if the queue is under the request limit then requests need
    	 * not count toward the nr_batch_requests limit. There will always
    	 * be some limit enforced by BLK_BATCH_TIME.
    	 */
    	if (ioc_batching(q, ioc))
    		ioc->nr_batch_requests--;
    
    	trace_block_getrq(q, bio, op);
    	return rq;
    
    fail_elvpriv:
    	/*
    	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
    	 * and may fail indefinitely under memory pressure and thus
    	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
    	 * disturb iosched and blkcg but weird is bettern than dead.
    	 */
    	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
    			   __func__, dev_name(q->backing_dev_info->dev));
    
    	rq->rq_flags &= ~RQF_ELVPRIV;
    	rq->elv.icq = NULL;
    
    	spin_lock_irq(q->queue_lock);
    	q->nr_rqs_elvpriv--;
    	spin_unlock_irq(q->queue_lock);
    	goto out;
    
    fail_alloc:
    	/*
    	 * Allocation failed presumably due to memory. Undo anything we
    	 * might have messed up.
    	 *
    	 * Allocating task should really be put onto the front of the wait
    	 * queue, but this is pretty rare.
    	 */
    	spin_lock_irq(q->queue_lock);
    	freed_request(rl, is_sync, rq_flags);
    
    	/*
    	 * in the very unlikely event that allocation failed and no
    	 * requests for this direction was pending, mark us starved so that
    	 * freeing of a request in the other direction will notice
    	 * us. another possible fix would be to split the rq mempool into
    	 * READ and WRITE
    	 */
    rq_starved:
    	if (unlikely(rl->count[is_sync] == 0))
    		rl->starved[is_sync] = 1;
    	return ERR_PTR(-ENOMEM);
    }
    
    /**
     * get_request - get a free request
     * @q: request_queue to allocate request from
     * @op: operation and flags
     * @bio: bio to allocate request for (can be %NULL)
     * @gfp_mask: allocation mask
     *
     * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
     * this function keeps retrying under memory pressure and fails iff @q is dead.
     *
     * Must be called with @q->queue_lock held and,
     * Returns ERR_PTR on failure, with @q->queue_lock held.
     * Returns request pointer on success, with @q->queue_lock *not held*.
     */
    static struct request *get_request(struct request_queue *q, unsigned int op,
    		struct bio *bio, gfp_t gfp_mask)
    {
    	const bool is_sync = op_is_sync(op);
    	DEFINE_WAIT(wait);
    	struct request_list *rl;
    	struct request *rq;
    
    	lockdep_assert_held(q->queue_lock);
    	WARN_ON_ONCE(q->mq_ops);
    
    	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
    retry:
    	rq = __get_request(rl, op, bio, gfp_mask);
    	if (!IS_ERR(rq))
    		return rq;
    
    	if (op & REQ_NOWAIT) {
    		blk_put_rl(rl);
    		return ERR_PTR(-EAGAIN);
    	}
    
    	if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
    		blk_put_rl(rl);
    		return rq;
    	}
    
    	/* wait on @rl and retry */
    	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
    				  TASK_UNINTERRUPTIBLE);
    
    	trace_block_sleeprq(q, bio, op);
    
    	spin_unlock_irq(q->queue_lock);
    	io_schedule();
    
    	/*
    	 * After sleeping, we become a "batching" process and will be able
    	 * to allocate at least one request, and up to a big batch of them
    	 * for a small period time.  See ioc_batching, ioc_set_batching
    	 */
    	ioc_set_batching(q, current->io_context);
    
    	spin_lock_irq(q->queue_lock);
    	finish_wait(&rl->wait[is_sync], &wait);
    
    	goto retry;
    }
    
    static struct request *blk_old_get_request(struct request_queue *q,
    					   unsigned int op, gfp_t gfp_mask)
    {
    	struct request *rq;
    
    	WARN_ON_ONCE(q->mq_ops);
    
    	/* create ioc upfront */
    	create_io_context(gfp_mask, q->node);
    
    	spin_lock_irq(q->queue_lock);
    	rq = get_request(q, op, NULL, gfp_mask);
    	if (IS_ERR(rq)) {
    		spin_unlock_irq(q->queue_lock);
    		return rq;
    	}
    
    	/* q->queue_lock is unlocked at this point */
    	rq->__data_len = 0;
    	rq->__sector = (sector_t) -1;
    	rq->bio = rq->biotail = NULL;
    	return rq;
    }
    
    struct request *blk_get_request(struct request_queue *q, unsigned int op,
    				gfp_t gfp_mask)
    {
    	struct request *req;
    
    	if (q->mq_ops) {
    		req = blk_mq_alloc_request(q, op,
    			(gfp_mask & __GFP_DIRECT_RECLAIM) ?
    				0 : BLK_MQ_REQ_NOWAIT);
    		if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
    			q->mq_ops->initialize_rq_fn(req);
    	} else {
    		req = blk_old_get_request(q, op, gfp_mask);
    		if (!IS_ERR(req) && q->initialize_rq_fn)
    			q->initialize_rq_fn(req);
    	}
    
    	return req;
    }
    EXPORT_SYMBOL(blk_get_request);
    
    /**
     * blk_requeue_request - put a request back on queue
     * @q:		request queue where request should be inserted
     * @rq:		request to be inserted
     *
     * Description:
     *    Drivers often keep queueing requests until the hardware cannot accept
     *    more, when that condition happens we need to put the request back
     *    on the queue. Must be called with queue lock held.
     */
    void blk_requeue_request(struct request_queue *q, struct request *rq)
    {
    	lockdep_assert_held(q->queue_lock);
    	WARN_ON_ONCE(q->mq_ops);
    
    	blk_delete_timer(rq);
    	blk_clear_rq_complete(rq);
    	trace_block_rq_requeue(q, rq);
    	wbt_requeue(q->rq_wb, &rq->issue_stat);
    
    	if (rq->rq_flags & RQF_QUEUED)
    		blk_queue_end_tag(q, rq);
    
    	BUG_ON(blk_queued_rq(rq));
    
    	elv_requeue_request(q, rq);
    }
    EXPORT_SYMBOL(blk_requeue_request);
    
    static void add_acct_request(struct request_queue *q, struct request *rq,
    			     int where)
    {
    	blk_account_io_start(rq, true);
    	__elv_add_request(q, rq, where);
    }
    
    static void part_round_stats_single(int cpu, struct hd_struct *part,
    				    unsigned long now)
    {
    	int inflight;
    
    	if (now == part->stamp)
    		return;
    
    	inflight = part_in_flight(part);
    	if (inflight) {
    		__part_stat_add(cpu, part, time_in_queue,
    				inflight * (now - part->stamp));
    		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
    	}
    	part->stamp = now;
    }
    
    /**
     * part_round_stats() - Round off the performance stats on a struct disk_stats.
     * @cpu: cpu number for stats access
     * @part: target partition
     *
     * The average IO queue length and utilisation statistics are maintained
     * by observing the current state of the queue length and the amount of
     * time it has been in this state for.
     *
     * Normally, that accounting is done on IO completion, but that can result
     * in more than a second's worth of IO being accounted for within any one
     * second, leading to >100% utilisation.  To deal with that, we call this
     * function to do a round-off before returning the results when reading
     * /proc/diskstats.  This accounts immediately for all queue usage up to
     * the current jiffies and restarts the counters again.
     */
    void part_round_stats(int cpu, struct hd_struct *part)
    {
    	unsigned long now = jiffies;
    
    	if (part->partno)
    		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
    	part_round_stats_single(cpu, part, now);
    }
    EXPORT_SYMBOL_GPL(part_round_stats);
    
    #ifdef CONFIG_PM
    static void blk_pm_put_request(struct request *rq)
    {
    	if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
    		pm_runtime_mark_last_busy(rq->q->dev);
    }
    #else
    static inline void blk_pm_put_request(struct request *rq) {}
    #endif
    
    void __blk_put_request(struct request_queue *q, struct request *req)
    {
    	req_flags_t rq_flags = req->rq_flags;
    
    	if (unlikely(!q))
    		return;
    
    	if (q->mq_ops) {
    		blk_mq_free_request(req);
    		return;
    	}
    
    	lockdep_assert_held(q->queue_lock);
    
    	blk_pm_put_request(req);
    
    	elv_completed_request(q, req);
    
    	/* this is a bio leak */
    	WARN_ON(req->bio != NULL);
    
    	wbt_done(q->rq_wb, &req->issue_stat);
    
    	/*
    	 * Request may not have originated from ll_rw_blk. if not,
    	 * it didn't come out of our reserved rq pools
    	 */
    	if (rq_flags & RQF_ALLOCED) {
    		struct request_list *rl = blk_rq_rl(req);
    		bool sync = op_is_sync(req->cmd_flags);
    
    		BUG_ON(!list_empty(&req->queuelist));
    		BUG_ON(ELV_ON_HASH(req));
    
    		blk_free_request(rl, req);
    		freed_request(rl, sync, rq_flags);
    		blk_put_rl(rl);
    	}
    }
    EXPORT_SYMBOL_GPL(__blk_put_request);
    
    void blk_put_request(struct request *req)
    {
    	struct request_queue *q = req->q;
    
    	if (q->mq_ops)
    		blk_mq_free_request(req);
    	else {
    		unsigned long flags;
    
    		spin_lock_irqsave(q->queue_lock, flags);
    		__blk_put_request(q, req);
    		spin_unlock_irqrestore(q->queue_lock, flags);
    	}
    }
    EXPORT_SYMBOL(blk_put_request);
    
    bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
    			    struct bio *bio)
    {
    	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
    
    	if (!ll_back_merge_fn(q, req, bio))
    		return false;
    
    	trace_block_bio_backmerge(q, req, bio);
    
    	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
    		blk_rq_set_mixed_merge(req);
    
    	req->biotail->bi_next = bio;
    	req->biotail = bio;
    	req->__data_len += bio->bi_iter.bi_size;
    	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
    
    	blk_account_io_start(req, false);
    	return true;
    }
    
    bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
    			     struct bio *bio)
    {
    	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
    
    	if (!ll_front_merge_fn(q, req, bio))
    		return false;
    
    	trace_block_bio_frontmerge(q, req, bio);
    
    	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
    		blk_rq_set_mixed_merge(req);
    
    	bio->bi_next = req->bio;
    	req->bio = bio;
    
    	req->__sector = bio->bi_iter.bi_sector;
    	req->__data_len += bio->bi_iter.bi_size;
    	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
    
    	blk_account_io_start(req, false);
    	return true;
    }
    
    bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
    		struct bio *bio)
    {
    	unsigned short segments = blk_rq_nr_discard_segments(req);
    
    	if (segments >= queue_max_discard_segments(q))
    		goto no_merge;
    	if (blk_rq_sectors(req) + bio_sectors(bio) >
    	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
    		goto no_merge;
    
    	req->biotail->bi_next = bio;
    	req->biotail = bio;
    	req->__data_len += bio->bi_iter.bi_size;
    	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
    	req->nr_phys_segments = segments + 1;
    
    	blk_account_io_start(req, false);
    	return true;
    no_merge:
    	req_set_nomerge(q, req);
    	return false;
    }
    
    /**
     * blk_attempt_plug_merge - try to merge with %current's plugged list
     * @q: request_queue new bio is being queued at
     * @bio: new bio being queued
     * @request_count: out parameter for number of traversed plugged requests
     * @same_queue_rq: pointer to &struct request that gets filled in when
     * another request associated with @q is found on the plug list
     * (optional, may be %NULL)
     *
     * Determine whether @bio being queued on @q can be merged with a request
     * on %current's plugged list.  Returns %true if merge was successful,
     * otherwise %false.
     *
     * Plugging coalesces IOs from the same issuer for the same purpose without
     * going through @q->queue_lock.  As such it's more of an issuing mechanism
     * than scheduling, and the request, while may have elvpriv data, is not
     * added on the elevator at this point.  In addition, we don't have
     * reliable access to the elevator outside queue lock.  Only check basic
     * merging parameters without querying the elevator.
     *
     * Caller must ensure !blk_queue_nomerges(q) beforehand.
     */
    bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
    			    unsigned int *request_count,
    			    struct request **same_queue_rq)
    {
    	struct blk_plug *plug;
    	struct request *rq;
    	struct list_head *plug_list;
    
    	plug = current->plug;
    	if (!plug)
    		return false;
    	*request_count = 0;
    
    	if (q->mq_ops)
    		plug_list = &plug->mq_list;
    	else
    		plug_list = &plug->list;
    
    	list_for_each_entry_reverse(rq, plug_list, queuelist) {
    		bool merged = false;
    
    		if (rq->q == q) {
    			(*request_count)++;
    			/*
    			 * Only blk-mq multiple hardware queues case checks the
    			 * rq in the same queue, there should be only one such
    			 * rq in a queue
    			 **/
    			if (same_queue_rq)
    				*same_queue_rq = rq;
    		}
    
    		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
    			continue;
    
    		switch (blk_try_merge(rq, bio)) {
    		case ELEVATOR_BACK_MERGE:
    			merged = bio_attempt_back_merge(q, rq, bio);
    			break;
    		case ELEVATOR_FRONT_MERGE:
    			merged = bio_attempt_front_merge(q, rq, bio);
    			break;
    		case ELEVATOR_DISCARD_MERGE:
    			merged = bio_attempt_discard_merge(q, rq, bio);
    			break;
    		default:
    			break;
    		}
    
    		if (merged)
    			return true;
    	}
    
    	return false;
    }
    
    unsigned int blk_plug_queued_count(struct request_queue *q)
    {
    	struct blk_plug *plug;
    	struct request *rq;
    	struct list_head *plug_list;
    	unsigned int ret = 0;
    
    	plug = current->plug;
    	if (!plug)
    		goto out;
    
    	if (q->mq_ops)
    		plug_list = &plug->mq_list;
    	else
    		plug_list = &plug->list;
    
    	list_for_each_entry(rq, plug_list, queuelist) {
    		if (rq->q == q)
    			ret++;
    	}
    out:
    	return ret;
    }
    
    void blk_init_request_from_bio(struct request *req, struct bio *bio)
    {
    	struct io_context *ioc = rq_ioc(bio);
    
    	if (bio->bi_opf & REQ_RAHEAD)
    		req->cmd_flags |= REQ_FAILFAST_MASK;
    
    	req->__sector = bio->bi_iter.bi_sector;
    	if (ioprio_valid(bio_prio(bio)))
    		req->ioprio = bio_prio(bio);
    	else if (ioc)
    		req->ioprio = ioc->ioprio;
    	else
    		req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
    	req->write_hint = bio->bi_write_hint;
    	blk_rq_bio_prep(req->q, req, bio);
    }
    EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
    
    static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
    {
    	struct blk_plug *plug;
    	int where = ELEVATOR_INSERT_SORT;
    	struct request *req, *free;
    	unsigned int request_count = 0;
    	unsigned int wb_acct;
    
    	/*
    	 * low level driver can indicate that it wants pages above a
    	 * certain limit bounced to low memory (ie for highmem, or even
    	 * ISA dma in theory)
    	 */
    	blk_queue_bounce(q, &bio);
    
    	blk_queue_split(q, &bio);
    
    	if (!bio_integrity_prep(bio))
    		return BLK_QC_T_NONE;
    
    	if (op_is_flush(bio->bi_opf)) {
    		spin_lock_irq(q->queue_lock);
    		where = ELEVATOR_INSERT_FLUSH;
    		goto get_rq;
    	}
    
    	/*
    	 * Check if we can merge with the plugged list before grabbing
    	 * any locks.
    	 */
    	if (!blk_queue_nomerges(q)) {
    		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
    			return BLK_QC_T_NONE;
    	} else
    		request_count = blk_plug_queued_count(q);
    
    	spin_lock_irq(q->queue_lock);
    
    	switch (elv_merge(q, &req, bio)) {
    	case ELEVATOR_BACK_MERGE:
    		if (!bio_attempt_back_merge(q, req, bio))
    			break;
    		elv_bio_merged(q, req, bio);
    		free = attempt_back_merge(q, req);
    		if (free)
    			__blk_put_request(q, free);
    		else
    			elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
    		goto out_unlock;
    	case ELEVATOR_FRONT_MERGE:
    		if (!bio_attempt_front_merge(q, req, bio))
    			break;
    		elv_bio_merged(q, req, bio);
    		free = attempt_front_merge(q, req);
    		if (free)
    			__blk_put_request(q, free);
    		else
    			elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
    		goto out_unlock;
    	default:
    		break;
    	}
    
    get_rq:
    	wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
    
    	/*
    	 * Grab a free request. This is might sleep but can not fail.
    	 * Returns with the queue unlocked.
    	 */
    	req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
    	if (IS_ERR(req)) {
    		__wbt_done(q->rq_wb, wb_acct);
    		if (PTR_ERR(req) == -ENOMEM)
    			bio->bi_status = BLK_STS_RESOURCE;
    		else
    			bio->bi_status = BLK_STS_IOERR;
    		bio_endio(bio);
    		goto out_unlock;
    	}
    
    	wbt_track(&req->issue_stat, wb_acct);
    
    	/*
    	 * After dropping the lock and possibly sleeping here, our request
    	 * may now be mergeable after it had proven unmergeable (above).
    	 * We don't worry about that case for efficiency. It won't happen
    	 * often, and the elevators are able to handle it.
    	 */
    	blk_init_request_from_bio(req, bio);
    
    	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
    		req->cpu = raw_smp_processor_id();
    
    	plug = current->plug;
    	if (plug) {
    		/*
    		 * If this is the first request added after a plug, fire
    		 * of a plug trace.
    		 *
    		 * @request_count may become stale because of schedule
    		 * out, so check plug list again.
    		 */
    		if (!request_count || list_empty(&plug->list))
    			trace_block_plug(q);
    		else {
    			struct request *last = list_entry_rq(plug->list.prev);
    			if (request_count >= BLK_MAX_REQUEST_COUNT ||
    			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
    				blk_flush_plug_list(plug, false);
    				trace_block_plug(q);
    			}
    		}
    		list_add_tail(&req->queuelist, &plug->list);
    		blk_account_io_start(req, true);
    	} else {
    		spin_lock_irq(q->queue_lock);
    		add_acct_request(q, req, where);
    		__blk_run_queue(q);
    out_unlock:
    		spin_unlock_irq(q->queue_lock);
    	}
    
    	return BLK_QC_T_NONE;
    }
    
    /*
     * If bio->bi_dev is a partition, remap the location
     */
    static inline void blk_partition_remap(struct bio *bio)
    {
    	struct block_device *bdev = bio->bi_bdev;
    
    	/*
    	 * Zone reset does not include bi_size so bio_sectors() is always 0.
    	 * Include a test for the reset op code and perform the remap if needed.
    	 */
    	if (bdev != bdev->bd_contains &&
    	    (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
    		struct hd_struct *p = bdev->bd_part;
    
    		bio->bi_iter.bi_sector += p->start_sect;
    		bio->bi_bdev = bdev->bd_contains;
    
    		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
    				      bdev->bd_dev,
    				      bio->bi_iter.bi_sector - p->start_sect);
    	}
    }
    
    static void handle_bad_sector(struct bio *bio)
    {
    	char b[BDEVNAME_SIZE];
    
    	printk(KERN_INFO "attempt to access beyond end of device\n");
    	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
    			bdevname(bio->bi_bdev, b),
    			bio->bi_opf,
    			(unsigned long long)bio_end_sector(bio),
    			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
    }
    
    #ifdef CONFIG_FAIL_MAKE_REQUEST
    
    static DECLARE_FAULT_ATTR(fail_make_request);
    
    static int __init setup_fail_make_request(char *str)
    {
    	return setup_fault_attr(&fail_make_request, str);
    }
    __setup("fail_make_request=", setup_fail_make_request);
    
    static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
    {
    	return part->make_it_fail && should_fail(&fail_make_request, bytes);
    }
    
    static int __init fail_make_request_debugfs(void)
    {
    	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
    						NULL, &fail_make_request);
    
    	return PTR_ERR_OR_ZERO(dir);
    }
    
    late_initcall(fail_make_request_debugfs);
    
    #else /* CONFIG_FAIL_MAKE_REQUEST */
    
    static inline bool should_fail_request(struct hd_struct *part,
    					unsigned int bytes)
    {
    	return false;
    }
    
    #endif /* CONFIG_FAIL_MAKE_REQUEST */
    
    /*
     * Check whether this bio extends beyond the end of the device.
     */
    static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
    {
    	sector_t maxsector;
    
    	if (!nr_sectors)
    		return 0;
    
    	/* Test device or partition size, when known. */
    	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
    	if (maxsector) {
    		sector_t sector = bio->bi_iter.bi_sector;
    
    		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
    			/*
    			 * This may well happen - the kernel calls bread()
    			 * without checking the size of the device, e.g., when
    			 * mounting a device.
    			 */
    			handle_bad_sector(bio);
    			return 1;
    		}
    	}
    
    	return 0;
    }
    
    static noinline_for_stack bool
    generic_make_request_checks(struct bio *bio)
    {
    	struct request_queue *q;
    	int nr_sectors = bio_sectors(bio);
    	blk_status_t status = BLK_STS_IOERR;
    	char b[BDEVNAME_SIZE];
    	struct hd_struct *part;
    
    	might_sleep();
    
    	if (bio_check_eod(bio, nr_sectors))
    		goto end_io;
    
    	q = bdev_get_queue(bio->bi_bdev);
    	if (unlikely(!q)) {
    		printk(KERN_ERR
    		       "generic_make_request: Trying to access "
    			"nonexistent block-device %s (%Lu)\n",
    			bdevname(bio->bi_bdev, b),
    			(long long) bio->bi_iter.bi_sector);
    		goto end_io;
    	}
    
    	/*
    	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
    	 * if queue is not a request based queue.
    	 */
    
    	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
    		goto not_supported;
    
    	part = bio->bi_bdev->bd_part;
    	if (should_fail_request(part, bio->bi_iter.bi_size) ||
    	    should_fail_request(&part_to_disk(part)->part0,
    				bio->bi_iter.bi_size))
    		goto end_io;
    
    	/*
    	 * If this device has partitions, remap block n
    	 * of partition p to block n+start(p) of the disk.
    	 */
    	blk_partition_remap(bio);
    
    	if (bio_check_eod(bio, nr_sectors))
    		goto end_io;
    
    	/*
    	 * Filter flush bio's early so that make_request based
    	 * drivers without flush support don't have to worry
    	 * about them.
    	 */
    	if (op_is_flush(bio->bi_opf) &&
    	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
    		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
    		if (!nr_sectors) {
    			status = BLK_STS_OK;
    			goto end_io;
    		}
    	}
    
    	switch (bio_op(bio)) {
    	case REQ_OP_DISCARD:
    		if (!blk_queue_discard(q))
    			goto not_supported;
    		break;
    	case REQ_OP_SECURE_ERASE:
    		if (!blk_queue_secure_erase(q))
    			goto not_supported;
    		break;
    	case REQ_OP_WRITE_SAME:
    		if (!bdev_write_same(bio->bi_bdev))
    			goto not_supported;
    		break;
    	case REQ_OP_ZONE_REPORT:
    	case REQ_OP_ZONE_RESET:
    		if (!bdev_is_zoned(bio->bi_bdev))
    			goto not_supported;
    		break;
    	case REQ_OP_WRITE_ZEROES:
    		if (!bdev_write_zeroes_sectors(bio->bi_bdev))
    			goto not_supported;
    		break;
    	default:
    		break;
    	}
    
    	/*
    	 * Various block parts want %current->io_context and lazy ioc
    	 * allocation ends up trading a lot of pain for a small amount of
    	 * memory.  Just allocate it upfront.  This may fail and block
    	 * layer knows how to live with it.
    	 */
    	create_io_context(GFP_ATOMIC, q->node);
    
    	if (!blkcg_bio_issue_check(q, bio))
    		return false;
    
    	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
    		trace_block_bio_queue(q, bio);
    		/* Now that enqueuing has been traced, we need to trace
    		 * completion as well.
    		 */
    		bio_set_flag(bio, BIO_TRACE_COMPLETION);
    	}
    	return true;
    
    not_supported:
    	status = BLK_STS_NOTSUPP;
    end_io:
    	bio->bi_status = status;
    	bio_endio(bio);
    	return false;
    }
    
    /**
     * generic_make_request - hand a buffer to its device driver for I/O
     * @bio:  The bio describing the location in memory and on the device.
     *
     * generic_make_request() is used to make I/O requests of block
     * devices. It is passed a &struct bio, which describes the I/O that needs
     * to be done.
     *
     * generic_make_request() does not return any status.  The
     * success/failure status of the request, along with notification of
     * completion, is delivered asynchronously through the bio->bi_end_io
     * function described (one day) else where.
     *
     * The caller of generic_make_request must make sure that bi_io_vec
     * are set to describe the memory buffer, and that bi_dev and bi_sector are
     * set to describe the device address, and the
     * bi_end_io and optionally bi_private are set to describe how
     * completion notification should be signaled.
     *
     * generic_make_request and the drivers it calls may use bi_next if this
     * bio happens to be merged with someone else, and may resubmit the bio to
     * a lower device by calling into generic_make_request recursively, which
     * means the bio should NOT be touched after the call to ->make_request_fn.
     */
    blk_qc_t generic_make_request(struct bio *bio)
    {
    	/*
    	 * bio_list_on_stack[0] contains bios submitted by the current
    	 * make_request_fn.
    	 * bio_list_on_stack[1] contains bios that were submitted before
    	 * the current make_request_fn, but that haven't been processed
    	 * yet.
    	 */
    	struct bio_list bio_list_on_stack[2];
    	blk_qc_t ret = BLK_QC_T_NONE;
    
    	if (!generic_make_request_checks(bio))
    		goto out;
    
    	/*
    	 * We only want one ->make_request_fn to be active at a time, else
    	 * stack usage with stacked devices could be a problem.  So use
    	 * current->bio_list to keep a list of requests submited by a
    	 * make_request_fn function.  current->bio_list is also used as a
    	 * flag to say if generic_make_request is currently active in this
    	 * task or not.  If it is NULL, then no make_request is active.  If
    	 * it is non-NULL, then a make_request is active, and new requests
    	 * should be added at the tail
    	 */
    	if (current->bio_list) {
    		bio_list_add(&current->bio_list[0], bio);
    		goto out;
    	}
    
    	/* following loop may be a bit non-obvious, and so deserves some
    	 * explanation.
    	 * Before entering the loop, bio->bi_next is NULL (as all callers
    	 * ensure that) so we have a list with a single bio.
    	 * We pretend that we have just taken it off a longer list, so
    	 * we assign bio_list to a pointer to the bio_list_on_stack,
    	 * thus initialising the bio_list of new bios to be
    	 * added.  ->make_request() may indeed add some more bios
    	 * through a recursive call to generic_make_request.  If it
    	 * did, we find a non-NULL value in bio_list and re-enter the loop
    	 * from the top.  In this case we really did just take the bio
    	 * of the top of the list (no pretending) and so remove it from
    	 * bio_list, and call into ->make_request() again.
    	 */
    	BUG_ON(bio->bi_next);
    	bio_list_init(&bio_list_on_stack[0]);
    	current->bio_list = bio_list_on_stack;
    	do {
    		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
    
    		if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) {
    			struct bio_list lower, same;
    
    			/* Create a fresh bio_list for all subordinate requests */
    			bio_list_on_stack[1] = bio_list_on_stack[0];
    			bio_list_init(&bio_list_on_stack[0]);
    			ret = q->make_request_fn(q, bio);
    
    			blk_queue_exit(q);
    
    			/* sort new bios into those for a lower level
    			 * and those for the same level
    			 */
    			bio_list_init(&lower);
    			bio_list_init(&same);
    			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
    				if (q == bdev_get_queue(bio->bi_bdev))
    					bio_list_add(&same, bio);
    				else
    					bio_list_add(&lower, bio);
    			/* now assemble so we handle the lowest level first */
    			bio_list_merge(&bio_list_on_stack[0], &lower);
    			bio_list_merge(&bio_list_on_stack[0], &same);
    			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
    		} else {
    			if (unlikely(!blk_queue_dying(q) &&
    					(bio->bi_opf & REQ_NOWAIT)))
    				bio_wouldblock_error(bio);
    			else
    				bio_io_error(bio);
    		}
    		bio = bio_list_pop(&bio_list_on_stack[0]);
    	} while (bio);
    	current->bio_list = NULL; /* deactivate */
    
    out:
    	return ret;
    }
    EXPORT_SYMBOL(generic_make_request);
    
    /**
     * submit_bio - submit a bio to the block device layer for I/O
     * @bio: The &struct bio which describes the I/O
     *
     * submit_bio() is very similar in purpose to generic_make_request(), and
     * uses that function to do most of the work. Both are fairly rough
     * interfaces; @bio must be presetup and ready for I/O.
     *
     */
    blk_qc_t submit_bio(struct bio *bio)
    {
    	/*
    	 * If it's a regular read/write or a barrier with data attached,
    	 * go through the normal accounting stuff before submission.
    	 */
    	if (bio_has_data(bio)) {
    		unsigned int count;
    
    		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
    			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
    		else
    			count = bio_sectors(bio);
    
    		if (op_is_write(bio_op(bio))) {
    			count_vm_events(PGPGOUT, count);
    		} else {
    			task_io_account_read(bio->bi_iter.bi_size);
    			count_vm_events(PGPGIN, count);
    		}
    
    		if (unlikely(block_dump)) {
    			char b[BDEVNAME_SIZE];
    			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
    			current->comm, task_pid_nr(current),
    				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
    				(unsigned long long)bio->bi_iter.bi_sector,
    				bdevname(bio->bi_bdev, b),
    				count);
    		}
    	}
    
    	return generic_make_request(bio);
    }
    EXPORT_SYMBOL(submit_bio);
    
    /**
     * blk_cloned_rq_check_limits - Helper function to check a cloned request
     *                              for new the queue limits
     * @q:  the queue
     * @rq: the request being checked
     *
     * Description:
     *    @rq may have been made based on weaker limitations of upper-level queues
     *    in request stacking drivers, and it may violate the limitation of @q.
     *    Since the block layer and the underlying device driver trust @rq
     *    after it is inserted to @q, it should be checked against @q before
     *    the insertion using this generic function.
     *
     *    Request stacking drivers like request-based dm may change the queue
     *    limits when retrying requests on other queues. Those requests need
     *    to be checked against the new queue limits again during dispatch.
     */
    static int blk_cloned_rq_check_limits(struct request_queue *q,
    				      struct request *rq)
    {
    	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
    		printk(KERN_ERR "%s: over max size limit.\n", __func__);
    		return -EIO;
    	}
    
    	/*
    	 * queue's settings related to segment counting like q->bounce_pfn
    	 * may differ from that of other stacking queues.
    	 * Recalculate it to check the request correctly on this queue's
    	 * limitation.
    	 */
    	blk_recalc_rq_segments(rq);
    	if (rq->nr_phys_segments > queue_max_segments(q)) {
    		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
    		return -EIO;
    	}
    
    	return 0;
    }
    
    /**
     * blk_insert_cloned_request - Helper for stacking drivers to submit a request
     * @q:  the queue to submit the request
     * @rq: the request being queued
     */
    blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
    {
    	unsigned long flags;
    	int where = ELEVATOR_INSERT_BACK;
    
    	if (blk_cloned_rq_check_limits(q, rq))
    		return BLK_STS_IOERR;
    
    	if (rq->rq_disk &&
    	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
    		return BLK_STS_IOERR;
    
    	if (q->mq_ops) {
    		if (blk_queue_io_stat(q))
    			blk_account_io_start(rq, true);
    		blk_mq_sched_insert_request(rq, false, true, false, false);
    		return BLK_STS_OK;
    	}
    
    	spin_lock_irqsave(q->queue_lock, flags);
    	if (unlikely(blk_queue_dying(q))) {
    		spin_unlock_irqrestore(q->queue_lock, flags);
    		return BLK_STS_IOERR;
    	}
    
    	/*
    	 * Submitting request must be dequeued before calling this function
    	 * because it will be linked to another request_queue
    	 */
    	BUG_ON(blk_queued_rq(rq));
    
    	if (op_is_flush(rq->cmd_flags))
    		where = ELEVATOR_INSERT_FLUSH;
    
    	add_acct_request(q, rq, where);
    	if (where == ELEVATOR_INSERT_FLUSH)
    		__blk_run_queue(q);
    	spin_unlock_irqrestore(q->queue_lock, flags);
    
    	return BLK_STS_OK;
    }
    EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
    
    /**
     * blk_rq_err_bytes - determine number of bytes till the next failure boundary
     * @rq: request to examine
     *
     * Description:
     *     A request could be merge of IOs which require different failure
     *     handling.  This function determines the number of bytes which
     *     can be failed from the beginning of the request without
     *     crossing into area which need to be retried further.
     *
     * Return:
     *     The number of bytes to fail.
     */
    unsigned int blk_rq_err_bytes(const struct request *rq)
    {
    	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
    	unsigned int bytes = 0;
    	struct bio *bio;
    
    	if (!(rq->rq_flags & RQF_MIXED_MERGE))
    		return blk_rq_bytes(rq);
    
    	/*
    	 * Currently the only 'mixing' which can happen is between
    	 * different fastfail types.  We can safely fail portions
    	 * which have all the failfast bits that the first one has -
    	 * the ones which are at least as eager to fail as the first
    	 * one.
    	 */
    	for (bio = rq->bio; bio; bio = bio->bi_next) {
    		if ((bio->bi_opf & ff) != ff)
    			break;
    		bytes += bio->bi_iter.bi_size;
    	}
    
    	/* this could lead to infinite loop */
    	BUG_ON(blk_rq_bytes(rq) && !bytes);
    	return bytes;
    }
    EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
    
    void blk_account_io_completion(struct request *req, unsigned int bytes)
    {
    	if (blk_do_io_stat(req)) {
    		const int rw = rq_data_dir(req);
    		struct hd_struct *part;
    		int cpu;
    
    		cpu = part_stat_lock();
    		part = req->part;
    		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
    		part_stat_unlock();
    	}
    }
    
    void blk_account_io_done(struct request *req)
    {
    	/*
    	 * Account IO completion.  flush_rq isn't accounted as a
    	 * normal IO on queueing nor completion.  Accounting the
    	 * containing request is enough.
    	 */
    	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
    		unsigned long duration = jiffies - req->start_time;
    		const int rw = rq_data_dir(req);
    		struct hd_struct *part;
    		int cpu;
    
    		cpu = part_stat_lock();
    		part = req->part;
    
    		part_stat_inc(cpu, part, ios[rw]);
    		part_stat_add(cpu, part, ticks[rw], duration);
    		part_round_stats(cpu, part);
    		part_dec_in_flight(part, rw);
    
    		hd_struct_put(part);
    		part_stat_unlock();
    	}
    }
    
    #ifdef CONFIG_PM
    /*
     * Don't process normal requests when queue is suspended
     * or in the process of suspending/resuming
     */
    static struct request *blk_pm_peek_request(struct request_queue *q,
    					   struct request *rq)
    {
    	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
    	    (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
    		return NULL;
    	else
    		return rq;
    }
    #else
    static inline struct request *blk_pm_peek_request(struct request_queue *q,
    						  struct request *rq)
    {
    	return rq;
    }
    #endif
    
    void blk_account_io_start(struct request *rq, bool new_io)
    {
    	struct hd_struct *part;
    	int rw = rq_data_dir(rq);
    	int cpu;
    
    	if (!blk_do_io_stat(rq))
    		return;
    
    	cpu = part_stat_lock();
    
    	if (!new_io) {
    		part = rq->part;
    		part_stat_inc(cpu, part, merges[rw]);
    	} else {
    		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
    		if (!hd_struct_try_get(part)) {
    			/*
    			 * The partition is already being removed,
    			 * the request will be accounted on the disk only
    			 *
    			 * We take a reference on disk->part0 although that
    			 * partition will never be deleted, so we can treat
    			 * it as any other partition.
    			 */
    			part = &rq->rq_disk->part0;
    			hd_struct_get(part);
    		}
    		part_round_stats(cpu, part);
    		part_inc_in_flight(part, rw);
    		rq->part = part;
    	}
    
    	part_stat_unlock();
    }
    
    /**
     * blk_peek_request - peek at the top of a request queue
     * @q: request queue to peek at
     *
     * Description:
     *     Return the request at the top of @q.  The returned request
     *     should be started using blk_start_request() before LLD starts
     *     processing it.
     *
     * Return:
     *     Pointer to the request at the top of @q if available.  Null
     *     otherwise.
     */
    struct request *blk_peek_request(struct request_queue *q)
    {
    	struct request *rq;
    	int ret;
    
    	lockdep_assert_held(q->queue_lock);
    	WARN_ON_ONCE(q->mq_ops);
    
    	while ((rq = __elv_next_request(q)) != NULL) {
    
    		rq = blk_pm_peek_request(q, rq);
    		if (!rq)
    			break;
    
    		if (!(rq->rq_flags & RQF_STARTED)) {
    			/*
    			 * This is the first time the device driver
    			 * sees this request (possibly after
    			 * requeueing).  Notify IO scheduler.
    			 */
    			if (rq->rq_flags & RQF_SORTED)
    				elv_activate_rq(q, rq);
    
    			/*
    			 * just mark as started even if we don't start
    			 * it, a request that has been delayed should
    			 * not be passed by new incoming requests
    			 */
    			rq->rq_flags |= RQF_STARTED;
    			trace_block_rq_issue(q, rq);
    		}
    
    		if (!q->boundary_rq || q->boundary_rq == rq) {
    			q->end_sector = rq_end_sector(rq);
    			q->boundary_rq = NULL;
    		}
    
    		if (rq->rq_flags & RQF_DONTPREP)
    			break;
    
    		if (q->dma_drain_size && blk_rq_bytes(rq)) {
    			/*
    			 * make sure space for the drain appears we
    			 * know we can do this because max_hw_segments
    			 * has been adjusted to be one fewer than the
    			 * device can handle
    			 */
    			rq->nr_phys_segments++;
    		}
    
    		if (!q->prep_rq_fn)
    			break;
    
    		ret = q->prep_rq_fn(q, rq);
    		if (ret == BLKPREP_OK) {
    			break;
    		} else if (ret == BLKPREP_DEFER) {
    			/*
    			 * the request may have been (partially) prepped.
    			 * we need to keep this request in the front to
    			 * avoid resource deadlock.  RQF_STARTED will
    			 * prevent other fs requests from passing this one.
    			 */
    			if (q->dma_drain_size && blk_rq_bytes(rq) &&
    			    !(rq->rq_flags & RQF_DONTPREP)) {
    				/*
    				 * remove the space for the drain we added
    				 * so that we don't add it again
    				 */
    				--rq->nr_phys_segments;
    			}
    
    			rq = NULL;
    			break;
    		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
    			rq->rq_flags |= RQF_QUIET;
    			/*
    			 * Mark this request as started so we don't trigger
    			 * any debug logic in the end I/O path.
    			 */
    			blk_start_request(rq);
    			__blk_end_request_all(rq, ret == BLKPREP_INVALID ?
    					BLK_STS_TARGET : BLK_STS_IOERR);
    		} else {
    			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
    			break;
    		}
    	}
    
    	return rq;
    }
    EXPORT_SYMBOL(blk_peek_request);
    
    void blk_dequeue_request(struct request *rq)
    {
    	struct request_queue *q = rq->q;
    
    	BUG_ON(list_empty(&rq->queuelist));
    	BUG_ON(ELV_ON_HASH(rq));
    
    	list_del_init(&rq->queuelist);
    
    	/*
    	 * the time frame between a request being removed from the lists
    	 * and to it is freed is accounted as io that is in progress at
    	 * the driver side.
    	 */
    	if (blk_account_rq(rq)) {
    		q->in_flight[rq_is_sync(rq)]++;
    		set_io_start_time_ns(rq);
    	}
    }
    
    /**
     * blk_start_request - start request processing on the driver
     * @req: request to dequeue
     *
     * Description:
     *     Dequeue @req and start timeout timer on it.  This hands off the
     *     request to the driver.
     *
     *     Block internal functions which don't want to start timer should
     *     call blk_dequeue_request().
     */
    void blk_start_request(struct request *req)
    {
    	lockdep_assert_held(req->q->queue_lock);
    	WARN_ON_ONCE(req->q->mq_ops);
    
    	blk_dequeue_request(req);
    
    	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
    		blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
    		req->rq_flags |= RQF_STATS;
    		wbt_issue(req->q->rq_wb, &req->issue_stat);
    	}
    
    	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
    	blk_add_timer(req);
    }
    EXPORT_SYMBOL(blk_start_request);
    
    /**
     * blk_fetch_request - fetch a request from a request queue
     * @q: request queue to fetch a request from
     *
     * Description:
     *     Return the request at the top of @q.  The request is started on
     *     return and LLD can start processing it immediately.
     *
     * Return:
     *     Pointer to the request at the top of @q if available.  Null
     *     otherwise.
     */
    struct request *blk_fetch_request(struct request_queue *q)
    {
    	struct request *rq;
    
    	lockdep_assert_held(q->queue_lock);
    	WARN_ON_ONCE(q->mq_ops);
    
    	rq = blk_peek_request(q);
    	if (rq)
    		blk_start_request(rq);
    	return rq;
    }
    EXPORT_SYMBOL(blk_fetch_request);
    
    /**
     * blk_update_request - Special helper function for request stacking drivers
     * @req:      the request being processed
     * @error:    block status code
     * @nr_bytes: number of bytes to complete @req
     *
     * Description:
     *     Ends I/O on a number of bytes attached to @req, but doesn't complete
     *     the request structure even if @req doesn't have leftover.
     *     If @req has leftover, sets it up for the next range of segments.
     *
     *     This special helper function is only for request stacking drivers
     *     (e.g. request-based dm) so that they can handle partial completion.
     *     Actual device drivers should use blk_end_request instead.
     *
     *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
     *     %false return from this function.
     *
     * Return:
     *     %false - this request doesn't have any more data
     *     %true  - this request has more data
     **/
    bool blk_update_request(struct request *req, blk_status_t error,
    		unsigned int nr_bytes)
    {
    	int total_bytes;
    
    	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
    
    	if (!req->bio)
    		return false;
    
    	if (unlikely(error && !blk_rq_is_passthrough(req) &&
    		     !(req->rq_flags & RQF_QUIET)))
    		print_req_error(req, error);
    
    	blk_account_io_completion(req, nr_bytes);
    
    	total_bytes = 0;
    	while (req->bio) {
    		struct bio *bio = req->bio;
    		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
    
    		if (bio_bytes == bio->bi_iter.bi_size)
    			req->bio = bio->bi_next;
    
    		/* Completion has already been traced */
    		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
    		req_bio_endio(req, bio, bio_bytes, error);
    
    		total_bytes += bio_bytes;
    		nr_bytes -= bio_bytes;
    
    		if (!nr_bytes)
    			break;
    	}
    
    	/*
    	 * completely done
    	 */
    	if (!req->bio) {
    		/*
    		 * Reset counters so that the request stacking driver
    		 * can find how many bytes remain in the request
    		 * later.
    		 */
    		req->__data_len = 0;
    		return false;
    	}
    
    	req->__data_len -= total_bytes;
    
    	/* update sector only for requests with clear definition of sector */
    	if (!blk_rq_is_passthrough(req))
    		req->__sector += total_bytes >> 9;
    
    	/* mixed attributes always follow the first bio */
    	if (req->rq_flags & RQF_MIXED_MERGE) {
    		req->cmd_flags &= ~REQ_FAILFAST_MASK;
    		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
    	}
    
    	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
    		/*
    		 * If total number of sectors is less than the first segment
    		 * size, something has gone terribly wrong.
    		 */
    		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
    			blk_dump_rq_flags(req, "request botched");
    			req->__data_len = blk_rq_cur_bytes(req);
    		}
    
    		/* recalculate the number of segments */
    		blk_recalc_rq_segments(req);
    	}
    
    	return true;
    }
    EXPORT_SYMBOL_GPL(blk_update_request);
    
    static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
    				    unsigned int nr_bytes,
    				    unsigned int bidi_bytes)
    {
    	if (blk_update_request(rq, error, nr_bytes))
    		return true;
    
    	/* Bidi request must be completed as a whole */
    	if (unlikely(blk_bidi_rq(rq)) &&
    	    blk_update_request(rq->next_rq, error, bidi_bytes))
    		return true;
    
    	if (blk_queue_add_random(rq->q))
    		add_disk_randomness(rq->rq_disk);
    
    	return false;
    }
    
    /**
     * blk_unprep_request - unprepare a request
     * @req:	the request
     *
     * This function makes a request ready for complete resubmission (or
     * completion).  It happens only after all error handling is complete,
     * so represents the appropriate moment to deallocate any resources
     * that were allocated to the request in the prep_rq_fn.  The queue
     * lock is held when calling this.
     */
    void blk_unprep_request(struct request *req)
    {
    	struct request_queue *q = req->q;
    
    	req->rq_flags &= ~RQF_DONTPREP;
    	if (q->unprep_rq_fn)
    		q->unprep_rq_fn(q, req);
    }
    EXPORT_SYMBOL_GPL(blk_unprep_request);
    
    void blk_finish_request(struct request *req, blk_status_t error)
    {
    	struct request_queue *q = req->q;
    
    	lockdep_assert_held(req->q->queue_lock);
    	WARN_ON_ONCE(q->mq_ops);
    
    	if (req->rq_flags & RQF_STATS)
    		blk_stat_add(req);
    
    	if (req->rq_flags & RQF_QUEUED)
    		blk_queue_end_tag(q, req);
    
    	BUG_ON(blk_queued_rq(req));
    
    	if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
    		laptop_io_completion(req->q->backing_dev_info);
    
    	blk_delete_timer(req);
    
    	if (req->rq_flags & RQF_DONTPREP)
    		blk_unprep_request(req);
    
    	blk_account_io_done(req);
    
    	if (req->end_io) {
    		wbt_done(req->q->rq_wb, &req->issue_stat);
    		req->end_io(req, error);
    	} else {
    		if (blk_bidi_rq(req))
    			__blk_put_request(req->next_rq->q, req->next_rq);
    
    		__blk_put_request(q, req);
    	}
    }
    EXPORT_SYMBOL(blk_finish_request);
    
    /**
     * blk_end_bidi_request - Complete a bidi request
     * @rq:         the request to complete
     * @error:      block status code
     * @nr_bytes:   number of bytes to complete @rq
     * @bidi_bytes: number of bytes to complete @rq->next_rq
     *
     * Description:
     *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
     *     Drivers that supports bidi can safely call this member for any
     *     type of request, bidi or uni.  In the later case @bidi_bytes is
     *     just ignored.
     *
     * Return:
     *     %false - we are done with this request
     *     %true  - still buffers pending for this request
     **/
    static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
    				 unsigned int nr_bytes, unsigned int bidi_bytes)
    {
    	struct request_queue *q = rq->q;
    	unsigned long flags;
    
    	WARN_ON_ONCE(q->mq_ops);
    
    	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
    		return true;
    
    	spin_lock_irqsave(q->queue_lock, flags);
    	blk_finish_request(rq, error);
    	spin_unlock_irqrestore(q->queue_lock, flags);
    
    	return false;
    }
    
    /**
     * __blk_end_bidi_request - Complete a bidi request with queue lock held
     * @rq:         the request to complete
     * @error:      block status code
     * @nr_bytes:   number of bytes to complete @rq
     * @bidi_bytes: number of bytes to complete @rq->next_rq
     *
     * Description:
     *     Identical to blk_end_bidi_request() except that queue lock is
     *     assumed to be locked on entry and remains so on return.
     *
     * Return:
     *     %false - we are done with this request
     *     %true  - still buffers pending for this request
     **/
    static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
    				   unsigned int nr_bytes, unsigned int bidi_bytes)
    {
    	lockdep_assert_held(rq->q->queue_lock);
    	WARN_ON_ONCE(rq->q->mq_ops);
    
    	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
    		return true;
    
    	blk_finish_request(rq, error);
    
    	return false;
    }
    
    /**
     * blk_end_request - Helper function for drivers to complete the request.
     * @rq:       the request being processed
     * @error:    block status code
     * @nr_bytes: number of bytes to complete
     *
     * Description:
     *     Ends I/O on a number of bytes attached to @rq.
     *     If @rq has leftover, sets it up for the next range of segments.
     *
     * Return:
     *     %false - we are done with this request
     *     %true  - still buffers pending for this request
     **/
    bool blk_end_request(struct request *rq, blk_status_t error,
    		unsigned int nr_bytes)
    {
    	WARN_ON_ONCE(rq->q->mq_ops);
    	return blk_end_bidi_request(rq, error, nr_bytes, 0);
    }
    EXPORT_SYMBOL(blk_end_request);
    
    /**
     * blk_end_request_all - Helper function for drives to finish the request.
     * @rq: the request to finish
     * @error: block status code
     *
     * Description:
     *     Completely finish @rq.
     */
    void blk_end_request_all(struct request *rq, blk_status_t error)
    {
    	bool pending;
    	unsigned int bidi_bytes = 0;
    
    	if (unlikely(blk_bidi_rq(rq)))
    		bidi_bytes = blk_rq_bytes(rq->next_rq);
    
    	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
    	BUG_ON(pending);
    }
    EXPORT_SYMBOL(blk_end_request_all);
    
    /**
     * __blk_end_request - Helper function for drivers to complete the request.
     * @rq:       the request being processed
     * @error:    block status code
     * @nr_bytes: number of bytes to complete
     *
     * Description:
     *     Must be called with queue lock held unlike blk_end_request().
     *
     * Return:
     *     %false - we are done with this request
     *     %true  - still buffers pending for this request
     **/
    bool __blk_end_request(struct request *rq, blk_status_t error,
    		unsigned int nr_bytes)
    {
    	lockdep_assert_held(rq->q->queue_lock);
    	WARN_ON_ONCE(rq->q->mq_ops);
    
    	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
    }
    EXPORT_SYMBOL(__blk_end_request);
    
    /**
     * __blk_end_request_all - Helper function for drives to finish the request.
     * @rq: the request to finish
     * @error:    block status code
     *
     * Description:
     *     Completely finish @rq.  Must be called with queue lock held.
     */
    void __blk_end_request_all(struct request *rq, blk_status_t error)
    {
    	bool pending;
    	unsigned int bidi_bytes = 0;
    
    	lockdep_assert_held(rq->q->queue_lock);
    	WARN_ON_ONCE(rq->q->mq_ops);
    
    	if (unlikely(blk_bidi_rq(rq)))
    		bidi_bytes = blk_rq_bytes(rq->next_rq);
    
    	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
    	BUG_ON(pending);
    }
    EXPORT_SYMBOL(__blk_end_request_all);
    
    /**
     * __blk_end_request_cur - Helper function to finish the current request chunk.
     * @rq: the request to finish the current chunk for
     * @error:    block status code
     *
     * Description:
     *     Complete the current consecutively mapped chunk from @rq.  Must
     *     be called with queue lock held.
     *
     * Return:
     *     %false - we are done with this request
     *     %true  - still buffers pending for this request
     */
    bool __blk_end_request_cur(struct request *rq, blk_status_t error)
    {
    	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
    }
    EXPORT_SYMBOL(__blk_end_request_cur);
    
    void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
    		     struct bio *bio)
    {
    	if (bio_has_data(bio))
    		rq->nr_phys_segments = bio_phys_segments(q, bio);
    
    	rq->__data_len = bio->bi_iter.bi_size;
    	rq->bio = rq->biotail = bio;
    
    	if (bio->bi_bdev)
    		rq->rq_disk = bio->bi_bdev->bd_disk;
    }
    
    #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
    /**
     * rq_flush_dcache_pages - Helper function to flush all pages in a request
     * @rq: the request to be flushed
     *
     * Description:
     *     Flush all pages in @rq.
     */
    void rq_flush_dcache_pages(struct request *rq)
    {
    	struct req_iterator iter;
    	struct bio_vec bvec;
    
    	rq_for_each_segment(bvec, rq, iter)
    		flush_dcache_page(bvec.bv_page);
    }
    EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
    #endif
    
    /**
     * blk_lld_busy - Check if underlying low-level drivers of a device are busy
     * @q : the queue of the device being checked
     *
     * Description:
     *    Check if underlying low-level drivers of a device are busy.
     *    If the drivers want to export their busy state, they must set own
     *    exporting function using blk_queue_lld_busy() first.
     *
     *    Basically, this function is used only by request stacking drivers
     *    to stop dispatching requests to underlying devices when underlying
     *    devices are busy.  This behavior helps more I/O merging on the queue
     *    of the request stacking driver and prevents I/O throughput regression
     *    on burst I/O load.
     *
     * Return:
     *    0 - Not busy (The request stacking driver should dispatch request)
     *    1 - Busy (The request stacking driver should stop dispatching request)
     */
    int blk_lld_busy(struct request_queue *q)
    {
    	if (q->lld_busy_fn)
    		return q->lld_busy_fn(q);
    
    	return 0;
    }
    EXPORT_SYMBOL_GPL(blk_lld_busy);
    
    /**
     * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
     * @rq: the clone request to be cleaned up
     *
     * Description:
     *     Free all bios in @rq for a cloned request.
     */
    void blk_rq_unprep_clone(struct request *rq)
    {
    	struct bio *bio;
    
    	while ((bio = rq->bio) != NULL) {
    		rq->bio = bio->bi_next;
    
    		bio_put(bio);
    	}
    }
    EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
    
    /*
     * Copy attributes of the original request to the clone request.
     * The actual data parts (e.g. ->cmd, ->sense) are not copied.
     */
    static void __blk_rq_prep_clone(struct request *dst, struct request *src)
    {
    	dst->cpu = src->cpu;
    	dst->__sector = blk_rq_pos(src);
    	dst->__data_len = blk_rq_bytes(src);
    	dst->nr_phys_segments = src->nr_phys_segments;
    	dst->ioprio = src->ioprio;
    	dst->extra_len = src->extra_len;
    }
    
    /**
     * blk_rq_prep_clone - Helper function to setup clone request
     * @rq: the request to be setup
     * @rq_src: original request to be cloned
     * @bs: bio_set that bios for clone are allocated from
     * @gfp_mask: memory allocation mask for bio
     * @bio_ctr: setup function to be called for each clone bio.
     *           Returns %0 for success, non %0 for failure.
     * @data: private data to be passed to @bio_ctr
     *
     * Description:
     *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
     *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
     *     are not copied, and copying such parts is the caller's responsibility.
     *     Also, pages which the original bios are pointing to are not copied
     *     and the cloned bios just point same pages.
     *     So cloned bios must be completed before original bios, which means
     *     the caller must complete @rq before @rq_src.
     */
    int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
    		      struct bio_set *bs, gfp_t gfp_mask,
    		      int (*bio_ctr)(struct bio *, struct bio *, void *),
    		      void *data)
    {
    	struct bio *bio, *bio_src;
    
    	if (!bs)
    		bs = fs_bio_set;
    
    	__rq_for_each_bio(bio_src, rq_src) {
    		bio = bio_clone_fast(bio_src, gfp_mask, bs);
    		if (!bio)
    			goto free_and_out;
    
    		if (bio_ctr && bio_ctr(bio, bio_src, data))
    			goto free_and_out;
    
    		if (rq->bio) {
    			rq->biotail->bi_next = bio;
    			rq->biotail = bio;
    		} else
    			rq->bio = rq->biotail = bio;
    	}
    
    	__blk_rq_prep_clone(rq, rq_src);
    
    	return 0;
    
    free_and_out:
    	if (bio)
    		bio_put(bio);
    	blk_rq_unprep_clone(rq);
    
    	return -ENOMEM;
    }
    EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
    
    int kblockd_schedule_work(struct work_struct *work)
    {
    	return queue_work(kblockd_workqueue, work);
    }
    EXPORT_SYMBOL(kblockd_schedule_work);
    
    int kblockd_schedule_work_on(int cpu, struct work_struct *work)
    {
    	return queue_work_on(cpu, kblockd_workqueue, work);
    }
    EXPORT_SYMBOL(kblockd_schedule_work_on);
    
    int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
    				unsigned long delay)
    {
    	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
    }
    EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
    
    int kblockd_schedule_delayed_work(struct delayed_work *dwork,
    				  unsigned long delay)
    {
    	return queue_delayed_work(kblockd_workqueue, dwork, delay);
    }
    EXPORT_SYMBOL(kblockd_schedule_delayed_work);
    
    int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
    				     unsigned long delay)
    {
    	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
    }
    EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
    
    /**
     * blk_start_plug - initialize blk_plug and track it inside the task_struct
     * @plug:	The &struct blk_plug that needs to be initialized
     *
     * Description:
     *   Tracking blk_plug inside the task_struct will help with auto-flushing the
     *   pending I/O should the task end up blocking between blk_start_plug() and
     *   blk_finish_plug(). This is important from a performance perspective, but
     *   also ensures that we don't deadlock. For instance, if the task is blocking
     *   for a memory allocation, memory reclaim could end up wanting to free a
     *   page belonging to that request that is currently residing in our private
     *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
     *   this kind of deadlock.
     */
    void blk_start_plug(struct blk_plug *plug)
    {
    	struct task_struct *tsk = current;
    
    	/*
    	 * If this is a nested plug, don't actually assign it.
    	 */
    	if (tsk->plug)
    		return;
    
    	INIT_LIST_HEAD(&plug->list);
    	INIT_LIST_HEAD(&plug->mq_list);
    	INIT_LIST_HEAD(&plug->cb_list);
    	/*
    	 * Store ordering should not be needed here, since a potential
    	 * preempt will imply a full memory barrier
    	 */
    	tsk->plug = plug;
    }
    EXPORT_SYMBOL(blk_start_plug);
    
    static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
    {
    	struct request *rqa = container_of(a, struct request, queuelist);
    	struct request *rqb = container_of(b, struct request, queuelist);
    
    	return !(rqa->q < rqb->q ||
    		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
    }
    
    /*
     * If 'from_schedule' is true, then postpone the dispatch of requests
     * until a safe kblockd context. We due this to avoid accidental big
     * additional stack usage in driver dispatch, in places where the originally
     * plugger did not intend it.
     */
    static void queue_unplugged(struct request_queue *q, unsigned int depth,
    			    bool from_schedule)
    	__releases(q->queue_lock)
    {
    	lockdep_assert_held(q->queue_lock);
    
    	trace_block_unplug(q, depth, !from_schedule);
    
    	if (from_schedule)
    		blk_run_queue_async(q);
    	else
    		__blk_run_queue(q);
    	spin_unlock(q->queue_lock);
    }
    
    static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
    {
    	LIST_HEAD(callbacks);
    
    	while (!list_empty(&plug->cb_list)) {
    		list_splice_init(&plug->cb_list, &callbacks);
    
    		while (!list_empty(&callbacks)) {
    			struct blk_plug_cb *cb = list_first_entry(&callbacks,
    							  struct blk_plug_cb,
    							  list);
    			list_del(&cb->list);
    			cb->callback(cb, from_schedule);
    		}
    	}
    }
    
    struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
    				      int size)
    {
    	struct blk_plug *plug = current->plug;
    	struct blk_plug_cb *cb;
    
    	if (!plug)
    		return NULL;
    
    	list_for_each_entry(cb, &plug->cb_list, list)
    		if (cb->callback == unplug && cb->data == data)
    			return cb;
    
    	/* Not currently on the callback list */
    	BUG_ON(size < sizeof(*cb));
    	cb = kzalloc(size, GFP_ATOMIC);
    	if (cb) {
    		cb->data = data;
    		cb->callback = unplug;
    		list_add(&cb->list, &plug->cb_list);
    	}
    	return cb;
    }
    EXPORT_SYMBOL(blk_check_plugged);
    
    void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
    {
    	struct request_queue *q;
    	unsigned long flags;
    	struct request *rq;
    	LIST_HEAD(list);
    	unsigned int depth;
    
    	flush_plug_callbacks(plug, from_schedule);
    
    	if (!list_empty(&plug->mq_list))
    		blk_mq_flush_plug_list(plug, from_schedule);
    
    	if (list_empty(&plug->list))
    		return;
    
    	list_splice_init(&plug->list, &list);
    
    	list_sort(NULL, &list, plug_rq_cmp);
    
    	q = NULL;
    	depth = 0;
    
    	/*
    	 * Save and disable interrupts here, to avoid doing it for every
    	 * queue lock we have to take.
    	 */
    	local_irq_save(flags);
    	while (!list_empty(&list)) {
    		rq = list_entry_rq(list.next);
    		list_del_init(&rq->queuelist);
    		BUG_ON(!rq->q);
    		if (rq->q != q) {
    			/*
    			 * This drops the queue lock
    			 */
    			if (q)
    				queue_unplugged(q, depth, from_schedule);
    			q = rq->q;
    			depth = 0;
    			spin_lock(q->queue_lock);
    		}
    
    		/*
    		 * Short-circuit if @q is dead
    		 */
    		if (unlikely(blk_queue_dying(q))) {
    			__blk_end_request_all(rq, BLK_STS_IOERR);
    			continue;
    		}
    
    		/*
    		 * rq is already accounted, so use raw insert
    		 */
    		if (op_is_flush(rq->cmd_flags))
    			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
    		else
    			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
    
    		depth++;
    	}
    
    	/*
    	 * This drops the queue lock
    	 */
    	if (q)
    		queue_unplugged(q, depth, from_schedule);
    
    	local_irq_restore(flags);
    }
    
    void blk_finish_plug(struct blk_plug *plug)
    {
    	if (plug != current->plug)
    		return;
    	blk_flush_plug_list(plug, false);
    
    	current->plug = NULL;
    }
    EXPORT_SYMBOL(blk_finish_plug);
    
    #ifdef CONFIG_PM
    /**
     * blk_pm_runtime_init - Block layer runtime PM initialization routine
     * @q: the queue of the device
     * @dev: the device the queue belongs to
     *
     * Description:
     *    Initialize runtime-PM-related fields for @q and start auto suspend for
     *    @dev. Drivers that want to take advantage of request-based runtime PM
     *    should call this function after @dev has been initialized, and its
     *    request queue @q has been allocated, and runtime PM for it can not happen
     *    yet(either due to disabled/forbidden or its usage_count > 0). In most
     *    cases, driver should call this function before any I/O has taken place.
     *
     *    This function takes care of setting up using auto suspend for the device,
     *    the autosuspend delay is set to -1 to make runtime suspend impossible
     *    until an updated value is either set by user or by driver. Drivers do
     *    not need to touch other autosuspend settings.
     *
     *    The block layer runtime PM is request based, so only works for drivers
     *    that use request as their IO unit instead of those directly use bio's.
     */
    void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
    {
    	/* not support for RQF_PM and ->rpm_status in blk-mq yet */
    	if (q->mq_ops)
    		return;
    
    	q->dev = dev;
    	q->rpm_status = RPM_ACTIVE;
    	pm_runtime_set_autosuspend_delay(q->dev, -1);
    	pm_runtime_use_autosuspend(q->dev);
    }
    EXPORT_SYMBOL(blk_pm_runtime_init);
    
    /**
     * blk_pre_runtime_suspend - Pre runtime suspend check
     * @q: the queue of the device
     *
     * Description:
     *    This function will check if runtime suspend is allowed for the device
     *    by examining if there are any requests pending in the queue. If there
     *    are requests pending, the device can not be runtime suspended; otherwise,
     *    the queue's status will be updated to SUSPENDING and the driver can
     *    proceed to suspend the device.
     *
     *    For the not allowed case, we mark last busy for the device so that
     *    runtime PM core will try to autosuspend it some time later.
     *
     *    This function should be called near the start of the device's
     *    runtime_suspend callback.
     *
     * Return:
     *    0		- OK to runtime suspend the device
     *    -EBUSY	- Device should not be runtime suspended
     */
    int blk_pre_runtime_suspend(struct request_queue *q)
    {
    	int ret = 0;
    
    	if (!q->dev)
    		return ret;
    
    	spin_lock_irq(q->queue_lock);
    	if (q->nr_pending) {
    		ret = -EBUSY;
    		pm_runtime_mark_last_busy(q->dev);
    	} else {
    		q->rpm_status = RPM_SUSPENDING;
    	}
    	spin_unlock_irq(q->queue_lock);
    	return ret;
    }
    EXPORT_SYMBOL(blk_pre_runtime_suspend);
    
    /**
     * blk_post_runtime_suspend - Post runtime suspend processing
     * @q: the queue of the device
     * @err: return value of the device's runtime_suspend function
     *
     * Description:
     *    Update the queue's runtime status according to the return value of the
     *    device's runtime suspend function and mark last busy for the device so
     *    that PM core will try to auto suspend the device at a later time.
     *
     *    This function should be called near the end of the device's
     *    runtime_suspend callback.
     */
    void blk_post_runtime_suspend(struct request_queue *q, int err)
    {
    	if (!q->dev)
    		return;
    
    	spin_lock_irq(q->queue_lock);
    	if (!err) {
    		q->rpm_status = RPM_SUSPENDED;
    	} else {
    		q->rpm_status = RPM_ACTIVE;
    		pm_runtime_mark_last_busy(q->dev);
    	}
    	spin_unlock_irq(q->queue_lock);
    }
    EXPORT_SYMBOL(blk_post_runtime_suspend);
    
    /**
     * blk_pre_runtime_resume - Pre runtime resume processing
     * @q: the queue of the device
     *
     * Description:
     *    Update the queue's runtime status to RESUMING in preparation for the
     *    runtime resume of the device.
     *
     *    This function should be called near the start of the device's
     *    runtime_resume callback.
     */
    void blk_pre_runtime_resume(struct request_queue *q)
    {
    	if (!q->dev)
    		return;
    
    	spin_lock_irq(q->queue_lock);
    	q->rpm_status = RPM_RESUMING;
    	spin_unlock_irq(q->queue_lock);
    }
    EXPORT_SYMBOL(blk_pre_runtime_resume);
    
    /**
     * blk_post_runtime_resume - Post runtime resume processing
     * @q: the queue of the device
     * @err: return value of the device's runtime_resume function
     *
     * Description:
     *    Update the queue's runtime status according to the return value of the
     *    device's runtime_resume function. If it is successfully resumed, process
     *    the requests that are queued into the device's queue when it is resuming
     *    and then mark last busy and initiate autosuspend for it.
     *
     *    This function should be called near the end of the device's
     *    runtime_resume callback.
     */
    void blk_post_runtime_resume(struct request_queue *q, int err)
    {
    	if (!q->dev)
    		return;
    
    	spin_lock_irq(q->queue_lock);
    	if (!err) {
    		q->rpm_status = RPM_ACTIVE;
    		__blk_run_queue(q);
    		pm_runtime_mark_last_busy(q->dev);
    		pm_request_autosuspend(q->dev);
    	} else {
    		q->rpm_status = RPM_SUSPENDED;
    	}
    	spin_unlock_irq(q->queue_lock);
    }
    EXPORT_SYMBOL(blk_post_runtime_resume);
    
    /**
     * blk_set_runtime_active - Force runtime status of the queue to be active
     * @q: the queue of the device
     *
     * If the device is left runtime suspended during system suspend the resume
     * hook typically resumes the device and corrects runtime status
     * accordingly. However, that does not affect the queue runtime PM status
     * which is still "suspended". This prevents processing requests from the
     * queue.
     *
     * This function can be used in driver's resume hook to correct queue
     * runtime PM status and re-enable peeking requests from the queue. It
     * should be called before first request is added to the queue.
     */
    void blk_set_runtime_active(struct request_queue *q)
    {
    	spin_lock_irq(q->queue_lock);
    	q->rpm_status = RPM_ACTIVE;
    	pm_runtime_mark_last_busy(q->dev);
    	pm_request_autosuspend(q->dev);
    	spin_unlock_irq(q->queue_lock);
    }
    EXPORT_SYMBOL(blk_set_runtime_active);
    #endif
    
    int __init blk_dev_init(void)
    {
    	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
    	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
    			FIELD_SIZEOF(struct request, cmd_flags));
    	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
    			FIELD_SIZEOF(struct bio, bi_opf));
    
    	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
    	kblockd_workqueue = alloc_workqueue("kblockd",
    					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
    	if (!kblockd_workqueue)
    		panic("Failed to create kblockd\n");
    
    	request_cachep = kmem_cache_create("blkdev_requests",
    			sizeof(struct request), 0, SLAB_PANIC, NULL);
    
    	blk_requestq_cachep = kmem_cache_create("request_queue",
    			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
    
    #ifdef CONFIG_DEBUG_FS
    	blk_debugfs_root = debugfs_create_dir("block", NULL);
    #endif
    
    	return 0;
    }