Skip to content
Snippets Groups Projects
storage.rs 24.7 KiB
Newer Older
Jean-Michel Picod's avatar
Jean-Michel Picod committed
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::crypto::rng256::Rng256;
use crate::ctap::data_formats::PublicKeyCredentialSource;
use crate::ctap::status_code::Ctap2StatusCode;
use crate::ctap::PIN_AUTH_LENGTH;
use alloc::string::String;
use alloc::vec::Vec;
use core::convert::TryInto;
use ctap2::embedded_flash::{self, StoreConfig, StoreEntry, StoreError, StoreIndex};

#[cfg(any(test, feature = "ram_storage"))]
Jean-Michel Picod's avatar
Jean-Michel Picod committed
type Storage = embedded_flash::BufferStorage;
#[cfg(not(any(test, feature = "ram_storage")))]
Jean-Michel Picod's avatar
Jean-Michel Picod committed
type Storage = embedded_flash::SyscallStorage;

// Those constants may be modified before compilation to tune the behavior of the key.
//
// The number of pages should be at least 2 and at most what the flash can hold. There should be no
// reason to put a small number here, except that the latency of flash operations depends on the
// number of pages. This will improve in the future. Currently, using 20 pages gives 65ms per
// operation. The rule of thumb is 3.5ms per additional page.
//
// Limiting the number of residential keys permits to ensure a minimum number of counter increments.
// Let:
// - P the number of pages (NUM_PAGES)
// - K the maximum number of residential keys (MAX_SUPPORTED_RESIDENTIAL_KEYS)
// - S the maximum size of a residential key (about 500)
// - C the number of erase cycles (10000)
// - I the minimum number of counter increments
//
// We have: I = ((P - 1) * 4092 - K * S) / 12 * C
//
// With P=20 and K=150, we have I > 2M which is enough for 500 increments per day for 10 years.
#[cfg(feature = "ram_storage")]
const NUM_PAGES: usize = 2;
#[cfg(not(feature = "ram_storage"))]
Jean-Michel Picod's avatar
Jean-Michel Picod committed
const NUM_PAGES: usize = 20;
const MAX_SUPPORTED_RESIDENTIAL_KEYS: usize = 150;

// List of tags. They should all be unique. And there should be less than NUM_TAGS.
const TAG_CREDENTIAL: usize = 0;
const GLOBAL_SIGNATURE_COUNTER: usize = 1;
const MASTER_KEYS: usize = 2;
const PIN_HASH: usize = 3;
const PIN_RETRIES: usize = 4;
const NUM_TAGS: usize = 5;

const MAX_PIN_RETRIES: u8 = 6;

#[derive(PartialEq, Eq, PartialOrd, Ord)]
enum Key {
    // TODO(cretin): Test whether this doesn't consume too much memory. Otherwise, we can use less
    // keys. Either only a simple enum value for all credentials, or group by rp_id.
    Credential {
        rp_id: Option<String>,
        credential_id: Option<Vec<u8>>,
        user_handle: Option<Vec<u8>>,
    },
    GlobalSignatureCounter,
    MasterKeys,
    PinHash,
    PinRetries,
}

pub struct MasterKeys<'a> {
    pub encryption: &'a [u8; 32],
    pub hmac: &'a [u8; 32],
}

struct Config;

impl StoreConfig for Config {
    type Key = Key;

    fn num_tags(&self) -> usize {
        NUM_TAGS
    }

    fn keys(&self, entry: StoreEntry, mut add: impl FnMut(Key)) {
        match entry.tag {
            TAG_CREDENTIAL => {
                let credential = match deserialize_credential(entry.data) {
                    None => {
                        debug_assert!(false);
                        return;
                    }
                    Some(credential) => credential,
                };
                add(Key::Credential {
                    rp_id: Some(credential.rp_id.clone()),
                    credential_id: Some(credential.credential_id),
                    user_handle: None,
                });
                add(Key::Credential {
                    rp_id: Some(credential.rp_id.clone()),
                    credential_id: None,
                    user_handle: None,
                });
                add(Key::Credential {
                    rp_id: Some(credential.rp_id),
                    credential_id: None,
                    user_handle: Some(credential.user_handle),
                });
                add(Key::Credential {
                    rp_id: None,
                    credential_id: None,
                    user_handle: None,
                });
            }
            GLOBAL_SIGNATURE_COUNTER => add(Key::GlobalSignatureCounter),
            MASTER_KEYS => add(Key::MasterKeys),
            PIN_HASH => add(Key::PinHash),
            PIN_RETRIES => add(Key::PinRetries),
            _ => debug_assert!(false),
        }
    }
}

pub struct PersistentStore {
    store: embedded_flash::Store<Storage, Config>,
}

#[cfg(feature = "ram_storage")]
const PAGE_SIZE: usize = 0x100;
#[cfg(not(feature = "ram_storage"))]
Jean-Michel Picod's avatar
Jean-Michel Picod committed
const PAGE_SIZE: usize = 0x1000;
Jean-Michel Picod's avatar
Jean-Michel Picod committed
const STORE_SIZE: usize = NUM_PAGES * PAGE_SIZE;

#[cfg(not(any(test, feature = "ram_storage")))]
Jean-Michel Picod's avatar
Jean-Michel Picod committed
#[link_section = ".app_state"]
static STORE: [u8; STORE_SIZE] = [0xff; STORE_SIZE];

impl PersistentStore {
    /// Gives access to the persistent store.
    ///
    /// # Safety
    ///
    /// This should be at most one instance of persistent store per program lifetime.
    pub fn new(rng: &mut impl Rng256) -> PersistentStore {
        #[cfg(not(any(test, feature = "ram_storage")))]
Jean-Michel Picod's avatar
Jean-Michel Picod committed
        let storage = PersistentStore::new_prod_storage();
        #[cfg(any(test, feature = "ram_storage"))]
Jean-Michel Picod's avatar
Jean-Michel Picod committed
        let storage = PersistentStore::new_test_storage();
        let mut store = PersistentStore {
            store: embedded_flash::Store::new(storage, Config).unwrap(),
        };
        store.init(rng);
        store
    }

    #[cfg(not(any(test, feature = "ram_storage")))]
Jean-Michel Picod's avatar
Jean-Michel Picod committed
    fn new_prod_storage() -> Storage {
        let store = unsafe {
            // Safety: The store cannot alias because this function is called only once.
            core::slice::from_raw_parts_mut(STORE.as_ptr() as *mut u8, STORE_SIZE)
        };
        unsafe {
            // Safety: The store is in a writeable flash region.
            Storage::new(store).unwrap()
        }
    }

    #[cfg(any(test, feature = "ram_storage"))]
Jean-Michel Picod's avatar
Jean-Michel Picod committed
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
    fn new_test_storage() -> Storage {
        let store = vec![0xff; STORE_SIZE].into_boxed_slice();
        let options = embedded_flash::BufferOptions {
            word_size: 4,
            page_size: PAGE_SIZE,
            max_word_writes: 2,
            max_page_erases: 10000,
            strict_write: true,
        };
        Storage::new(store, options)
    }

    fn init(&mut self, rng: &mut impl Rng256) {
        if self.store.find_one(&Key::MasterKeys).is_none() {
            let master_encryption_key = rng.gen_uniform_u8x32();
            let master_hmac_key = rng.gen_uniform_u8x32();
            let mut master_keys = Vec::with_capacity(64);
            master_keys.extend_from_slice(&master_encryption_key);
            master_keys.extend_from_slice(&master_hmac_key);
            self.store
                .insert(StoreEntry {
                    tag: MASTER_KEYS,
                    data: &master_keys,
                })
                .unwrap();
        }
        if self.store.find_one(&Key::PinRetries).is_none() {
            self.store
                .insert(StoreEntry {
                    tag: PIN_RETRIES,
                    data: &[MAX_PIN_RETRIES],
                })
                .unwrap();
        }
    }

    pub fn find_credential(
        &self,
        rp_id: &str,
        credential_id: &[u8],
    ) -> Option<PublicKeyCredentialSource> {
        let key = Key::Credential {
            rp_id: Some(rp_id.into()),
            credential_id: Some(credential_id.into()),
            user_handle: None,
        };
        let (_, entry) = self.store.find_one(&key)?;
        debug_assert_eq!(entry.tag, TAG_CREDENTIAL);
        let result = deserialize_credential(entry.data);
        debug_assert!(result.is_some());
        result
    }

    pub fn store_credential(
        &mut self,
        credential: PublicKeyCredentialSource,
    ) -> Result<(), Ctap2StatusCode> {
        let key = Key::Credential {
            rp_id: Some(credential.rp_id.clone()),
            credential_id: None,
            user_handle: Some(credential.user_handle.clone()),
        };
        let old_entry = self.store.find_one(&key);
        if old_entry.is_none() && self.count_credentials() >= MAX_SUPPORTED_RESIDENTIAL_KEYS {
            return Err(Ctap2StatusCode::CTAP2_ERR_KEY_STORE_FULL);
        }
        let credential = serialize_credential(credential)?;
        let new_entry = StoreEntry {
            tag: TAG_CREDENTIAL,
            data: &credential,
        };
        match old_entry {
            None => self.store.insert(new_entry)?,
            Some((index, old_entry)) => {
                debug_assert_eq!(old_entry.tag, TAG_CREDENTIAL);
                self.store.replace(index, new_entry)?
            }
        };
        Ok(())
    }

    pub fn filter_credential(&self, rp_id: &str) -> Vec<PublicKeyCredentialSource> {
        self.store
            .find_all(&Key::Credential {
                rp_id: Some(rp_id.into()),
                credential_id: None,
                user_handle: None,
            })
            .filter_map(|(_, entry)| {
                debug_assert_eq!(entry.tag, TAG_CREDENTIAL);
                let credential = deserialize_credential(entry.data);
                debug_assert!(credential.is_some());
                credential
            })
            .collect()
    }

    pub fn count_credentials(&self) -> usize {
        self.store
            .find_all(&Key::Credential {
                rp_id: None,
                credential_id: None,
                user_handle: None,
            })
            .count()
    }

    pub fn global_signature_counter(&self) -> u32 {
        self.store
            .find_one(&Key::GlobalSignatureCounter)
            .map_or(0, |(_, entry)| {
                u32::from_ne_bytes(*array_ref!(entry.data, 0, 4))
            })
    }

    pub fn incr_global_signature_counter(&mut self) {
        let mut buffer = [0; core::mem::size_of::<u32>()];
        match self.store.find_one(&Key::GlobalSignatureCounter) {
            None => {
                buffer.copy_from_slice(&1u32.to_ne_bytes());
                self.store
                    .insert(StoreEntry {
                        tag: GLOBAL_SIGNATURE_COUNTER,
                        data: &buffer,
                    })
                    .unwrap();
            }
            Some((index, entry)) => {
                let value = u32::from_ne_bytes(*array_ref!(entry.data, 0, 4));
                // In hopes that servers handle the wrapping gracefully.
                buffer.copy_from_slice(&value.wrapping_add(1).to_ne_bytes());
                self.store
                    .replace(
                        index,
                        StoreEntry {
                            tag: GLOBAL_SIGNATURE_COUNTER,
                            data: &buffer,
                        },
                    )
                    .unwrap();
            }
        }
    }

    pub fn master_keys(&self) -> MasterKeys {
        // We have as invariant that there is always exactly one MasterKeys entry in the store.
        let (_, entry) = self.store.find_one(&Key::MasterKeys).unwrap();
        let data = entry.data;
        // And this entry is well formed: the encryption key followed by the hmac key.
        let encryption = array_ref!(data, 0, 32);
        let hmac = array_ref!(data, 32, 32);
        MasterKeys { encryption, hmac }
    }

    pub fn pin_hash(&self) -> Option<&[u8; PIN_AUTH_LENGTH]> {
        self.store
            .find_one(&Key::PinHash)
            .map(|(_, entry)| array_ref!(entry.data, 0, PIN_AUTH_LENGTH))
    }

    pub fn set_pin_hash(&mut self, pin_hash: &[u8; PIN_AUTH_LENGTH]) {
        let entry = StoreEntry {
            tag: PIN_HASH,
            data: pin_hash,
        };
        match self.store.find_one(&Key::PinHash) {
            None => self.store.insert(entry).unwrap(),
            Some((index, _)) => {
                self.store.replace(index, entry).unwrap();
            }
        }
    }

    fn pin_retries_entry(&self) -> (StoreIndex, u8) {
        let (index, entry) = self.store.find_one(&Key::PinRetries).unwrap();
        let data = entry.data;
        debug_assert_eq!(data.len(), 1);
        (index, data[0])
    }

    pub fn pin_retries(&self) -> u8 {
        self.pin_retries_entry().1
    }

    pub fn decr_pin_retries(&mut self) {
        let (index, old_value) = self.pin_retries_entry();
        let new_value = old_value.saturating_sub(1);
        self.store
            .replace(
                index,
                StoreEntry {
                    tag: PIN_RETRIES,
                    data: &[new_value],
                },
            )
            .unwrap();
    }

    pub fn reset_pin_retries(&mut self) {
        let (index, _) = self.pin_retries_entry();
        self.store
            .replace(
                index,
                StoreEntry {
                    tag: PIN_RETRIES,
                    data: &[MAX_PIN_RETRIES],
                },
            )
            .unwrap();
    }

    pub fn reset(&mut self, rng: &mut impl Rng256) {
        loop {
            let index = {
                let mut iter = self.store.iter();
                match iter.next() {
                    None => break,
                    Some((index, _)) => index,
                }
            };
            self.store.delete(index).unwrap();
        }
        self.init(rng);
    }
}

impl From<StoreError> for Ctap2StatusCode {
    fn from(error: StoreError) -> Ctap2StatusCode {
        match error {
            StoreError::StoreFull => Ctap2StatusCode::CTAP2_ERR_KEY_STORE_FULL,
            StoreError::InvalidTag => unreachable!(),
            StoreError::InvalidPrecondition => unreachable!(),
        }
    }
}

fn deserialize_credential(data: &[u8]) -> Option<PublicKeyCredentialSource> {
    let cbor = cbor::read(data).ok()?;
    cbor.try_into().ok()
}

fn serialize_credential(credential: PublicKeyCredentialSource) -> Result<Vec<u8>, Ctap2StatusCode> {
    let mut data = Vec::new();
    if cbor::write(credential.into(), &mut data) {
        Ok(data)
    } else {
        Err(Ctap2StatusCode::CTAP2_ERR_INVALID_CREDENTIAL)
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::crypto;
    use crate::crypto::rng256::{Rng256, ThreadRng256};
    use crate::ctap::data_formats::{PublicKeyCredentialSource, PublicKeyCredentialType};

    fn create_credential_source(
        rng: &mut ThreadRng256,
        rp_id: &str,
        user_handle: Vec<u8>,
    ) -> PublicKeyCredentialSource {
        let private_key = crypto::ecdsa::SecKey::gensk(rng);
        PublicKeyCredentialSource {
            key_type: PublicKeyCredentialType::PublicKey,
            credential_id: rng.gen_uniform_u8x32().to_vec(),
            private_key,
            rp_id: String::from(rp_id),
            user_handle,
            other_ui: None,
        }
    }

    #[test]
    fn format_overhead() {
        // nRF52840 NVMC
        const WORD_SIZE: usize = 4;
        const PAGE_SIZE: usize = 0x1000;
        const NUM_PAGES: usize = 100;
        let store = vec![0xff; NUM_PAGES * PAGE_SIZE].into_boxed_slice();
        let options = embedded_flash::BufferOptions {
            word_size: WORD_SIZE,
            page_size: PAGE_SIZE,
            max_word_writes: 2,
            max_page_erases: 10000,
            strict_write: true,
        };
        let storage = Storage::new(store, options);
        let store = embedded_flash::Store::new(storage, Config).unwrap();
        // We can replace 3 bytes with minimal overhead.
        assert_eq!(store.replace_len(0), 2 * WORD_SIZE);
        assert_eq!(store.replace_len(3), 2 * WORD_SIZE);
        assert_eq!(store.replace_len(4), 3 * WORD_SIZE);
    }

    #[test]
    fn test_store() {
        let mut rng = ThreadRng256 {};
        let mut persistent_store = PersistentStore::new(&mut rng);
        assert_eq!(persistent_store.count_credentials(), 0);
        let credential_source = create_credential_source(&mut rng, "example.com", vec![]);
        assert!(persistent_store.store_credential(credential_source).is_ok());
        assert!(persistent_store.count_credentials() > 0);
    }

    #[test]
    #[allow(clippy::assertions_on_constants)]
    fn test_fill_store() {
        let mut rng = ThreadRng256 {};
        let mut persistent_store = PersistentStore::new(&mut rng);
        assert_eq!(persistent_store.count_credentials(), 0);

        // To make this test work for bigger storages, implement better int -> Vec conversion.
        assert!(MAX_SUPPORTED_RESIDENTIAL_KEYS < 256);
        for i in 0..MAX_SUPPORTED_RESIDENTIAL_KEYS {
            let credential_source =
                create_credential_source(&mut rng, "example.com", vec![i as u8]);
            assert!(persistent_store.store_credential(credential_source).is_ok());
            assert_eq!(persistent_store.count_credentials(), i + 1);
        }
        let credential_source = create_credential_source(
            &mut rng,
            "example.com",
            vec![MAX_SUPPORTED_RESIDENTIAL_KEYS as u8],
        );
        assert_eq!(
            persistent_store.store_credential(credential_source),
            Err(Ctap2StatusCode::CTAP2_ERR_KEY_STORE_FULL)
        );
        assert_eq!(
            persistent_store.count_credentials(),
            MAX_SUPPORTED_RESIDENTIAL_KEYS
        );
    }

    #[test]
    #[allow(clippy::assertions_on_constants)]
    fn test_overwrite() {
        let mut rng = ThreadRng256 {};
        let mut persistent_store = PersistentStore::new(&mut rng);
        assert_eq!(persistent_store.count_credentials(), 0);
        // These should have different IDs.
        let credential_source0 = create_credential_source(&mut rng, "example.com", vec![0x00]);
        let credential_source1 = create_credential_source(&mut rng, "example.com", vec![0x00]);
        let expected_credential = credential_source1.clone();

        assert!(persistent_store
            .store_credential(credential_source0)
            .is_ok());
        assert!(persistent_store
            .store_credential(credential_source1)
            .is_ok());
        assert_eq!(persistent_store.count_credentials(), 1);
        assert_eq!(
            &persistent_store.filter_credential("example.com"),
            &[expected_credential]
        );

        // To make this test work for bigger storages, implement better int -> Vec conversion.
        assert!(MAX_SUPPORTED_RESIDENTIAL_KEYS < 256);
        for i in 0..MAX_SUPPORTED_RESIDENTIAL_KEYS {
            let credential_source =
                create_credential_source(&mut rng, "example.com", vec![i as u8]);
            assert!(persistent_store.store_credential(credential_source).is_ok());
            assert_eq!(persistent_store.count_credentials(), i + 1);
        }
        let credential_source = create_credential_source(
            &mut rng,
            "example.com",
            vec![MAX_SUPPORTED_RESIDENTIAL_KEYS as u8],
        );
        assert_eq!(
            persistent_store.store_credential(credential_source),
            Err(Ctap2StatusCode::CTAP2_ERR_KEY_STORE_FULL)
        );
        assert_eq!(
            persistent_store.count_credentials(),
            MAX_SUPPORTED_RESIDENTIAL_KEYS
        );
    }

    #[test]
    fn test_filter() {
        let mut rng = ThreadRng256 {};
        let mut persistent_store = PersistentStore::new(&mut rng);
        assert_eq!(persistent_store.count_credentials(), 0);
        let credential_source0 = create_credential_source(&mut rng, "example.com", vec![0x00]);
        let credential_source1 = create_credential_source(&mut rng, "example.com", vec![0x01]);
        let credential_source2 =
            create_credential_source(&mut rng, "another.example.com", vec![0x02]);
        let id0 = credential_source0.credential_id.clone();
        let id1 = credential_source1.credential_id.clone();
        assert!(persistent_store
            .store_credential(credential_source0)
            .is_ok());
        assert!(persistent_store
            .store_credential(credential_source1)
            .is_ok());
        assert!(persistent_store
            .store_credential(credential_source2)
            .is_ok());

        let filtered_credentials = persistent_store.filter_credential("example.com");
        assert_eq!(filtered_credentials.len(), 2);
        assert!(
            (filtered_credentials[0].credential_id == id0
                && filtered_credentials[1].credential_id == id1)
                || (filtered_credentials[1].credential_id == id0
                    && filtered_credentials[0].credential_id == id1)
        );
    }

    #[test]
    fn test_find() {
        let mut rng = ThreadRng256 {};
        let mut persistent_store = PersistentStore::new(&mut rng);
        assert_eq!(persistent_store.count_credentials(), 0);
        let credential_source0 = create_credential_source(&mut rng, "example.com", vec![0x00]);
        let credential_source1 = create_credential_source(&mut rng, "example.com", vec![0x01]);
        let id0 = credential_source0.credential_id.clone();
        let key0 = credential_source0.private_key.clone();
        assert!(persistent_store
            .store_credential(credential_source0)
            .is_ok());
        assert!(persistent_store
            .store_credential(credential_source1)
            .is_ok());

        let no_credential = persistent_store.find_credential("another.example.com", &id0);
        assert_eq!(no_credential, None);
        let found_credential = persistent_store.find_credential("example.com", &id0);
        let expected_credential = PublicKeyCredentialSource {
            key_type: PublicKeyCredentialType::PublicKey,
            credential_id: id0,
            private_key: key0,
            rp_id: String::from("example.com"),
            user_handle: vec![0x00],
            other_ui: None,
        };
        assert_eq!(found_credential, Some(expected_credential));
    }

    #[test]
    fn test_master_keys() {
        let mut rng = ThreadRng256 {};
        let mut persistent_store = PersistentStore::new(&mut rng);

        // Master keys stay the same between resets.
        let master_keys_1 = persistent_store.master_keys();
        let master_keys_2 = persistent_store.master_keys();
        assert_eq!(master_keys_2.encryption, master_keys_1.encryption);
        assert_eq!(master_keys_2.hmac, master_keys_1.hmac);

        // Master keys change after reset. This test may fail if the random generator produces the
        // same keys.
        let master_encryption_key = master_keys_1.encryption.to_vec();
        let master_hmac_key = master_keys_1.hmac.to_vec();
        persistent_store.reset(&mut rng);
        let master_keys_3 = persistent_store.master_keys();
        assert!(master_keys_3.encryption as &[u8] != &master_encryption_key[..]);
        assert!(master_keys_3.hmac as &[u8] != &master_hmac_key[..]);
    }

    #[test]
    fn test_pin_hash() {
        use crate::ctap::PIN_AUTH_LENGTH;
        let mut rng = ThreadRng256 {};
        let mut persistent_store = PersistentStore::new(&mut rng);

        // Pin hash is initially not set.
        assert!(persistent_store.pin_hash().is_none());

        // Setting the pin hash sets the pin hash.
        let random_data = rng.gen_uniform_u8x32();
        assert_eq!(random_data.len(), 2 * PIN_AUTH_LENGTH);
        let pin_hash_1 = array_ref!(random_data, 0, PIN_AUTH_LENGTH);
        let pin_hash_2 = array_ref!(random_data, PIN_AUTH_LENGTH, PIN_AUTH_LENGTH);
        persistent_store.set_pin_hash(&pin_hash_1);
        assert_eq!(persistent_store.pin_hash(), Some(pin_hash_1));
        assert_eq!(persistent_store.pin_hash(), Some(pin_hash_1));
        persistent_store.set_pin_hash(&pin_hash_2);
        assert_eq!(persistent_store.pin_hash(), Some(pin_hash_2));
        assert_eq!(persistent_store.pin_hash(), Some(pin_hash_2));

        // Resetting the storage resets the pin hash.
        persistent_store.reset(&mut rng);
        assert!(persistent_store.pin_hash().is_none());
    }

    #[test]
    fn test_pin_retries() {
        let mut rng = ThreadRng256 {};
        let mut persistent_store = PersistentStore::new(&mut rng);

        // The pin retries is initially at the maximum.
        assert_eq!(persistent_store.pin_retries(), MAX_PIN_RETRIES);

        // Decrementing the pin retries decrements the pin retries.
        for pin_retries in (0..MAX_PIN_RETRIES).rev() {
            persistent_store.decr_pin_retries();
            assert_eq!(persistent_store.pin_retries(), pin_retries);
        }

        // Decrementing the pin retries after zero does not modify the pin retries.
        persistent_store.decr_pin_retries();
        assert_eq!(persistent_store.pin_retries(), 0);

        // Resetting the pin retries resets the pin retries.
        persistent_store.reset_pin_retries();
        assert_eq!(persistent_store.pin_retries(), MAX_PIN_RETRIES);
    }
}