Newer
Older
from evrouting.graph_tools import (
CHARGING_COEFFICIENT_KEY, DISTANCE_KEY, CONSUMPTION_KEY, HAVERSINE_KEY
)
node_coordinates = [
(51.7705832, 7.0002595),
(51.7696529, 6.9568520)
]
for n_id, coordinates in enumerate(node_coordinates):
lat, lon = coordinates
# Add two nodes, that exist in osm test map
G.add_node(n_id, lat=lat, lon=lon)
STATIC_DIR = os.path.join(os.path.dirname(__file__), 'static')
G = read_osm(os.path.join(STATIC_DIR, 'map.osm'), car)
with open(os.path.join(STATIC_DIR, 'charging_stations.json'), 'r') as f:
charging_stations = json.load(f)
G.insert_charging_stations(charging_stations)
# Close two node 1
S = [{"lon": 7.0002593, "lat": 51.7705832, "power": 22.0}]
assert graph.nodes[0][CHARGING_COEFFICIENT_KEY] == 22.0 / 3.6
assert CHARGING_COEFFICIENT_KEY not in graph.nodes[1]
# Close exactly at node 1
S = [{"lon": 7.0002595, "lat": 51.7705832, "power": 22.0}]
assert graph.nodes[0][CHARGING_COEFFICIENT_KEY] == 22.0 / 3.6
assert CHARGING_COEFFICIENT_KEY not in graph.nodes[1]
def test_shortest_route(map_graph):
s = (51.7769461, 6.9832152)
t = (51.7796487, 6.9795230)
route = [
"1827268706",
"1826594887",
"4955446046",
"4955446048",
"34053450",
"4955446051",
"418009799"
]
result = shortest_path(map_graph, _s, _t, car)
assert route == [n for n, t in result.charge_path]
def test_shortest_route_dimensions(map_graph):
s = (51.75041438844966, 6.9332313537597665)
t = (51.75657783347559, 7.000350952148438)
_s = map_graph.find_nearest(s)
_t = map_graph.find_nearest(t)
result = shortest_path(map_graph, _s, _t, car)
path = [n for n, t in result.charge_path]
time = sum([map_graph[u][v][DISTANCE_KEY] for u, v in zip(path[:-1], path[1:])])
distance = sum([map_graph[u][v][HAVERSINE_KEY] for u, v in zip(path[:-1], path[1:])])
assert time / 60 < 10
assert time / 60 > 5
assert distance / 1000 < 6
assert distance / 1000 > 4
def test_charge_shortest_route_dimensions(map_graph):
s = (51.75041438844966, 6.9332313537597665)
t = (51.75657783347559, 7.000350952148438)
_s = map_graph.find_nearest(s)
_t = map_graph.find_nearest(t)
consumption = 1 # kWh/km
cost_path = 6 * consumption * 1000 # distance * consumption in Wh
def c(G, u, v):
"""Returns consumption in Wh from u to v."""
try:
return G[u][v][HAVERSINE_KEY] * consumption
except KeyError:
return G[u][v][CONSUMPTION_KEY]
result = charge.routing.shortest_path(
G=map_graph,
charging_stations=map_graph.charging_stations,
s=_s,
t=_t,
initial_soc=10000, # > cost_path
final_soc=0,
capacity=10000,
c=c
)
path = shortest_path(map_graph, _s, _t, car)
assert type(result) is Result
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
def test_charge_shortest_route_stop(map_graph):
"""Full tank is enough to get there. Must be equal to shortest path."""
s = (51.75041438844966, 6.9332313537597665)
t = (51.75657783347559, 7.000350952148438)
_s = map_graph.find_nearest(s)
_t = map_graph.find_nearest(t)
consumption = 1 # kWh/km
cost_path = 6 * consumption * 1000 # distance * consumption in Wh
def c(G, u, v):
"""Returns consumption in Wh from u to v."""
try:
return G[u][v][HAVERSINE_KEY] * consumption
except KeyError:
return G[u][v][CONSUMPTION_KEY]
result = charge.routing.shortest_path(
G=map_graph,
charging_stations=map_graph.charging_stations,
s=_s,
t=_t,
initial_soc=2000, # > cost_path
final_soc=0,
capacity=10000,
c=c
)