Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
ba
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
markn92
ba
Commits
8d5ac7e5
Commit
8d5ac7e5
authored
5 years ago
by
markn92
Browse files
Options
Downloads
Patches
Plain Diff
doc
parent
a80c8c01
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
evrouting/charge/routing.py
+93
-47
93 additions, 47 deletions
evrouting/charge/routing.py
with
93 additions
and
47 deletions
evrouting/charge/routing.py
+
93
−
47
View file @
8d5ac7e5
from
typing
import
Dict
,
List
"""
Module contains the main algorithm.
"""
from
typing
import
Dict
,
List
,
Tuple
,
Set
from
math
import
inf
from
math
import
inf
import
networkx
as
nx
import
networkx
as
nx
...
@@ -14,58 +15,33 @@ from evrouting.charge.factories import (
...
@@ -14,58 +15,33 @@ from evrouting.charge.factories import (
)
)
def
shortest_path
(
G
:
nx
.
Graph
,
charging_stations
:
s
et
,
s
:
Node
,
t
:
Node
,
def
shortest_path
(
G
:
nx
.
Graph
,
charging_stations
:
S
et
[
Node
]
,
s
:
Node
,
t
:
Node
,
initial_soc
:
SoC
,
final_soc
:
SoC
,
capacity
:
SoC
):
initial_soc
:
SoC
,
final_soc
:
SoC
,
capacity
:
SoC
):
"""
"""
Calculates shortest path using the CHarge algorithm.
Calculates shortest path using the CHarge algorithm.
:param G:
:param G: Graph to work on
:param charging_stations:
:param charging_stations: Set containing identifiers of all
:param s:
charging stations
:param t:
:param s: Start Node
:param initial_soc:
:param t: End Node
:param final_soc:
:param initial_soc: SoC at s
:param capacity:
:param final_soc: SoC at t
:param capacity: Battery capacity
:return:
:return:
"""
"""
# Add node that is only connected to the final node and takes no time
t
,
factories
,
queues
=
_setup
(
# to travel but consumes exactly the amount of energy that should be
G
,
charging_stations
,
capacity
,
initial_soc
,
final_soc
,
s
,
t
# left at t (final_soc). The node becomes the new final node.
)
dummy_final_node
:
Node
=
len
(
G
)
G
.
add_node
(
dummy_final_node
)
G
.
add_edge
(
t
,
dummy_final_node
,
weight
=
0
,
c
=
final_soc
)
t
=
dummy_final_node
# Init factories
cf_map
=
ChargingFunctionMap
(
G
=
G
,
capacity
=
capacity
,
initial_soc
=
initial_soc
)
f_soc_factory
=
SoCFunctionFactory
(
cf_map
)
soc_profile_factory
=
SoCProfileFactory
(
G
,
capacity
)
# Init maps to manage labels
l_set
:
Dict
[
int
,
List
[
Label
]]
=
{
v
:
[]
for
v
in
G
}
l_uns
:
Dict
[
int
,
LabelPriorityQueue
]
=
{
v
:
LabelPriorityQueue
(
f_soc_factory
,
l_set
[
v
])
for
v
in
G
}
# Add dummy charging station with charging function
# cf(t) = initial_soc (ie charging coefficient is zero).
dummy_node
:
Node
=
len
(
G
.
nodes
)
G
.
add_node
(
dummy_node
,
c
=
0
)
charging_stations
.
add
(
dummy_node
)
# Register dummy charging station as the last
f_soc_factory
:
SoCFunctionFactory
=
factories
[
'
f_soc
'
]
# seen charging station before s.
soc_profile_factory
:
SoCProfileFactory
=
factories
[
'
soc_profile
'
]
l_uns
[
s
].
insert
(
Label
(
cf_map
:
ChargingFunctionMap
=
factories
[
'
cf
'
]
t_trip
=
0
,
soc_last_cs
=
initial_soc
,
last_cs
=
dummy_node
,
soc_profile_cs_v
=
soc_profile_factory
(
s
)
))
# A priority queue defines which node to visit next.
l_set
:
Dict
[
int
,
List
[
Label
]]
=
queues
[
'
settled labels
'
]
# The key is the trip time.
l_uns
:
Dict
[
int
,
LabelPriorityQueue
]
=
queues
[
'
unsettled labels
'
]
prio_queue
=
PriorityQueue
()
prio_queue
:
PriorityQueue
=
queues
[
'
priority queue
'
]
prio_queue
.
insert
(
s
,
priority
=
0
,
count
=
0
)
while
prio_queue
:
while
prio_queue
:
node_min
:
Node
=
prio_queue
.
peak_min
()
node_min
:
Node
=
prio_queue
.
peak_min
()
...
@@ -128,9 +104,79 @@ def shortest_path(G: nx.Graph, charging_stations: set, s: Node, t: Node,
...
@@ -128,9 +104,79 @@ def shortest_path(G: nx.Graph, charging_stations: set, s: Node, t: Node,
# Update queue if entered label is the new minimum label
# Update queue if entered label is the new minimum label
# of the neighbour.
# of the neighbour.
try
:
try
:
is_new_min
_label
:
bool
=
label_neighbour
==
l_uns
[
n
].
peak_min
()
is_new_min
:
bool
=
label_neighbour
==
l_uns
[
n
].
peak_min
()
except
KeyError
:
except
KeyError
:
continue
continue
if
is_new_min
_label
:
if
is_new_min
:
prio_queue
.
insert
(
n
,
**
keys
(
f_soc_factory
(
label_neighbour
)))
prio_queue
.
insert
(
n
,
**
keys
(
f_soc_factory
(
label_neighbour
)))
def
_setup
(
G
:
nx
.
Graph
,
charging_stations
:
Set
[
Node
],
capacity
:
SoC
,
initial_soc
:
SoC
,
final_soc
:
SoC
,
s
:
Node
,
t
:
Node
)
->
Tuple
[
Node
,
Dict
,
Dict
]:
"""
Initialises the data structures and graph setup.
:returns: Tupel(t, factories, queues):
:t: The new dummy final node taking care of the final SoC.
:factories: A dict containing factory functions for:
:```factories[
'
f_soc
'
]```: The SoC Functions
:```factories[
'
cf
'
]```: The Charging Functions
:```factories[
'
soc_profile
'
]```: The SoC Profiles
:queues: A dict containing initialized queues for the algorithm.
:```queues[
'
settled labels
'
]```:
:```queues[
'
unsettled labels
'
]```:
:```queues[
'
priority queue
''
]```:
"""
# Add node that is only connected to the final node and takes no time
# to travel but consumes exactly the amount of energy that should be
# left at t (final_soc). The node becomes the new final node.
dummy_final_node
:
Node
=
len
(
G
)
G
.
add_node
(
dummy_final_node
)
G
.
add_edge
(
t
,
dummy_final_node
,
weight
=
0
,
c
=
final_soc
)
t
=
dummy_final_node
# Init factories
cf_map
=
ChargingFunctionMap
(
G
=
G
,
capacity
=
capacity
,
initial_soc
=
initial_soc
)
f_soc_factory
=
SoCFunctionFactory
(
cf_map
)
soc_profile_factory
=
SoCProfileFactory
(
G
,
capacity
)
# Init maps to manage labels
l_set
:
Dict
[
int
,
List
[
Label
]]
=
{
v
:
[]
for
v
in
G
}
l_uns
:
Dict
[
int
,
LabelPriorityQueue
]
=
{
v
:
LabelPriorityQueue
(
f_soc_factory
,
l_set
[
v
])
for
v
in
G
}
# Add dummy charging station with charging function
# cf(t) = initial_soc (ie charging coefficient is zero).
dummy_node
:
Node
=
len
(
G
.
nodes
)
G
.
add_node
(
dummy_node
,
c
=
0
)
charging_stations
.
add
(
dummy_node
)
# Register dummy charging station as the last
# seen charging station before s.
l_uns
[
s
].
insert
(
Label
(
t_trip
=
0
,
soc_last_cs
=
initial_soc
,
last_cs
=
dummy_node
,
soc_profile_cs_v
=
soc_profile_factory
(
s
)
))
# A priority queue defines which node to visit next.
# The key is the trip time.
prio_queue
:
PriorityQueue
=
PriorityQueue
()
prio_queue
.
insert
(
s
,
priority
=
0
,
count
=
0
)
return
(
t
,
# New final Node
{
# factories
'
f_soc
'
:
f_soc_factory
,
'
cf
'
:
cf_map
,
'
soc_profile
'
:
soc_profile_factory
},
{
# queues
'
settled labels
'
:
l_set
,
'
unsettled labels
'
:
l_uns
,
'
priority queue
'
:
prio_queue
}
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment