Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
molecular-simulation
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
nguyed99
molecular-simulation
Commits
be5cadc9
Commit
be5cadc9
authored
1 year ago
by
jung_42
Browse files
Options
Downloads
Patches
Plain Diff
Update
parent
d293d035
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
PS11_Jung/akira_1.py
+181
-0
181 additions, 0 deletions
PS11_Jung/akira_1.py
PS11_Jung/odyssey.py
+79
-52
79 additions, 52 deletions
PS11_Jung/odyssey.py
with
260 additions
and
52 deletions
PS11_Jung/akira_1.py
0 → 100644
+
181
−
0
View file @
be5cadc9
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
tqdm
import
tqdm
N
=
48
K
=
1
# spring constant
m
=
1
gamma
=
0.2
k_BT
=
0.1
d
=
3
r_max
=
1
eps
=
1
dt
=
0.0005
t_max
=
10
**
6
*
dt
t
=
np
.
arange
(
0
,
t_max
,
dt
)
M
=
N
*
m
# def BAOAB(force, x0, p0, m, dt, N):
# assert(x0.shape == p0.shape)
# x = np.zeros((len(t), *x0.shape))
# p = np.zeros((len(t), *p0.shape))
# U = np.zeros(len(t))
# x[0] = x0
# p[0] = p0
# xi_2 = np.sqrt(k_BT*(1 - np.exp(-2 * gamma * dt)))
# f, U[0] = force(x[0])
# for i in tqdm(range(1, len(t))):
# r = np.random.normal(0,1,(N,d))
# p[i] = p[i-1] + 1/2 * f * dt # same
# x[i] = x[i-1] + p[i] / (2*m) * dt # diff
# p[i] = np.exp(-gamma*dt) * p[i] + xi_2 * r * np.sqrt(m)
# x[i] = x[i] + (dt/2) * p[i]/m
# f, U[i] = force(x[i])
# p[i] = p[i] + 1/2 * f * dt
# return x, p, U
# def fene(r):
# dr = r[1:] - r[:-1]
# dr_abs = np.linalg.norm(dr, axis=1)
# fval = -K*dr / (1-(dr_abs / r_max)**2)[:,np.newaxis]
# f = np.zeros(r.shape)
# f[:-1] += -fval
# f[1:] += fval
# U = -1/2 * K * r_max**2 *np.sum(np.log(1 - (dr_abs / r_max)**2))
# return f, U
# r0= np.zeros((N,3))
# r0[:, 0] = 0.5*np.arange(N)
# p0 = np.random.normal(0, np.sqrt(m * k_BT), (N, d))
# r, p, U = BAOAB(fene, r0,p0, m, dt, N)
# E = 1 / (2 * m) * np.sum(p**2, axis=(1,2)) + U
# plt.plot(t,E)
# plt.show()
# t_eq = 100
# t_eq = int(t_eq/dt)
# r_cm = 1/M * np.sum(m * r, axis=1)
# r_cm = np.tile(r_cm[:, np.newaxis, :], (1, N, 1))
# R_g = (1/M * np.sum(np.linalg.norm(r-r_cm, axis=2)**2, axis=1))**(1/2)
# R_g_eq = np.mean(R_g[t_eq:])
# d_R_g_eq = 0.5 / R_g_eq * np.std((1/M * np.sum(np.linalg.norm(r-r_cm, axis=2)**2, axis=1))**(1/2))
# R_e_eq = np.mean(np.linalg.norm(r[t_eq:,-1] - r[t_eq:,0], axis=1)**2)**(1/2)
# d_R_e_eq = 0.5 / R_e_eq * np.std(np.linalg.norm(r[t_eq:,-1] - r[t_eq:,0], axis=1)**2)
# T = 1 / (2 * m) * np.sum(p**2, axis=(1, 2))
# H = U[t_eq:] + T[t_eq:]
# dH = H - np.mean(H)
# c_V = np.mean(dH**2) / (N * k_BT**2)
# dc_V = np.std(dH**2) / (N * k_BT**2)
# print(f'R_g at equilibrium: {R_g_eq} +/- {d_R_g_eq*100/R_g_eq} %')
# print(f'R_e at equilibrium: {R_e_eq} +/- {d_R_e_eq*100/R_e_eq} %')
# print(f"c_V = {c_V} ± {dc_V*100/c_V} k_B")
# b)
L
=
N
*
r_max
/
3
def
fene_chain
(
r
,
L
):
dr
=
np
.
roll
(
r
,
-
1
,
axis
=
0
)
-
r
dr
-=
(
dr
>
L
/
2
)
*
L
dr
+=
(
dr
<
-
L
/
2
)
*
L
assert
np
.
all
(
np
.
abs
(
dr
)
<=
L
/
2
)
dr_abs
=
np
.
linalg
.
norm
(
dr
,
axis
=
1
)
fval
=
-
K
*
dr
/
(
1
-
(
dr_abs
/
r_max
)
**
2
)[:,
None
]
f
=
np
.
zeros
(
r
.
shape
)
f
=
-
fval
.
copy
()
f
+=
np
.
roll
(
fval
,
1
,
axis
=
0
)
U
=
-
1
/
2
*
K
*
r_max
**
2
*
np
.
sum
(
np
.
log
(
1
-
(
dr_abs
/
r_max
)
**
2
))
return
f
,
U
def
BAOAB_pbc
(
force
,
x0
,
p0
,
m
,
dt
,
L
):
assert
(
x0
.
shape
==
p0
.
shape
)
x
=
np
.
zeros
((
len
(
t
),
*
x0
.
shape
))
p
=
np
.
zeros
((
len
(
t
),
*
p0
.
shape
))
U
=
np
.
zeros
(
len
(
t
))
x
[
0
]
=
x0
p
[
0
]
=
p0
xi_2
=
np
.
sqrt
(
k_BT
*
(
1
-
np
.
exp
(
-
2
*
gamma
*
dt
)))
f
,
U
[
0
]
=
force
(
x
[
0
],
L
)
for
i
in
tqdm
(
range
(
1
,
len
(
t
))):
r
=
np
.
random
.
normal
(
0
,
1
,(
N
,
d
))
p
[
i
]
=
p
[
i
-
1
]
+
1
/
2
*
f
*
dt
x
[
i
]
=
x
[
i
-
1
]
+
p
[
i
]
/
(
2
*
m
)
*
dt
# enforce periodic boundaries
x
[
i
]
-=
(
x
[
i
]
>
L
/
2
)
*
L
x
[
i
]
+=
(
x
[
i
]
<
-
L
/
2
)
*
L
p
[
i
]
=
np
.
exp
(
-
gamma
*
dt
)
*
p
[
i
]
+
xi_2
*
r
/
np
.
sqrt
(
m
)
x
[
i
]
=
x
[
i
]
+
(
dt
/
2
)
*
p
[
i
]
/
m
# enforce periodic boundaries
x
[
i
]
-=
(
x
[
i
]
>
L
/
2
)
*
L
x
[
i
]
+=
(
x
[
i
]
<
-
L
/
2
)
*
L
f
,
U
[
i
]
=
force
(
x
[
i
],
L
)
p
[
i
]
=
p
[
i
]
+
1
/
2
*
f
*
dt
return
x
,
p
,
U
r0_0
=
np
.
zeros
((
N
,
3
))
r0_0
[:,
0
]
=
0.5
*
np
.
arange
(
N
)
p0_0
=
np
.
random
.
normal
(
0
,
np
.
sqrt
(
m
*
k_BT
),
(
N
,
d
))
r
,
p
,
U
=
BAOAB_pbc
(
fene_chain
,
r0_0
,
p0_0
,
m
,
dt
,
N
)
## mean square displacement
msdv_0
=
np
.
zeros
(
len
(
r
))
for
i
in
tqdm
(
range
(
1
,
len
(
msdv_0
))):
# msdv_0[i] = np.mean(np.sum((r[i:] - r[:-i])**2, axis=2))
msdv_0
[
i
]
=
np
.
mean
(
np
.
linalg
.
norm
(
r
[
i
:]
-
r
[:
-
i
],
axis
=
2
)
**
2
)
N
=
96
r0_1
=
np
.
zeros
((
N
,
3
))
r0_1
[:,
0
]
=
0.5
*
np
.
arange
(
N
)
p0_1
=
np
.
random
.
normal
(
0
,
np
.
sqrt
(
m
*
k_BT
),
(
N
,
d
))
r1
,
p1
,
U1
=
BAOAB_pbc
(
fene_chain
,
r0_1
,
p0_1
,
m
,
dt
,
N
)
msdv_1
=
np
.
zeros
(
len
(
r1
))
for
i
in
tqdm
(
range
(
1
,
len
(
msdv_1
))):
# msdv_1[i] = np.mean(np.sum((r1[i:] - r1[:-i])**2, axis=2))
msdv_1
[
i
]
=
np
.
mean
(
np
.
linalg
.
norm
(
r1
[
i
:]
-
r1
[:
-
i
],
axis
=
2
)
**
2
)
plt
.
figure
()
plt
.
loglog
(
t
,
msdv_0
,
label
=
r
'
$N=48$
'
)
plt
.
loglog
(
t
,
msdv_1
,
label
=
r
'
$N=96$
'
)
plt
.
xlabel
(
r
'
$\delta r^2(t) / r_{max}^{2}$
'
)
plt
.
ylabel
(
r
'
$t / \tau$
'
)
plt
.
legend
()
plt
.
tight_layout
()
plt
.
savefig
(
'
2b_N_48.pdf
'
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
PS11_Jung/odyssey.py
+
79
−
52
View file @
be5cadc9
...
@@ -160,17 +160,34 @@ def LJ_pair(r, r_new, L):
...
@@ -160,17 +160,34 @@ def LJ_pair(r, r_new, L):
t_max
=
10
**
3
t_max
=
10
**
3
t
=
np
.
arange
(
0
,
t_max
*
dt
,
dt
)
t
=
np
.
arange
(
0
,
t_max
*
dt
,
dt
)
r_bef
,
p_bef
,
U
,
f
=
verlet_pot
(
LJ
,
x0
,
p0
,
m
,
dt
,
t_max
,
L
)
r_bef
,
p_bef
,
U
,
f
=
verlet_pot
(
LJ
,
x0
,
p0
,
m
,
dt
,
t_max
,
L
)
# E = 1 / (2 * m) * np.sum(p**2, axis=(1,2)) + U
# E = 1 / (2 * m) * np.sum(p_bef**2, axis=(1,2)) + U
# # delta_p = np.sum(p - p[0], axis=1)
# # plt.figure()
# # root mean square deviation of energy
# # plt.plot(t,delta_p[:,0], label=r'$\alpha=x$')
# rmsq_dev_E = np.sqrt(np.mean((E-E[0])**2) / np.mean(E)**2)
# # plt.plot(t,delta_p[:,1], label=r'$\alpha=y$')
# # root mean square deviation of Impuls
# # plt.plot(t,delta_p[:,2], label=r'$\alpha=z$')
rmsq_dev_p
=
np
.
sqrt
(
np
.
mean
(
np
.
linalg
.
norm
(
p_bef
-
p_bef
[
0
])
**
2
))
# # plt.xlabel(r'$t / \tau$')
deta_p
=
np
.
abs
(
p_bef
-
p_bef
[
0
])
# # plt.ylabel(r'$\delta p / \frac{\tau \epsilon}{\sigma}$')
dev_p
=
np
.
einsum
(
'
...i,...i->...
'
,
deta_p
,
deta_p
)
# # plt.legend()
rmsq_dev_p
=
np
.
sqrt
(
np
.
mean
(
dev_p
))
# # plt.tight_layout()
# print(f'{rmsq_dev_E=}')
# # plt.savefig(f'problem1b.png')
rmsq_dev_p_2
=
(
np
.
mean
(
np
.
linalg
.
norm
(
p_bef
-
p_bef
[
0
],
axis
=
(
1
,
2
))
**
2
))
**
(
1
/
2
)
rmsq_dev_p_2
=
(
np
.
mean
(
np
.
linalg
.
norm
(
np
.
sum
(
p_bef
-
p_bef
[
0
],
axis
=
1
),
axis
=
1
)
**
2
))
**
(
1
/
2
)
print
(
f
'
{
rmsq_dev_p
=
}
'
)
print
(
f
'
{
rmsq_dev_p_2
=
}
'
)
# delta_p = np.sum(p_bef - p_bef[0], axis=1)
# plt.figure()
# plt.plot(t,delta_p[:,0], label=r'$\alpha=x$')
# plt.plot(t,delta_p[:,1], label=r'$\alpha=y$')
# plt.plot(t,delta_p[:,2], label=r'$\alpha=z$')
# plt.xlabel(r'$t / \tau$')
# plt.ylabel(r'$\delta p / \frac{\tau \epsilon}{\sigma}$')
# plt.legend()
# plt.tight_layout()
# plt.savefig(f'problem1b.png')
# # c)
# # c)
# ## Determine equilibration time
# ## Determine equilibration time
...
@@ -185,41 +202,51 @@ r_bef, p_bef, U, f = verlet_pot(LJ, x0, p0, m, dt, t_max, L)
...
@@ -185,41 +202,51 @@ r_bef, p_bef, U, f = verlet_pot(LJ, x0, p0, m, dt, t_max, L)
t_eq
=
100
t_eq
=
100
t_max
=
10
**
4
t_max
=
10
**
4
r
,
p
,
U
,
f
=
verlet_thermostat
(
LJ
,
r_bef
[
t_eq
],
p0
,
m
,
dt
,
t_max
,
L
,
int
(
1
/
dt
))
no_of_simulations
=
6
V
=
np
.
sum
(
r
*
f
,
axis
=
(
1
,
2
))
p_ensemble
=
np
.
zeros
(
no_of_simulations
)
E_kin
=
1
/
(
2
*
m
)
*
np
.
sum
(
p
**
2
,
axis
=
(
1
,
2
))
std_p_ensemble
=
np
.
zeros
(
no_of_simulations
)
# plt.figure()
U_ensemble
=
np
.
zeros
(
no_of_simulations
)
# plt.plot(np.arange(0,t_max,t_max/len(V)), V)
std_U_ensemble
=
np
.
zeros
(
no_of_simulations
)
# plt.xlabel(r'$t / \tau$')
mu_ensemble
=
np
.
zeros
(
no_of_simulations
)
# plt.ylabel(r'$V / \epsilon \tau$')
std_mu_ensemble
=
np
.
zeros
(
no_of_simulations
)
# plt.tight_layout()
# plt.savefig('virial_function_1_protocol.pdf')
## for different ensembles with different seeds !
for
i
in
range
(
no_of_simulations
):
random
.
seed
(
i
)
# no_of_simulations = 6
p0
=
np
.
random
.
normal
(
0
,
np
.
sqrt
(
m
*
k_BT
),
(
N
,
d
))
# p_ensemble = np.zeros(no_of_simulations)
r
,
p
,
U
,
f
=
verlet_thermostat
(
LJ
,
r_bef
[
t_eq
],
p0
,
m
,
dt
,
t_max
,
L
,
int
(
1
/
dt
))
# std_p_ensemble = np.zeros(no_of_simulations)
V
=
np
.
sum
(
r
*
f
,
axis
=
(
1
,
2
))
# U_ensemble = np.zeros(no_of_simulations)
p_samples
=
rho
*
k_BT
+
(
1
/
(
3
*
L
**
3
))
*
V
# std_U_ensemble = np.zeros(no_of_simulations)
U_by_N
=
U
/
N
# mu_ensemble = np.zeros(no_of_simulations)
# std_mu_ensemble = np.zeros(no_of_simulations)
p_ensemble
[
i
]
=
np
.
mean
(
p_samples
)
std_p_ensemble
[
i
]
=
np
.
std
(
p_samples
)
# ## for different ensembles with different seeds !
U_ensemble
[
i
]
=
np
.
mean
(
U_by_N
)
# for i in range(no_of_simulations):
std_U_ensemble
[
i
]
=
np
.
std
(
U_by_N
)
# random.seed(i)
# p0 = np.random.normal(0, np.sqrt(m * k_BT), (N, d))
#mu_ex
# r,p,U,f = verlet_thermostat(LJ, r_bef[t_eq], p0, m, dt, t_max,L,int(1/dt))
k
=
7
# V = np.sum(r*f, axis=(1,2))
r_test
=
r
[
int
(
1
/
dt
)::
int
(
3
/
dt
)]
# p_samples = rho*k_BT + (1 / (3 * L**3))* V
# U_by_N = U/N
samples
=
np
.
zeros
((
len
(
r_test
),
10
**
k
))
for
y
,
x
in
enumerate
(
r_test
):
# p_ensemble[i] = np.mean(p_samples)
for
j
in
range
(
10
**
k
):
# std_p_ensemble[i] = np.std(p_samples)
# while np.exp(-beta * LJ_pair(x, np.random.uniform(-L/2, L/2, d), L)) == 0:
# U_ensemble[i] = np.mean(U_by_N)
samples
[
y
,
j
]
=
np
.
exp
(
-
beta
*
LJ_pair
(
x
,
np
.
random
.
uniform
(
-
L
/
2
,
L
/
2
,
d
),
L
))
# std_U_ensemble[i] = np.std(U_by_N)
mean
=
np
.
mean
(
samples
)
# #mu_ex
std
=
np
.
std
(
samples
)
# k = 5
# r_test = r[int(1 / dt)::int(3 / dt)]
# samples = np.zeros((len(r_test), 10**k))
# for y, x in enumerate(r_test):
# for j in range(10**k):
# # while np.exp(-beta * LJ_pair(x, np.random.uniform(-L/2, L/2, d), L)) == 0:
# samples[y,j] = np.exp(-beta * LJ_pair(x, np.random.uniform(-L/2, L/2, d), L))
# mean = np.mean(samples)
# std = np.std(samples)
# mu = - np.log(mean) / beta
# mu = - np.log(mean) / beta
# std_mu = np.abs(1 / (mean * beta)) * std
# std_mu = np.abs(1 / (mean * beta)) * std
...
@@ -228,14 +255,14 @@ for i in range(no_of_simulations):
...
@@ -228,14 +255,14 @@ for i in range(no_of_simulations):
# a = [-1.851747546190128, -1.878954082130441, -1.9081508511080745]
# a = [-1.851747546190128, -1.878954082130441, -1.9081508511080745]
# a_std = [5.412283418498762, 5.93628399967974, 5.53353222778447]
# a_std = [5.412283418498762, 5.93628399967974, 5.53353222778447]
mu_ensemble
[
i
]
=
-
np
.
log
(
mean
)
/
beta
#
mu_ensemble[i] = - np.log(mean) / beta
std_mu_ensemble
[
i
]
=
np
.
abs
(
1
/
(
mean
*
beta
))
*
std
#
std_mu_ensemble[i] = np.abs(1 / (mean * beta)) * std
print
(
f
'
Pressure at equilibrium:
{
np
.
mean
(
p_ensemble
)
}
+/-
{
np
.
std
(
std_p_ensemble
)
*
100
/
np
.
mean
(
p_ensemble
)
}
%
'
)
#
print(f'Pressure at equilibrium: {np.mean(p_ensemble)} +/- {np.std(std_p_ensemble)*100/np.mean(p_ensemble)} %')
print
(
f
'
Internal energy per particle at equilibrium:
{
np
.
mean
(
U_ensemble
)
}
+/-
{
np
.
std
(
std_U_ensemble
)
*
100
/
np
.
mean
(
U_ensemble
)
}
%
'
)
#
print(f'Internal energy per particle at equilibrium: {np.mean(U_ensemble)} +/- {np.std(std_U_ensemble)*100/np.mean(U_ensemble)} %')
print
(
f
'
Excess chemical potential at equilibrium:
{
np
.
mean
(
mu_ensemble
)
}
+/-
{
np
.
std
(
std_mu_ensemble
)
*
100
/
np
.
mean
(
mu_ensemble
)
}
%
'
)
#
print(f'Excess chemical potential at equilibrium: {np.mean(mu_ensemble)} +/- {np.std(std_mu_ensemble)*100/np.mean(mu_ensemble)} %')
print
(
f
'
Excess chemical potential at equilibrium_2:
{
np
.
mean
(
mu_ensemble
)
}
+/-
{
np
.
std
(
mu_ensemble
)
*
100
/
np
.
mean
(
mu_ensemble
)
}
%
'
)
#
print(f'Excess chemical potential at equilibrium_2: {np.mean(mu_ensemble)} +/- {np.std(mu_ensemble)*100/np.mean(mu_ensemble)} %')
## mu_ex
## mu_ex
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment