Skip to content
Snippets Groups Projects
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
radau.f 70.64 KiB
      SUBROUTINE RADAU(N,FCN,X,Y,XEND,H,
     &                  RTOL,ATOL,ITOL,
     &                  JAC ,IJAC,MLJAC,MUJAC,
     &                  MAS ,IMAS,MLMAS,MUMAS,
     &                  SOLOUT,IOUT,
     &                  WORK,LWORK,IWORK,LIWORK,RPAR,IPAR,IDID)
C ----------------------------------------------------------
C     NUMERICAL SOLUTION OF A STIFF (OR DIFFERENTIAL ALGEBRAIC)
C     SYSTEM OF FIRST 0RDER ORDINARY DIFFERENTIAL EQUATIONS
C                     M*Y'=F(X,Y).
C     THE SYSTEM CAN BE (LINEARLY) IMPLICIT (MASS-MATRIX M .NE. I)
C     OR EXPLICIT (M=I).
C     THE CODE IS BASED ON IMPLICIT RUNGE-KUTTA METHODS (RADAU IIA)
C     WITH VARIABLE ORDER (5, 9, 13), WITH STEP SIZE CONTROL
C     AND CONTINUOUS OUTPUT.
C
C     AUTHORS: E. HAIRER AND G. WANNER
C              UNIVERSITE DE GENEVE, DEPT. DE MATHEMATIQUES
C              CH-1211 GENEVE 24, SWITZERLAND 
C              E-MAIL:  Ernst.Hairer@math.unige.ch
C                       Gerhard.Wanner@math.unige.ch
C     
C     FOR A DESCRIPTION OF THE RELATED CODE RADAU5 SEE THE BOOK:
C         E. HAIRER AND G. WANNER, SOLVING ORDINARY DIFFERENTIAL
C         EQUATIONS II. STIFF AND DIFFERENTIAL-ALGEBRAIC PROBLEMS.
C         SPRINGER SERIES IN COMPUTATIONAL MATHEMATICS 14,
C         SPRINGER-VERLAG 1991, SECOND EDITION 1996.
C      
C     PRELIMINARY VERSION OF APRIL 23, 1998
C     (latest small correction: January 18, 2002)
C
C     INPUT PARAMETERS  
C     ----------------  
C     N           DIMENSION OF THE SYSTEM 
C
C     FCN         NAME (EXTERNAL) OF SUBROUTINE COMPUTING THE
C                 VALUE OF F(X,Y):
C                    SUBROUTINE FCN(N,X,Y,F,RPAR,IPAR)
C                    DOUBLE PRECISION X,Y(N),F(N)
C                    F(1)=...   ETC.
C                 RPAR, IPAR (SEE BELOW)
C
C     X           INITIAL X-VALUE
C
C     Y(N)        INITIAL VALUES FOR Y
C
C     XEND        FINAL X-VALUE (XEND-X MAY BE POSITIVE OR NEGATIVE)
C
C     H           INITIAL STEP SIZE GUESS;
C                 FOR STIFF EQUATIONS WITH INITIAL TRANSIENT, 
C                 H=1.D0/(NORM OF F'), USUALLY 1.D-3 OR 1.D-5, IS GOOD.
C                 THIS CHOICE IS NOT VERY IMPORTANT, THE STEP SIZE IS
C                 QUICKLY ADAPTED. (IF H=0.D0, THE CODE PUTS H=1.D-6).
C
C     RTOL,ATOL   RELATIVE AND ABSOLUTE ERROR TOLERANCES. THEY
C                 CAN BE BOTH SCALARS OR ELSE BOTH VECTORS OF LENGTH N.
C
C     ITOL        SWITCH FOR RTOL AND ATOL:
C                   ITOL=0: BOTH RTOL AND ATOL ARE SCALARS.
C                     THE CODE KEEPS, ROUGHLY, THE LOCAL ERROR OF
C                     Y(I) BELOW RTOL*ABS(Y(I))+ATOL
C                   ITOL=1: BOTH RTOL AND ATOL ARE VECTORS.
C                     THE CODE KEEPS THE LOCAL ERROR OF Y(I) BELOW
C                     RTOL(I)*ABS(Y(I))+ATOL(I).
C
C     JAC         NAME (EXTERNAL) OF THE SUBROUTINE WHICH COMPUTES
C                 THE PARTIAL DERIVATIVES OF F(X,Y) WITH RESPECT TO Y
C                 (THIS ROUTINE IS ONLY CALLED IF IJAC=1; SUPPLY
C                 A DUMMY SUBROUTINE IN THE CASE IJAC=0).
C                 FOR IJAC=1, THIS SUBROUTINE MUST HAVE THE FORM
C                    SUBROUTINE JAC(N,X,Y,DFY,LDFY,RPAR,IPAR)
C                    DOUBLE PRECISION X,Y(N),DFY(LDFY,N)
C                    DFY(1,1)= ...
C                 LDFY, THE COLUMN-LENGTH OF THE ARRAY, IS
C                 FURNISHED BY THE CALLING PROGRAM.
C                 IF (MLJAC.EQ.N) THE JACOBIAN IS SUPPOSED TO
C                    BE FULL AND THE PARTIAL DERIVATIVES ARE
C                    STORED IN DFY AS
C                       DFY(I,J) = PARTIAL F(I) / PARTIAL Y(J)
C                 ELSE, THE JACOBIAN IS TAKEN AS BANDED AND
C                    THE PARTIAL DERIVATIVES ARE STORED
C                    DIAGONAL-WISE AS
C                       DFY(I-J+MUJAC+1,J) = PARTIAL F(I) / PARTIAL Y(J).
C
C     IJAC        SWITCH FOR THE COMPUTATION OF THE JACOBIAN:
C                    IJAC=0: JACOBIAN IS COMPUTED INTERNALLY BY FINITE
C                       DIFFERENCES, SUBROUTINE "JAC" IS NEVER CALLED.
C                    IJAC=1: JACOBIAN IS SUPPLIED BY SUBROUTINE JAC.
C
C     MLJAC       SWITCH FOR THE BANDED STRUCTURE OF THE JACOBIAN:
C                    MLJAC=N: JACOBIAN IS A FULL MATRIX. THE LINEAR
C                       ALGEBRA IS DONE BY FULL-MATRIX GAUSS-ELIMINATION.
C                    0<=MLJAC<N: MLJAC IS THE LOWER BANDWITH OF JACOBIAN 
C                       MATRIX (>= NUMBER OF NON-ZERO DIAGONALS BELOW
C                       THE MAIN DIAGONAL).
C
C     MUJAC       UPPER BANDWITH OF JACOBIAN  MATRIX (>= NUMBER OF NON-
C                 ZERO DIAGONALS ABOVE THE MAIN DIAGONAL).
C                 NEED NOT BE DEFINED IF MLJAC=N.
C
C     ----   MAS,IMAS,MLMAS, AND MUMAS HAVE ANALOG MEANINGS      -----
C     ----   FOR THE "MASS MATRIX" (THE MATRIX "M" OF SECTION IV.8): -
C
C     MAS         NAME (EXTERNAL) OF SUBROUTINE COMPUTING THE MASS-
C                 MATRIX M.
C                 IF IMAS=0, THIS MATRIX IS ASSUMED TO BE THE IDENTITY
C                 MATRIX AND NEEDS NOT TO BE DEFINED;
C                 SUPPLY A DUMMY SUBROUTINE IN THIS CASE.
C                 IF IMAS=1, THE SUBROUTINE MAS IS OF THE FORM
C                    SUBROUTINE MAS(N,AM,LMAS,RPAR,IPAR)
C                    DOUBLE PRECISION AM(LMAS,N)
C                    AM(1,1)= ....
C                    IF (MLMAS.EQ.N) THE MASS-MATRIX IS STORED
C                    AS FULL MATRIX LIKE
C                         AM(I,J) = M(I,J)
C                    ELSE, THE MATRIX IS TAKEN AS BANDED AND STORED
C                    DIAGONAL-WISE AS
C                         AM(I-J+MUMAS+1,J) = M(I,J).
C
C     IMAS       GIVES INFORMATION ON THE MASS-MATRIX:
C                    IMAS=0: M IS SUPPOSED TO BE THE IDENTITY
C                       MATRIX, MAS IS NEVER CALLED.
C                    IMAS=1: MASS-MATRIX  IS SUPPLIED.
C
C     MLMAS       SWITCH FOR THE BANDED STRUCTURE OF THE MASS-MATRIX:
C                    MLMAS=N: THE FULL MATRIX CASE. THE LINEAR
C                       ALGEBRA IS DONE BY FULL-MATRIX GAUSS-ELIMINATION.
C                    0<=MLMAS<N: MLMAS IS THE LOWER BANDWITH OF THE
C                       MATRIX (>= NUMBER OF NON-ZERO DIAGONALS BELOW
C                       THE MAIN DIAGONAL).
C                 MLMAS IS SUPPOSED TO BE .LE. MLJAC.
C
C     MUMAS       UPPER BANDWITH OF MASS-MATRIX (>= NUMBER OF NON-
C                 ZERO DIAGONALS ABOVE THE MAIN DIAGONAL).
C                 NEED NOT BE DEFINED IF MLMAS=N.
C                 MUMAS IS SUPPOSED TO BE .LE. MUJAC.
C
C     SOLOUT      NAME (EXTERNAL) OF SUBROUTINE PROVIDING THE
C                 NUMERICAL SOLUTION DURING INTEGRATION. 
C                 IF IOUT=1, IT IS CALLED AFTER EVERY SUCCESSFUL STEP.
C                 SUPPLY A DUMMY SUBROUTINE IF IOUT=0. 
C                 IT MUST HAVE THE FORM
C                    SUBROUTINE SOLOUT (NR,XOLD,X,Y,CONT,LRC,N,
C                                       RPAR,IPAR,IRTRN)
C                    DOUBLE PRECISION X,Y(N),CONT(LRC)
C                    ....  
C                 SOLOUT FURNISHES THE SOLUTION "Y" AT THE NR-TH
C                    GRID-POINT "X" (THEREBY THE INITIAL VALUE IS
C                    THE FIRST GRID-POINT).
C                 "XOLD" IS THE PRECEEDING GRID-POINT.
C                 "IRTRN" SERVES TO INTERRUPT THE INTEGRATION. IF IRTRN
C                    IS SET <0, RADAU RETURNS TO THE CALLING PROGRAM.
C           
C          -----  CONTINUOUS OUTPUT: -----
C                 DURING CALLS TO "SOLOUT", A CONTINUOUS SOLUTION
C                 FOR THE INTERVAL [XOLD,X] IS AVAILABLE THROUGH
C                 THE FUNCTION
C                        >>>   CONTRA(I,S,CONT,LRC)   <<<
C                 WHICH PROVIDES AN APPROXIMATION TO THE I-TH
C                 COMPONENT OF THE SOLUTION AT THE POINT S. THE VALUE
C                 S SHOULD LIE IN THE INTERVAL [XOLD,X].
C
C     IOUT        SWITCH FOR CALLING THE SUBROUTINE SOLOUT:
C                    IOUT=0: SUBROUTINE IS NEVER CALLED
C                    IOUT=1: SUBROUTINE IS AVAILABLE FOR OUTPUT.
C
C     WORK        ARRAY OF WORKING SPACE OF LENGTH "LWORK".
C                 WORK(1), WORK(2),.., WORK(20) SERVE AS PARAMETERS
C                 FOR THE CODE. FOR STANDARD USE OF THE CODE
C                 WORK(1),..,WORK(20) MUST BE SET TO ZERO BEFORE THE
C                 FIRST CALL. SEE BELOW FOR A MORE SOPHISTICATED USE.
C                 WORK(8),..,WORK(LWORK) SERVE AS WORKING SPACE
C                 FOR ALL VECTORS AND MATRICES.
C                 "LWORK" MUST BE AT LEAST
C                          N*(LJAC+LMAS+NSMAX*LE+3*NSMAX+3)+20
C                 WHERE 
C                    NSMAX=IWORK(12) (SEE BELOW)
C                 AND
C                    LJAC=N              IF MLJAC=N (FULL JACOBIAN)
C                    LJAC=MLJAC+MUJAC+1  IF MLJAC<N (BANDED JAC.)
C                 AND                  
C                    LMAS=0              IF IMAS=0
C                    LMAS=N              IF IMAS=1 AND MLMAS=N (FULL)
C                    LMAS=MLMAS+MUMAS+1  IF MLMAS<N (BANDED MASS-M.)
C                 AND
C                    LE=N               IF MLJAC=N (FULL JACOBIAN)
C                    LE=2*MLJAC+MUJAC+1 IF MLJAC<N (BANDED JAC.)
C
C                 IN THE USUAL CASE WHERE THE JACOBIAN IS FULL AND THE
C                 MASS-MATRIX IS THE INDENTITY (IMAS=0), THE MINIMUM
C                 STORAGE REQUIREMENT IS 
C                      LWORK = (NSMAX+1)*N*N+(3*NSMAX+3)*N+20.
C                 IF IWORK(9)=M1>0 THEN "LWORK" MUST BE AT LEAST
C                      N*(LJAC+3*NSMAX+3)+(N-M1)*(LMAS+NSMAX*LE)+20
C                 WHERE IN THE DEFINITIONS OF LJAC, LMAS AND LE THE
C                 NUMBER N CAN BE REPLACED BY N-M1.
C
C     LWORK       DECLARED LENGTH OF ARRAY "WORK".
C
C     IWORK       INTEGER WORKING SPACE OF LENGTH "LIWORK".
C                 IWORK(1),IWORK(2),...,IWORK(20) SERVE AS PARAMETERS
C                 FOR THE CODE. FOR STANDARD USE, SET IWORK(1),..,
C                 IWORK(20) TO ZERO BEFORE CALLING.
C                 IWORK(21),...,IWORK(LIWORK) SERVE AS WORKING AREA.
C                 "LIWORK" MUST BE AT LEAST
C                             (2+(NSMAX-1)/2)*N+20.
C
C     LIWORK      DECLARED LENGTH OF ARRAY "IWORK".
C
C     RPAR, IPAR  REAL AND INTEGER PARAMETERS (OR PARAMETER ARRAYS) WHICH  
C                 CAN BE USED FOR COMMUNICATION BETWEEN YOUR CALLING
C                 PROGRAM AND THE FCN, JAC, MAS, SOLOUT SUBROUTINES. 
C
C ----------------------------------------------------------------------
C 
C     SOPHISTICATED SETTING OF PARAMETERS
C     -----------------------------------
C              SEVERAL PARAMETERS OF THE CODE ARE TUNED TO MAKE IT WORK 
C              WELL. THEY MAY BE DEFINED BY SETTING WORK(1),...
C              AS WELL AS IWORK(1),... DIFFERENT FROM ZERO.
C              FOR ZERO INPUT, THE CODE CHOOSES DEFAULT VALUES:
C
C    IWORK(1)  IF IWORK(1).NE.0, THE CODE TRANSFORMS THE JACOBIAN
C              MATRIX TO HESSENBERG FORM. THIS IS PARTICULARLY
C              ADVANTAGEOUS FOR LARGE SYSTEMS WITH FULL JACOBIAN.
C              IT DOES NOT WORK FOR BANDED JACOBIAN (MLJAC<N)
C              AND NOT FOR IMPLICIT SYSTEMS (IMAS=1).
C
C    IWORK(2)  THIS IS THE MAXIMAL NUMBER OF ALLOWED STEPS.
C              THE DEFAULT VALUE (FOR IWORK(2)=0) IS 100000.
C
C    IWORK(3)  THE MAXIMUM NUMBER OF NEWTON ITERATIONS FOR THE
C              SOLUTION OF THE IMPLICIT SYSTEM IN EACH STEP
C              IWORK(3)+(NS-3)*2.5. DEFAULT VALUE (FOR IWORK(3)=0) IS 7.
C              NS IS THE NUMBER OF STAGES (SEE IWORK(11)).
C
C    IWORK(4)  IF IWORK(4).EQ.0 THE EXTRAPOLATED COLLOCATION SOLUTION
C              IS TAKEN AS STARTING VALUE FOR NEWTON'S METHOD.
C              IF IWORK(4).NE.0 ZERO STARTING VALUES ARE USED.
C              THE LATTER IS RECOMMENDED IF NEWTON'S METHOD HAS
C              DIFFICULTIES WITH CONVERGENCE (THIS IS THE CASE WHEN
C              NSTEP IS LARGER THAN NACCPT + NREJCT; SEE OUTPUT PARAM.).
C              DEFAULT IS IWORK(4)=0.
C
C       THE FOLLOWING 3 PARAMETERS ARE IMPORTANT FOR
C       DIFFERENTIAL-ALGEBRAIC SYSTEMS OF INDEX > 1.
C       THE FUNCTION-SUBROUTINE SHOULD BE WRITTEN SUCH THAT
C       THE INDEX 1,2,3 VARIABLES APPEAR IN THIS ORDER. 
C       IN ESTIMATING THE ERROR THE INDEX 2 VARIABLES ARE
C       MULTIPLIED BY H, THE INDEX 3 VARIABLES BY H**2.
C
C    IWORK(5)  DIMENSION OF THE INDEX 1 VARIABLES (MUST BE > 0). FOR 
C              ODE'S THIS EQUALS THE DIMENSION OF THE SYSTEM.
C              DEFAULT IWORK(5)=N.
C
C    IWORK(6)  DIMENSION OF THE INDEX 2 VARIABLES. DEFAULT IWORK(6)=0.
C
C    IWORK(7)  DIMENSION OF THE INDEX 3 VARIABLES. DEFAULT IWORK(7)=0.
C
C    IWORK(8)  SWITCH FOR STEP SIZE STRATEGY
C              IF IWORK(8).EQ.1  MOD. PREDICTIVE CONTROLLER (GUSTAFSSON)
C              IF IWORK(8).EQ.2  CLASSICAL STEP SIZE CONTROL
C              THE DEFAULT VALUE (FOR IWORK(8)=0) IS IWORK(8)=1.
C              THE CHOICE IWORK(8).EQ.1 SEEMS TO PRODUCE SAFER RESULTS;
C              FOR SIMPLE PROBLEMS, THE CHOICE IWORK(8).EQ.2 PRODUCES
C              OFTEN SLIGHTLY FASTER RUNS
C
C       IF THE DIFFERENTIAL SYSTEM HAS THE SPECIAL STRUCTURE THAT
C            Y(I)' = Y(I+M2)   FOR  I=1,...,M1,
C       WITH M1 A MULTIPLE OF M2, A SUBSTANTIAL GAIN IN COMPUTERTIME
C       CAN BE ACHIEVED BY SETTING THE PARAMETERS IWORK(9) AND IWORK(10).
C       E.G., FOR SECOND ORDER SYSTEMS P'=V, V'=G(P,V), WHERE P AND V ARE 
C       VECTORS OF DIMENSION N/2, ONE HAS TO PUT M1=M2=N/2.
C       FOR M1>0 SOME OF THE INPUT PARAMETERS HAVE DIFFERENT MEANINGS:
C       - JAC: ONLY THE ELEMENTS OF THE NON-TRIVIAL PART OF THE
C              JACOBIAN HAVE TO BE STORED
C              IF (MLJAC.EQ.N-M1) THE JACOBIAN IS SUPPOSED TO BE FULL
C                 DFY(I,J) = PARTIAL F(I+M1) / PARTIAL Y(J)
C                FOR I=1,N-M1 AND J=1,N.
C              ELSE, THE JACOBIAN IS BANDED ( M1 = M2 * MM )
C                 DFY(I-J+MUJAC+1,J+K*M2) = PARTIAL F(I+M1) / PARTIAL Y(J+K*M2)
C                FOR I=1,MLJAC+MUJAC+1 AND J=1,M2 AND K=0,MM.
C       - MLJAC: MLJAC=N-M1: IF THE NON-TRIVIAL PART OF THE JACOBIAN IS FULL
C                0<=MLJAC<N-M1: IF THE (MM+1) SUBMATRICES (FOR K=0,MM)
C                     PARTIAL F(I+M1) / PARTIAL Y(J+K*M2),  I,J=1,M2
C                    ARE BANDED, MLJAC IS THE MAXIMAL LOWER BANDWIDTH
C                    OF THESE MM+1 SUBMATRICES
C       - MUJAC: MAXIMAL UPPER BANDWIDTH OF THESE MM+1 SUBMATRICES
C                NEED NOT BE DEFINED IF MLJAC=N-M1
C       - MAS: IF IMAS=0 THIS MATRIX IS ASSUMED TO BE THE IDENTITY AND
C              NEED NOT BE DEFINED. SUPPLY A DUMMY SUBROUTINE IN THIS CASE.
C              IT IS ASSUMED THAT ONLY THE ELEMENTS OF RIGHT LOWER BLOCK OF
C              DIMENSION N-M1 DIFFER FROM THAT OF THE IDENTITY MATRIX.
C              IF (MLMAS.EQ.N-M1) THIS SUBMATRIX IS SUPPOSED TO BE FULL
C                 AM(I,J) = M(I+M1,J+M1)     FOR I=1,N-M1 AND J=1,N-M1.
C              ELSE, THE MASS MATRIX IS BANDED
C                 AM(I-J+MUMAS+1,J) = M(I+M1,J+M1)
C       - MLMAS: MLMAS=N-M1: IF THE NON-TRIVIAL PART OF M IS FULL
C                0<=MLMAS<N-M1: LOWER BANDWIDTH OF THE MASS MATRIX
C       - MUMAS: UPPER BANDWIDTH OF THE MASS MATRIX
C                NEED NOT BE DEFINED IF MLMAS=N-M1
C
C    IWORK(9)  THE VALUE OF M1.  DEFAULT M1=0.
C
C    IWORK(10) THE VALUE OF M2.  DEFAULT M2=M1.
C
C    IWORK(11) NSMIN, MINIMAL NUMBER OF STAGES NS (ORDER 2*NS-1)
C              POSSIBLE VALUES ARE 1,3,5,7. DEFAULT NS=3.
C
C    IWORK(12) NSMAX, MAXIMAL NUMBER OF STAGES NS.  
C              POSSIBLE VALUES ARE 1,3,5,7. DEFAULT NS=7.
C
C    IWORK(13) VALUE OF NS FOR THE FIRST STEP (DEFAULT VALUE: NSMIN)
C
C ----------
C
C    WORK(1)   UROUND, THE ROUNDING UNIT, DEFAULT 1.D-16.
C
C    WORK(2)   THE SAFETY FACTOR IN STEP SIZE PREDICTION,
C              DEFAULT 0.9D0.
C
C    WORK(3)   DECIDES WHETHER THE JACOBIAN SHOULD BE RECOMPUTED;
C              INCREASE WORK(3), TO 0.1 SAY, WHEN JACOBIAN EVALUATIONS
C              ARE COSTLY. FOR SMALL SYSTEMS WORK(3) SHOULD BE SMALLER 
C              (0.001D0, SAY). NEGATIV WORK(3) FORCES THE CODE TO
C              COMPUTE THE JACOBIAN AFTER EVERY ACCEPTED STEP.     
C              DEFAULT 0.001D0.
C
C    WORK(5) AND WORK(6) : IF WORK(5) < HNEW/HOLD < WORK(6), THEN THE
C              STEP SIZE IS NOT CHANGED. THIS SAVES, TOGETHER WITH A
C              LARGE WORK(3), LU-DECOMPOSITIONS AND COMPUTING TIME FOR
C              LARGE SYSTEMS. FOR SMALL SYSTEMS ONE MAY HAVE
C              WORK(5)=1.D0, WORK(6)=1.2D0, FOR LARGE FULL SYSTEMS
C              WORK(5)=0.99D0, WORK(6)=2.D0 MIGHT BE GOOD.
C              DEFAULTS WORK(5)=1.D0, WORK(6)=1.2D0 .
C
C    WORK(7)   MAXIMAL STEP SIZE, DEFAULT XEND-X.
C
C    WORK(8), WORK(9)   PARAMETERS FOR STEP SIZE SELECTION
C              THE NEW STEP SIZE IS CHOSEN SUBJECT TO THE RESTRICTION
C                 WORK(8) <= HNEW/HOLD <= WORK(9)
C              DEFAULT VALUES: WORK(8)=0.2D0, WORK(9)=8.D0
C
C    WORK(10)  ORDER IS INCREASED IF THE CONTRACTIVITY FACTOR IS
C              SMALL THAN WORK(10), DEFAULT VALUE IS 0.002
C
C    WORK(11)  ORDER IS DECREASED IF THE CONTRACTIVITY FACTOR IS
C              LARGER THAN WORK(11), DEFAULT VALUE IS 0.8
C
C    WORK(12), WORK(13)  ORDER IS DECREASED ONLY IF THE STEPSIZE
C              RATIO SATISFIES  WORK(13).LE.HNEW/H.LE.WORK(12),
C              DEFAULT VALUES ARE 1.2 AND 0.8
C
C-----------------------------------------------------------------------
C
C     OUTPUT PARAMETERS 
C     ----------------- 
C     X           X-VALUE FOR WHICH THE SOLUTION HAS BEEN COMPUTED
C                 (AFTER SUCCESSFUL RETURN X=XEND).
C
C     Y(N)        NUMERICAL SOLUTION AT X
C 
C     H           PREDICTED STEP SIZE OF THE LAST ACCEPTED STEP
C
C     IDID        REPORTS ON SUCCESSFULNESS UPON RETURN:
C                   IDID= 1  COMPUTATION SUCCESSFUL,
C                   IDID= 2  COMPUT. SUCCESSFUL (INTERRUPTED BY SOLOUT)
C                   IDID=-1  INPUT IS NOT CONSISTENT,
C                   IDID=-2  LARGER NMAX IS NEEDED,
C                   IDID=-3  STEP SIZE BECOMES TOO SMALL,
C                   IDID=-4  MATRIX IS REPEATEDLY SINGULAR.
C
C   IWORK(14)  NFCN    NUMBER OF FUNCTION EVALUATIONS (THOSE FOR NUMERICAL
C                      EVALUATION OF THE JACOBIAN ARE NOT COUNTED)  
C   IWORK(15)  NJAC    NUMBER OF JACOBIAN EVALUATIONS (EITHER ANALYTICALLY
C                      OR NUMERICALLY)
C   IWORK(16)  NSTEP   NUMBER OF COMPUTED STEPS
C   IWORK(17)  NACCPT  NUMBER OF ACCEPTED STEPS
C   IWORK(18)  NREJCT  NUMBER OF REJECTED STEPS (DUE TO ERROR TEST),
C                      (STEP REJECTIONS IN THE FIRST STEP ARE NOT COUNTED)
C   IWORK(19)  NDEC    NUMBER OF LU-DECOMPOSITIONS OF THE MATRICES
C   IWORK(20)  NSOL    NUMBER OF FORWARD-BACKWARD SUBSTITUTIONS, OF ALL
C                      SYSTEMS THAT HAVE TO BE SOLVED FOR ONE SIMPLIFIED
C                      NEWTON ITERATION; THE NSTEP (REAL) FORWARD-BACKWARD
C                      SUBSTITUTIONS, NEEDED FOR STEP SIZE SELECTION,
C                      ARE NOT COUNTED.
C-----------------------------------------------------------------------
C *** *** *** *** *** *** *** *** *** *** *** *** ***
C          DECLARATIONS 
C *** *** *** *** *** *** *** *** *** *** *** *** ***
      USE omp_lib
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      DIMENSION Y(N),ATOL(*),RTOL(*),WORK(LWORK),IWORK(LIWORK)
      DIMENSION RPAR(*),IPAR(*)
      LOGICAL IMPLCT,JBAND,ARRET,STARTN,PRED
      EXTERNAL FCN,JAC,MAS,SOLOUT
C *** *** *** *** *** *** ***
C        SETTING THE PARAMETERS 
C *** *** *** *** *** *** ***
       NFCN=0
       NJAC=0
       NSTEP=0
       NACCPT=0
       NREJCT=0
       NDEC=0
       NSOL=0
       ARRET=.FALSE.
C -------- NUMBER MAXIMAL AND MINIMAL OF STAGES  NS
      IF (IWORK(11).EQ.0) THEN
         NSMIN=3
      ELSE
         NSMIN=MAX(1,IWORK(11))
         IF (IWORK(11).GE.2) NSMIN=MAX(3,IWORK(11))
         IF (IWORK(11).GE.4) NSMIN=MAX(5,IWORK(11))
         IF (IWORK(11).GE.6) NSMIN=7
      END IF
      IF (IWORK(12).EQ.0) THEN
         NSMAX=7
      ELSE
         NSMAX=MIN(7,IWORK(12))
         IF (IWORK(12).LE.6) NSMAX=MIN(5,IWORK(12))
         IF (IWORK(12).LE.4) NSMAX=MIN(3,IWORK(12))
         IF (IWORK(12).LE.2) NSMAX=1
      END IF
      NS=NSMAX
      IF (IWORK(13).EQ.0) THEN
         NSUS=NSMIN
      ELSE
         NSUS=IWORK(13)
         IF (NSUS.LE.0.OR.NS.GE.8.OR.NS.EQ.2.OR.NS.EQ.4.OR.NS.EQ.6) THEN
            WRITE(6,*)' WRONG INPUT IWORK(13)=',IWORK(13)
            ARRET=.TRUE.
         END IF
      END IF
C -------- NMAX , THE MAXIMAL NUMBER OF STEPS -----
      IF (IWORK(2).EQ.0) THEN
         NMAX=100000
      ELSE
         NMAX=IWORK(2)
         IF (NMAX.LE.0) THEN
            WRITE(6,*)' WRONG INPUT IWORK(2)=',IWORK(2)
            ARRET=.TRUE.
         END IF
      END IF
C -------- NIT    MAXIMAL NUMBER OF NEWTON ITERATIONS
      IF (IWORK(3).EQ.0) THEN
         NIT=7
      ELSE
         NIT=IWORK(3)
         IF (NIT.LE.0.OR.NIT.GT.50) THEN
            WRITE(6,*)' CURIOUS INPUT IWORK(3)=',IWORK(3)
            ARRET=.TRUE.
         END IF
      END IF
C -------- STARTN  SWITCH FOR STARTING VALUES OF NEWTON ITERATIONS
      IF(IWORK(4).EQ.0)THEN
         STARTN=.FALSE.
      ELSE
         STARTN=.TRUE.
      END IF
C -------- PARAMETER FOR DIFFERENTIAL-ALGEBRAIC COMPONENTS
      NIND1=IWORK(5)
      NIND2=IWORK(6)
      NIND3=IWORK(7)
      IF (NIND1.EQ.0) NIND1=N
      IF (NIND1+NIND2+NIND3.NE.N) THEN
       WRITE(6,*)' CURIOUS INPUT FOR IWORK(5,6,7)=',NIND1,NIND2,NIND3
       ARRET=.TRUE.
      END IF
C -------- PRED   STEP SIZE CONTROL
      IF(IWORK(8).LE.1)THEN
         PRED=.TRUE.
      ELSE
         PRED=.FALSE.
      END IF
C -------- PARAMETER FOR SECOND ORDER EQUATIONS
      M1=IWORK(9)
      M2=IWORK(10)
      NM1=N-M1
      IF (M1.EQ.0) M2=N
      IF (M2.EQ.0) M2=M1
      IF (M1.LT.0.OR.M2.LT.0.OR.M1+M2.GT.N) THEN
       WRITE(6,*)' CURIOUS INPUT FOR IWORK(9,10)=',M1,M2
       ARRET=.TRUE.
      END IF
C -------- UROUND   SMALLEST NUMBER SATISFYING 1.0D0+UROUND>1.0D0  
      IF (WORK(1).EQ.0.0D0) THEN
         UROUND=1.0D-16
      ELSE
         UROUND=WORK(1)
         IF (UROUND.LE.1.0D-19.OR.UROUND.GE.1.0D0) THEN
            WRITE(6,*)' COEFFICIENTS HAVE 20 DIGITS, UROUND=',WORK(1)
            ARRET=.TRUE.
         END IF
      END IF
C --------- CHECK IF TOLERANCES ARE O.K.
      IF (ITOL.EQ.0) THEN
          IF (ATOL(1).LE.0.D0.OR.RTOL(1).LE.10.D0*UROUND) THEN
              WRITE (6,*) ' TOLERANCES ARE TOO SMALL'
              ARRET=.TRUE.
          END IF
      ELSE
          DO I=1,N
          IF (ATOL(I).LE.0.D0.OR.RTOL(I).LE.10.D0*UROUND) THEN
              WRITE (6,*) ' TOLERANCES(',I,') ARE TOO SMALL'
              ARRET=.TRUE.
          END IF
          END DO
      END IF
C --------- SAFE     SAFETY FACTOR IN STEP SIZE PREDICTION
      IF (WORK(2).EQ.0.0D0) THEN
         SAFE=0.9D0
      ELSE
         SAFE=WORK(2)
         IF (SAFE.LE.0.001D0.OR.SAFE.GE.1.0D0) THEN
            WRITE(6,*)' CURIOUS INPUT FOR WORK(2)=',WORK(2)
            ARRET=.TRUE.
         END IF
      END IF
C ------ THET     DECIDES WHETHER THE JACOBIAN SHOULD BE RECOMPUTED;
      IF (WORK(3).EQ.0.D0) THEN
         THET=0.001D0
      ELSE
         THET=WORK(3)
         IF (THET.GE.1.0D0) THEN
            WRITE(6,*)' CURIOUS INPUT FOR WORK(3)=',WORK(3)
            ARRET=.TRUE.
         END IF
      END IF
C --- QUOT1 AND QUOT2: IF QUOT1 < HNEW/HOLD < QUOT2, STEP SIZE = CONST.
      IF (WORK(5).EQ.0.D0) THEN
         QUOT1=1.D0
      ELSE
         QUOT1=WORK(5)
      END IF
      IF (WORK(6).EQ.0.D0) THEN
         QUOT2=1.2D0
      ELSE
         QUOT2=WORK(6)
      END IF
      IF (QUOT1.GT.1.0D0.OR.QUOT2.LT.1.0D0) THEN
         WRITE(6,*)' CURIOUS INPUT FOR WORK(5,6)=',QUOT1,QUOT2
         ARRET=.TRUE.
      END IF
C -------- MAXIMAL STEP SIZE
      IF (WORK(7).EQ.0.D0) THEN
         HMAX=XEND-X
      ELSE
         HMAX=WORK(7)
      END IF 
C -------  FACL,FACR     PARAMETERS FOR STEP SIZE SELECTION
      IF(WORK(8).EQ.0.D0)THEN
         FACL=5.D0
      ELSE
         FACL=1.D0/WORK(8)
      END IF
      IF(WORK(9).EQ.0.D0)THEN
         FACR=1.D0/8.0D0
      ELSE
         FACR=1.D0/WORK(9)
      END IF
      IF (FACL.LT.1.0D0.OR.FACR.GT.1.0D0) THEN
            WRITE(6,*)' CURIOUS INPUT WORK(8,9)=',WORK(8),WORK(9)
            ARRET=.TRUE.
         END IF
C -------- PARAMETERS FOR ORDER SELECTION STRATEGY
      IF (WORK(10).EQ.0.D0) THEN
         VITU=0.002D0
      ELSE
         VITU=WORK(10)
      END IF 
      IF (WORK(11).EQ.0.D0) THEN
         VITD=0.8D0
      ELSE
         VITD=WORK(11)
      END IF 
      IF (WORK(12).EQ.0.D0) THEN
         HHOU=1.2D0
      ELSE
         HHOU=WORK(12)
      END IF 
      IF (WORK(13).EQ.0.D0) THEN
         HHOD=0.8D0
      ELSE
         HHOD=WORK(13)
      END IF 
C *** *** *** *** *** *** *** *** *** *** *** *** ***
C         COMPUTATION OF ARRAY ENTRIES
C *** *** *** *** *** *** *** *** *** *** *** *** ***
C ---- IMPLICIT, BANDED OR NOT ?
      IMPLCT=IMAS.NE.0
      JBAND=MLJAC.LT.NM1
C -------- COMPUTATION OF THE ROW-DIMENSIONS OF THE 2-ARRAYS ---
C -- JACOBIAN  AND  MATRICES E1, E2
      IF (JBAND) THEN
         LDJAC=MLJAC+MUJAC+1
         LDE1=MLJAC+LDJAC
      ELSE
         MLJAC=NM1
         MUJAC=NM1
         LDJAC=NM1
         LDE1=NM1
      END IF
C -- MASS MATRIX
      IF (IMPLCT) THEN
          IF (MLMAS.NE.NM1) THEN
              LDMAS=MLMAS+MUMAS+1
              IF (JBAND) THEN
                 IJOB=4
              ELSE
                 IJOB=3
              END IF
          ELSE
              LDMAS=NM1
              IJOB=5
          END IF
C ------ BANDWITH OF "MAS" NOT SMALLER THAN BANDWITH OF "JAC"
          IF (MLMAS.GT.MLJAC.OR.MUMAS.GT.MUJAC) THEN
             WRITE (6,*) 'BANDWITH OF "MAS" NOT SMALLER THAN BANDWITH OF
     & "JAC"'
            ARRET=.TRUE.
          END IF
      ELSE
          LDMAS=0
          IF (JBAND) THEN
             IJOB=2
          ELSE
             IJOB=1
             IF (N.GT.2.AND.IWORK(1).NE.0) IJOB=7
          END IF
      END IF
      LDMAS2=MAX(1,LDMAS)
C ------ HESSENBERG OPTION ONLY FOR EXPLICIT EQU. WITH FULL JACOBIAN
      IF ((IMPLCT.OR.JBAND).AND.IJOB.EQ.7) THEN
         WRITE(6,*)' HESSENBERG OPTION ONLY FOR EXPLICIT EQUATIONS WITH 
     &FULL JACOBIAN'
         ARRET=.TRUE.
      END IF
C ------- PREPARE THE ENTRY-POINTS FOR THE ARRAYS IN WORK -----
      NNS=NS*N
      NM1NS=NS*NM1
      NMEE=(NS-1)*NM1
      IEZZ=21
      IEY0=IEZZ+NNS
      IESCAL=IEY0+N
      IEFF=IESCAL+N
      IECON=IEFF+NNS
      IEJAC=IECON+NNS+N
      IEMAS=IEJAC+N*LDJAC
      IEE1=IEMAS+NM1*LDMAS
      IEE=IEE1+NM1*LDE1
C ------ TOTAL STORAGE REQUIREMENT -----------
      ISTORE=IEE+NMEE*LDE1-1
      IF(ISTORE.GT.LWORK)THEN
         WRITE(6,*)' INSUFFICIENT STORAGE FOR WORK, MIN. LWORK=',ISTORE
         ARRET=.TRUE.
      END IF
C ------- ENTRY POINTS FOR INTEGER WORKSPACE -----
      IEIP1=21
      IEIP2=IEIP1+NM1
      IEIPH=IEIP2+NM1*(NS-1)/2
C --------- TOTAL REQUIREMENT ---------------
      ISTORE=IEIPH+NM1-1
      IF (ISTORE.GT.LIWORK) THEN
         WRITE(6,*)' INSUFF. STORAGE FOR IWORK, MIN. LIWORK=',ISTORE
         ARRET=.TRUE.
      END IF
C ------ WHEN A FAIL HAS OCCURED, WE RETURN WITH IDID=-1
      IF (ARRET) THEN
         IDID=-1
         RETURN
      END IF
C -------- CALL TO CORE INTEGRATOR ------------
      CALL RADCOV(N,FCN,X,Y,XEND,HMAX,H,RTOL,ATOL,ITOL,NSUS,
     &   JAC,IJAC,MLJAC,MUJAC,MAS,MLMAS,MUMAS,SOLOUT,IOUT,IDID,
     &   NMAX,UROUND,SAFE,THET,QUOT1,QUOT2,NIT,IJOB,STARTN,
     &   NIND1,NIND2,NIND3,PRED,FACL,FACR,M1,M2,NM1,NSMIN,NS,NNS,NM1NS,
     &   NMEE,IMPLCT,JBAND,LDJAC,LDE1,LDMAS2,WORK(IEZZ),WORK(IEY0),
     &   WORK(IESCAL),WORK(IEFF),WORK(IEJAC),WORK(IEE1),WORK(IEE),
     &   WORK(IEMAS),WORK(IECON),IWORK(IEIP1),IWORK(IEIP2),
     &   IWORK(IEIPH),VITU,VITD,HHOU,HHOD,NFCN,NJAC,NSTEP,NACCPT,
     &   NREJCT,NDEC,NSOL,RPAR,IPAR)
      IWORK(13)=NSUS
      IWORK(14)=NFCN
      IWORK(15)=NJAC
      IWORK(16)=NSTEP
      IWORK(17)=NACCPT
      IWORK(18)=NREJCT
      IWORK(19)=NDEC
      IWORK(20)=NSOL
C ----------- RETURN -----------
      RETURN
      END
C
C     END OF SUBROUTINE RADAU
C
C ***********************************************************
C
      SUBROUTINE RADCOV(N,FCN,X,Y,XEND,HMAX,H,RTOL,ATOL,ITOL,NS,
     &   JAC,IJAC,MLJAC,MUJAC,MAS,MLMAS,MUMAS,SOLOUT,IOUT,IDID,
     &   NMAX,UROUND,SAFE,THET,QUOT1,QUOT2,NIT1,IJOB,STARTN,NIND1,
     &   NIND2,NIND3,PRED,FACL,FACR,M1,M2,NM1,NSMIN,NSMAX,NNMS,NM1NS,
     &   NMEE,IMPLCT,BANDED,LDJAC,LDE1,LDMAS,ZZ,Y0,SCAL,FF,FJAC,
     &   E1,EE2,FMAS,CONT,IP1,IP2,IPHES,VITU,VITD,HHOU,HHOD,
     &   NFCN,NJAC,NSTEP,NACCPT,NREJCT,NDEC,NSOL,RPAR,IPAR)
C ----------------------------------------------------------
C     CORE INTEGRATOR FOR RADAU
C     PARAMETERS SAME AS IN RADAU WITH WORKSPACE ADDED 
C ---------------------------------------------------------- 
C         DECLARATIONS 
C ---------------------------------------------------------- 
      USE omp_lib
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      PARAMETER (NSDIM=7)
C --- THIS PARAMETER HAS TO BE CHANGED IF NUMBER OF STAGES IS >=7
      DIMENSION Y(N),ZZ(NNMS),FF(NNMS),Y0(N),SCAL(N)
      DIMENSION FJAC(LDJAC,N),FMAS(LDMAS,NM1),CONT(NNMS+N)
      DIMENSION ATOL(1),RTOL(1),RPAR(*),IPAR(*)
      DIMENSION E1(LDE1,NM1),EE2(LDE1,NMEE)
      DIMENSION ALPH(NSDIM),BETA(NSDIM),DD(NSDIM)
      DIMENSION ALPHN(NSDIM),BETAN(NSDIM)
      INTEGER IP1(NM1),IP2(NMEE/2),IPHES(NM1)
      COMMON/WEIGHT/NN,NSCON,XSOL,HSOL,C(0:NSDIM)
!$OMP THREADPRIVATE(/WEIGHT/)
      COMMON/LINAL/MLE,MUE,MBJAC,MBB,MDIAG,MDIFF,MBDIAG
!$OMP THREADPRIVATE(/LINAL/)
      COMMON /COE3/ T311,T312,T313,T321,T322,T323,T331,
     *    TI311,TI312,TI313,TI321,TI322,TI323,TI331,TI332,TI333
!$OMP THREADPRIVATE(/COE3/)
      COMMON /COE5/ T511,T512,T513,T514,T515,T521,T522,T523,T524,T525,
     *    T531,T532,T533,T534,T535,T541,T542,T543,T544,T545,T551,
     *    TI511,TI512,TI513,TI514,TI515,TI521,TI522,TI523,TI524,TI525,
     *    TI531,TI532,TI533,TI534,TI535,TI541,TI542,TI543,TI544,TI545,
     *    TI551,TI552,TI553,TI554,TI555
!$OMP THREADPRIVATE(/COE5/)
      COMMON /COE7/ T711,T712,T713,T714,T715,T716,T717,
     *              T721,T722,T723,T724,T725,T726,T727,
     *              T731,T732,T733,T734,T735,T736,T737,
     *              T741,T742,T743,T744,T745,T746,T747,
     *              T751,T752,T753,T754,T755,T756,T757,
     *              T761,T762,T763,T764,T765,T766,T767,T771,
     *              TI711,TI712,TI713,TI714,TI715,TI716,TI717,
     *              TI721,TI722,TI723,TI724,TI725,TI726,TI727,
     *              TI731,TI732,TI733,TI734,TI735,TI736,TI737,
     *              TI741,TI742,TI743,TI744,TI745,TI746,TI747,
     *              TI751,TI752,TI753,TI754,TI755,TI756,TI757,
     *              TI761,TI762,TI763,TI764,TI765,TI766,TI767,
     *              TI771,TI772,TI773,TI774,TI775,TI776,TI777
!$OMP THREADPRIVATE(/COE7/)
      LOGICAL REJECT,FIRST,IMPLCT,BANDED,CALJAC,STARTN,CALHES
      LOGICAL INDEX1,INDEX2,INDEX3,LAST,PRED,CHANGE,UNEXP,UNEXN,VARIAB
      EXTERNAL FCN,JAC
C *** *** *** *** *** *** ***
C  INITIALISATIONS
C *** *** *** *** *** *** ***
C -------- CHECK THE INDEX OF THE PROBLEM ----- 
      INDEX1=NIND1.NE.0
      INDEX2=NIND2.NE.0
      INDEX3=NIND3.NE.0
C ------- COMPUTE MASS MATRIX FOR IMPLICIT CASE ----------
      IF (IMPLCT) CALL MAS(NM1,FMAS,LDMAS,RPAR,IPAR)
      VARIAB=NSMIN.LT.NSMAX
C ---------- CONSTANTS ---------
      EXPO=1.D0/(NS+1.D0)
      SQ6=DSQRT(6.D0)
      C31=(4.D0-SQ6)/10.D0
      C32=(4.D0+SQ6)/10.D0
      C31M1=C31-1.D0
      C32M1=C32-1.D0
      C31MC2=C31-C32
      DD1=-(13.D0+7.D0*SQ6)/3.D0
      DD2=(-13.D0+7.D0*SQ6)/3.D0
      DD3=-1.D0/3.D0
      N2=2*N
      N3=3*N
      N4=4*N
      N5=5*N
      N6=6*N
      UNEXP=.FALSE.
      UNEXN=.FALSE.
      CHANGE=.FALSE.
      IKEEP=0
      ICHAN=0
      THETA=0.0D0
      THETAT=0.0D0
      NN=N
      NNS=N*NS
      NSCON=NS
      LRC=NNS+N
      CALL COERTV(NSMAX)
      CALL COERCV(NS,C,DD,U1,ALPH,BETA)
      IF (M1.GT.0) IJOB=IJOB+10
      POSNEG=SIGN(1.D0,XEND-X)
      HMAXN=MIN(ABS(HMAX),ABS(XEND-X)) 
      IF (ABS(H).LE.10.D0*UROUND) H=1.0D-6
      H=MIN(ABS(H),HMAXN)
      H=SIGN(H,POSNEG)
      HOLD=H
      REJECT=.FALSE.
      FIRST=.TRUE.
      LAST=.FALSE.
      IF ((X+H*1.0001D0-XEND)*POSNEG.GE.0.D0) THEN
         H=XEND-X
         LAST=.TRUE.
      END IF
      HOPT=H
      FACCON=1.D0
      NSING=0
      XOLD=X
      IF (IOUT.NE.0) THEN
          IRTRN=1
          NRSOL=1
          XOSOL=XOLD
          XSOL=X
          DO I=1,N
             CONT(I)=Y(I)
          END DO
          NSOLU=N
          HSOL=HOLD
          CALL SOLOUT(NRSOL,XOSOL,XSOL,Y,CONT,LRC,NSOLU,
     &                RPAR,IPAR,IRTRN)
          IF (IRTRN.LT.0) GOTO 179
      END IF
      MLE=MLJAC
      MUE=MUJAC
      MBJAC=MLJAC+MUJAC+1
      MBB=MLMAS+MUMAS+1
      MDIAG=MLE+MUE+1
      MDIFF=MLE+MUE-MUMAS
      MBDIAG=MUMAS+1
      EXPMNS=(NS+1.0D0)/(2.0D0*NS)
      QUOTT=ATOL(1)/RTOL(1)
      IF (ITOL.EQ.0) THEN
          RTOL1=0.1D0*RTOL(1)**EXPMNS
          ATOL1=RTOL1*QUOTT
          DO I=1,N
             SCAL(I)=ATOL1+RTOL1*ABS(Y(I))
          END DO
      ELSE
          DO I=1,N
             QUOTT=ATOL(I)/RTOL(I)
             RTOL1=0.1D0*RTOL(I)**EXPMNS
             ATOL1=RTOL1*QUOTT
             SCAL(I)=ATOL1+RTOL1*ABS(Y(I))
          END DO
      END IF
      HHFAC=H
      CALL FCN(N,X,Y,Y0,RPAR,IPAR)
      NFCN=NFCN+1
C --- BASIC INTEGRATION STEP
  10  CONTINUE
C --- pberndt XXX: Check for rejected step
      DO I=1,N
          IF (ISNAN(Y0(I))) GOTO 175
      END DO
C *** *** *** *** *** *** ***
C  COMPUTATION OF THE JACOBIAN
C *** *** *** *** *** *** ***
      NJAC=NJAC+1
      IF (IJAC.EQ.0) THEN
C --- COMPUTE JACOBIAN MATRIX NUMERICALLY
         IF (BANDED) THEN
C --- JACOBIAN IS BANDED
            MUJACP=MUJAC+1
            MD=MIN(MBJAC,M2)
            DO MM=1,M1/M2+1
               DO K=1,MD
                  J=K+(MM-1)*M2
 12               FF(J)=Y(J)
                  FF(J+N)=DSQRT(UROUND*MAX(1.D-5,ABS(Y(J))))
                  Y(J)=Y(J)+FF(J+N)
                  J=J+MD
                  IF (J.LE.MM*M2) GOTO 12 
                  CALL FCN(N,X,Y,CONT,RPAR,IPAR)
                  J=K+(MM-1)*M2
                  J1=K
                  LBEG=MAX(1,J1-MUJAC)+M1
 14               LEND=MIN(M2,J1+MLJAC)+M1
                  Y(J)=FF(J)
                  MUJACJ=MUJACP-J1-M1
                  DO L=LBEG,LEND
                     FJAC(L+MUJACJ,J)=(CONT(L)-Y0(L))/FF(J+N) 
                  END DO
                  J=J+MD
                  J1=J1+MD
                  LBEG=LEND+1
                  IF (J.LE.MM*M2) GOTO 14
               END DO
            END DO
         ELSE
C --- JACOBIAN IS FULL
            DO I=1,N
               YSAFE=Y(I)
               DELT=DSQRT(UROUND*MAX(1.D-5,ABS(YSAFE)))
               Y(I)=YSAFE+DELT
               CALL FCN(N,X,Y,CONT,RPAR,IPAR)
               DO J=M1+1,N
C --- pberndt XXX: Check if the rhs returned a NaN
                 IF (ISNAN(CONT(J))) GOTO 78
                 FJAC(J-M1,I)=(CONT(J)-Y0(J))/DELT
               END DO
               Y(I)=YSAFE
            END DO
         END IF
      ELSE
C --- COMPUTE JACOBIAN MATRIX ANALYTICALLY
         CALL JAC(N,X,Y,FJAC,LDJAC,RPAR,IPAR)
      END IF
      CALJAC=.TRUE.
      CALHES=.TRUE.
  20  CONTINUE
C --- CHANGE THE ORDER HERE IF NECESSARY
      IF (VARIAB) THEN
         NSNEW=NS
         ICHAN=ICHAN+1
         HQUOT=H/HOLD
         THETAT=MIN(10.0D0,MAX(THETA,THETAT*0.5))
         IF (NEWT.GT.1.AND.THETAT.LE.VITU.AND.
     &      HQUOT.LT.HHOU.AND.HQUOT.GT.HHOD) NSNEW=MIN(NSMAX,NS+2)
         IF (THETAT.GE.VITD.OR.UNEXP) NSNEW=MAX(NSMIN,NS-2)
         IF (ICHAN.GE.1.AND.UNEXN) NSNEW=MAX(NSMIN,NS-2)
         IF (ICHAN.LE.10) NSNEW=MIN(NS,NSNEW)
         CHANGE=NS.NE.NSNEW
         UNEXN=.FALSE.
         UNEXP=.FALSE.
         IF (CHANGE) THEN
            NS=NSNEW
            ICHAN=1
            NNS=N*NS
            NSCON=NS
            LRC=NNS+N
            CALL COERCV(NS,C,DD,U1,ALPH,BETA)
            EXPO=1.D0/(NS+1.D0)
            EXPMNS=(NS+1.0D0)/(2.0D0*NS)
            RTOL1=0.1D0*RTOL(1)**EXPMNS
            ATOL1=RTOL1*QUOTT
            IF (ITOL.EQ.0) THEN
               DO I=1,N
                  SCAL(I)=ATOL1+RTOL1*ABS(Y(I))
               END DO
            ELSE
               DO I=1,N
                  QUOTT=ATOL(I)/RTOL(I)
                  RTOL1=0.1D0*RTOL(I)**EXPMNS
                  ATOL1=RTOL1*QUOTT
                  SCAL(I)=ATOL1+RTOL1*ABS(Y(I))
               END DO
            END IF
         END IF
      END IF
C --- COMPUTE THE MATRICES E1 AND E2 AND THEIR DECOMPOSITIONS
      FAC1=U1/H
      CALL DECOMR(N,FJAC,LDJAC,FMAS,LDMAS,MLMAS,MUMAS,
     &            M1,M2,NM1,FAC1,E1,LDE1,IP1,IER,IJOB,CALHES,IPHES)
      IF (IER.NE.0) GOTO 78
      DO K=1,(NS-1)/2
         ALPHN(K)=ALPH(K)/H
         BETAN(K)=BETA(K)/H
         IAD=(K-1)*2*NM1+1
         CALL DECOMC(N,FJAC,LDJAC,FMAS,LDMAS,MLMAS,MUMAS,
     &         M1,M2,NM1,ALPHN(K),BETAN(K),EE2(1,IAD),EE2(1,IAD+NM1),
     &         LDE1,IP2((K-1)*NM1+1),IER,IJOB)
         IF (IER.NE.0) GOTO 78
      END DO
      NDEC=NDEC+1
  30  CONTINUE
      IF (VARIAB.AND.IKEEP.EQ.1) THEN
         ICHAN=ICHAN+1
         IKEEP=0
         IF (ICHAN.GE.10.AND.NS.LT.NSMAX) GOTO 20
      END IF
      NSTEP=NSTEP+1
      IF (NSTEP.GT.NMAX) GOTO 178
      IF (0.1D0*ABS(H).LE.ABS(X)*UROUND) GOTO 177
          IF (INDEX2) THEN
             DO I=NIND1+1,NIND1+NIND2
                SCAL(I)=SCAL(I)/HHFAC
             END DO
          END IF
          IF (INDEX3) THEN
             DO I=NIND1+NIND2+1,NIND1+NIND2+NIND3
                SCAL(I)=SCAL(I)/(HHFAC*HHFAC)
             END DO
          END IF
      XPH=X+H
C *** *** *** *** *** *** ***
C *** *** *** *** *** *** ***
      IF (NS.EQ.3) THEN
C *** *** *** *** *** *** ***
C *** *** *** *** *** *** ***
      IF (FIRST.OR.STARTN.OR.CHANGE) THEN
         DO I=1,NNS
            ZZ(I)=0.D0
            FF(I)=0.D0
         END DO
      ELSE
         HQUOT=H/HOLD
         C3Q=HQUOT
         C1Q=C31*C3Q
         C2Q=C32*C3Q
         DO I=1,N
            AK1=CONT(I+N)
            AK2=CONT(I+N2)
            AK3=CONT(I+N3)
            Z1I=C1Q*(AK1+(C1Q-C32M1)*(AK2+(C1Q-C31M1)*AK3))
            Z2I=C2Q*(AK1+(C2Q-C32M1)*(AK2+(C2Q-C31M1)*AK3))
            Z3I=C3Q*(AK1+(C3Q-C32M1)*(AK2+(C3Q-C31M1)*AK3))
            ZZ(I)=Z1I
            ZZ(I+N)=Z2I
            ZZ(I+N2)=Z3I
            FF(I)=TI311*Z1I+TI312*Z2I+TI313*Z3I
            FF(I+N)=TI321*Z1I+TI322*Z2I+TI323*Z3I
            FF(I+N2)=TI331*Z1I+TI332*Z2I+TI333*Z3I
         END DO
      END IF
C *** *** *** *** *** *** ***
C  LOOP FOR THE SIMPLIFIED NEWTON ITERATION
C *** *** *** *** *** *** ***
      NEWT=0
      NIT=NIT1
      EXPMI=1.0D0/EXPMNS
      FNEWT=MAX(10*UROUND/RTOL1,MIN(0.03D0,RTOL1**(EXPMI-1.0D0)))
      FACCON=MAX(FACCON,UROUND)**0.8D0
      THETA=ABS(THET)
  40  CONTINUE
      IF (NEWT.GE.NIT) GOTO 78
C ---     COMPUTE THE RIGHT-HAND SIDE
      DO I=1,N
         CONT(I)=Y(I)+ZZ(I)
      END DO
      CALL FCN(N,X+C31*H,CONT,ZZ,RPAR,IPAR)
      DO I=1,N
C --- pberndt XXX: Check if the rhs returned a NaN
          IF (ISNAN(ZZ(I))) GOTO 78
         CONT(I)=Y(I)+ZZ(I+N)
      END DO
      CALL FCN(N,X+C32*H,CONT,ZZ(1+N),RPAR,IPAR)
      DO I=1,N
C --- pberndt XXX: Check if the rhs returned a NaN
          IF (ISNAN(ZZ(I))) GOTO 78
         CONT(I)=Y(I)+ZZ(I+N2)
      END DO
      CALL FCN(N,XPH,CONT,ZZ(1+N2),RPAR,IPAR)
      NFCN=NFCN+3
C ---     SOLVE THE LINEAR SYSTEMS
      DO I=1,N
C --- pberndt XXX: Check if the rhs returned a NaN
         IF (ISNAN(ZZ(I))) GOTO 78
         A1=ZZ(I)
         A2=ZZ(I+N)
         A3=ZZ(I+N2)
         ZZ(I)=TI311*A1+TI312*A2+TI313*A3
         ZZ(I+N)=TI321*A1+TI322*A2+TI323*A3
         ZZ(I+N2)=TI331*A1+TI332*A2+TI333*A3
      END DO
      CALL SLVRAD(N,FJAC,LDJAC,MLJAC,MUJAC,FMAS,LDMAS,MLMAS,MUMAS,
     &      M1,M2,NM1,FAC1,ALPHN(1),BETAN(1),E1,EE2,EE2(1,1+NM1),LDE1,
     &          ZZ,ZZ(1+N),ZZ(1+N2),FF,FF(1+N),FF(1+N2),
     &          CONT,IP1,IP2,IPHES,IER,IJOB)
      NSOL=NSOL+1
      NEWT=NEWT+1
      DYNO=0.D0
      DO I=1,N
         DENOM=SCAL(I)
         DYNO=DYNO+(ZZ(I)/DENOM)**2+(ZZ(I+N)/DENOM)**2
     &          +(ZZ(I+N2)/DENOM)**2
      END DO
      DYNO=DSQRT(DYNO/NNS)
C ---     BAD CONVERGENCE OR NUMBER OF ITERATIONS TO LARGE
      IF (NEWT.GT.1.AND.NEWT.LT.NIT) THEN
         THQ=DYNO/DYNOLD
         IF (NEWT.EQ.2) THEN
            THETA=THQ
         ELSE
            THETA=SQRT(THQ*THQOLD)
         END IF
         THQOLD=THQ
         IF (THETA.LT.0.99D0) THEN
            FACCON=THETA/(1.0D0-THETA)
            DYTH=FACCON*DYNO*THETA**(NIT-1-NEWT)/FNEWT
            IF (DYTH.GE.1.0D0) THEN
               QNEWT=DMAX1(1.0D-4,DMIN1(20.0D0,DYTH))
               HHFAC=0.8D0*QNEWT**(-1.0D0/(4.0D0+NIT-1-NEWT))
               H=HHFAC*H
               REJECT=.TRUE.
               LAST=.FALSE.
               IF (HHFAC.LE.0.5D0) UNEXN=.TRUE.
               IF (CALJAC) GOTO 20
               GOTO 10
            END IF
         ELSE
            GOTO 78
         END IF
      END IF
      DYNOLD=MAX(DYNO,UROUND)
      DO I=1,N
         IN=I+N
         IN2=I+N2
         F1I=FF(I)+ZZ(I)
         F2I=FF(IN)+ZZ(IN)
         F3I=FF(IN2)+ZZ(IN2)
         FF(I)=F1I
         FF(IN)=F2I
         FF(IN2)=F3I
         ZZ(I)=T311*F1I+T312*F2I+T313*F3I
         ZZ(IN)=T321*F1I+T322*F2I+T323*F3I
         ZZ(IN2)=T331*F1I+    F2I
      END DO
      IF (FACCON*DYNO.GT.FNEWT) GOTO 40
C --- ERROR ESTIMATION  
      CALL ESTRAD (N,FJAC,LDJAC,MLJAC,MUJAC,FMAS,LDMAS,MLMAS,MUMAS,
     &          H,DD1,DD2,DD3,FCN,NFCN,Y0,Y,IJOB,X,M1,M2,NM1,
     &          E1,LDE1,ZZ,ZZ(1+N),ZZ(1+N2),CONT,FF,FF(1+N),IP1,
     &          IPHES,SCAL,ERR,FIRST,REJECT,FAC1,RPAR,IPAR)
C       --- COMPUTE FINITE DIFFERENCES FOR DENSE OUTPUT
      IF (ERR.LT.1.D0) THEN
         DO I=1,N
            Y(I)=Y(I)+ZZ(I+N2)  
            Z2I=ZZ(I+N)
            Z1I=ZZ(I)
            CONT(I+N)=(Z2I-ZZ(I+N2))/C32M1
            AK=(Z1I-Z2I)/C31MC2
            ACONT3=Z1I/C31
            ACONT3=(AK-ACONT3)/C32
            CONT(I+N2)=(AK-CONT(I+N))/C31M1
            CONT(I+N3)=CONT(I+N2)-ACONT3
         END DO
      END IF
C *** *** *** *** *** *** ***
C *** *** *** *** *** *** ***
      ELSE
      IF (NS.EQ.5) THEN
C *** *** *** *** *** *** ***
C *** *** *** *** *** *** ***
      IF (FIRST.OR.STARTN.OR.CHANGE) THEN
         DO I=1,NNS
            ZZ(I)=0.D0
            FF(I)=0.D0
         END DO
      ELSE
         HQUOT=H/HOLD
         DO K=1,NS
            CCQ=C(K)*HQUOT
            DO I=1,N
               VAL=CONT(I+NS*N)
               DO L=NS-1,1,-1
                  VAL=CONT(I+L*N)+(CCQ-C(NS-L)+1.D0)*VAL
               END DO
               ZZ(I+(K-1)*N)=CCQ*VAL
            END DO
         END DO
         DO I=1,N
            Z1I=ZZ(I)
            Z2I=ZZ(I+N)
            Z3I=ZZ(I+N2)
            Z4I=ZZ(I+N3)
            Z5I=ZZ(I+N4)
            FF(I)=TI511*Z1I+TI512*Z2I+TI513*Z3I+TI514*Z4I+TI515*Z5I
            FF(I+N)=TI521*Z1I+TI522*Z2I+TI523*Z3I+TI524*Z4I+TI525*Z5I
            FF(I+N2)=TI531*Z1I+TI532*Z2I+TI533*Z3I+TI534*Z4I+TI535*Z5I
            FF(I+N3)=TI541*Z1I+TI542*Z2I+TI543*Z3I+TI544*Z4I+TI545*Z5I
            FF(I+N4)=TI551*Z1I+TI552*Z2I+TI553*Z3I+TI554*Z4I+TI555*Z5I
         END DO
      END IF
C *** *** *** *** *** *** ***
C  LOOP FOR THE SIMPLIFIED NEWTON ITERATION
C *** *** *** *** *** *** ***
      NEWT=0
      NIT=NIT1+5
      EXPMI=1.0D0/EXPMNS
      FNEWT=MAX(10*UROUND/RTOL1,MIN(0.03D0,RTOL1**(EXPMI-1.0D0)))
      FACCON=MAX(FACCON,UROUND)**0.8D0
      THETA=ABS(THET)
 140  CONTINUE
      IF (NEWT.GE.NIT) GOTO 78
C ---     COMPUTE THE RIGHT-HAND SIDE
      DO K=0,NS-1
         IADD=K*N
         DO I=1,N
C --- pberndt XXX: Check if the rhs returned a NaN
            IF (ISNAN(ZZ(IADD+I))) GOTO 78
            CONT(I)=Y(I)+ZZ(IADD+I)
         END DO
         CALL FCN(N,X+C(K+1)*H,CONT,ZZ(IADD+1),RPAR,IPAR)
      END DO
      NFCN=NFCN+NS
C ---     SOLVE THE LINEAR SYSTEMS
      DO I=1,N
         Z1I=ZZ(I)
         Z2I=ZZ(I+N)
         Z3I=ZZ(I+N2)
         Z4I=ZZ(I+N3)
         Z5I=ZZ(I+N4)
         ZZ(I)=TI511*Z1I+TI512*Z2I+TI513*Z3I+TI514*Z4I+TI515*Z5I
         ZZ(I+N)=TI521*Z1I+TI522*Z2I+TI523*Z3I+TI524*Z4I+TI525*Z5I
         ZZ(I+N2)=TI531*Z1I+TI532*Z2I+TI533*Z3I+TI534*Z4I+TI535*Z5I
         ZZ(I+N3)=TI541*Z1I+TI542*Z2I+TI543*Z3I+TI544*Z4I+TI545*Z5I
         ZZ(I+N4)=TI551*Z1I+TI552*Z2I+TI553*Z3I+TI554*Z4I+TI555*Z5I
      END DO
      CALL SLVRAR(N,FJAC,LDJAC,MLJAC,MUJAC,FMAS,LDMAS,MLMAS,MUMAS,
     &          M1,M2,NM1,FAC1,E1,LDE1,ZZ,FF,IP1,IPHES,IER,IJOB)
      DO K=1,2
         IAD=(K-1)*2*NM1+1
         CALL SLVRAI(N,FJAC,LDJAC,MLJAC,MUJAC,FMAS,LDMAS,MLMAS,MUMAS,
     &     M1,M2,NM1,ALPHN(K),BETAN(K),EE2(1,IAD),EE2(1,IAD+NM1),LDE1,
     &     ZZ(1+(2*K-1)*N),ZZ(1+2*K*N),FF(1+(2*K-1)*N),
     &     FF(1+2*K*N),CONT,IP2((K-1)*NM1+1),IPHES,IER,IJOB)
      END DO
      NSOL=NSOL+1
      NEWT=NEWT+1
      DYNO=0.D0
      DO I=1,N
         DENOM=SCAL(I)
         DO K=0,NS-1
            DYNO=DYNO+(ZZ(I+K*N)/DENOM)**2
         END DO
      END DO
      DYNO=DSQRT(DYNO/NNS)
C ---     BAD CONVERGENCE OR NUMBER OF ITERATIONS TO LARGE
      IF (NEWT.GT.1.AND.NEWT.LT.NIT) THEN
         THQ=DYNO/DYNOLD
         IF (NEWT.EQ.2) THEN
            THETA=THQ
         ELSE
            THETA=SQRT(THQ*THQOLD)
         END IF
         THQOLD=THQ
         IF (THETA.LT.0.99D0) THEN
            FACCON=THETA/(1.0D0-THETA)
            DYTH=FACCON*DYNO*THETA**(NIT-1-NEWT)/FNEWT
            IF (DYTH.GE.1.0D0) THEN
               QNEWT=DMAX1(1.0D-4,DMIN1(20.0D0,DYTH))
               HHFAC=0.8D0*QNEWT**(-1.0D0/(4.0D0+NIT-1-NEWT))
               H=HHFAC*H
               REJECT=.TRUE.
               LAST=.FALSE.
               IF (HHFAC.LE.0.5D0) UNEXN=.TRUE.
               IF (CALJAC) GOTO 20
               GOTO 10
            END IF
         ELSE
            GOTO 78
         END IF
      END IF
      DYNOLD=MAX(DYNO,UROUND)
      DO I=1,N
         Z1I=FF(I)+ZZ(I)
         Z2I=FF(I+N)+ZZ(I+N)
         Z3I=FF(I+N2)+ZZ(I+N2)
         Z4I=FF(I+N3)+ZZ(I+N3)
         Z5I=FF(I+N4)+ZZ(I+N4)
         FF(I)=Z1I
         FF(I+N)=Z2I
         FF(I+N2)=Z3I
         FF(I+N3)=Z4I
         FF(I+N4)=Z5I
         ZZ(I)=T511*Z1I+T512*Z2I+T513*Z3I+T514*Z4I+T515*Z5I
         ZZ(I+N)=T521*Z1I+T522*Z2I+T523*Z3I+T524*Z4I+T525*Z5I
         ZZ(I+N2)=T531*Z1I+T532*Z2I+T533*Z3I+T534*Z4I+T535*Z5I
         ZZ(I+N3)=T541*Z1I+T542*Z2I+T543*Z3I+T544*Z4I+T545*Z5I
         ZZ(I+N4)=T551*Z1I+     Z2I         +     Z4I
      END DO
      IF (FACCON*DYNO.GT.FNEWT) GOTO 140
C --- ERROR ESTIMATION  
      CALL ESTRAV (N,FJAC,LDJAC,MLJAC,MUJAC,FMAS,LDMAS,MLMAS,MUMAS,
     &          H,DD,FCN,NFCN,Y0,Y,IJOB,X,M1,M2,NM1,NS,NNS,E1,LDE1,
     &          ZZ,CONT,FF,IP1,IPHES,SCAL,ERR,
     &          FIRST,REJECT,FAC1,RPAR,IPAR)
C       --- COMPUTE FINITE DIFFERENCES FOR DENSE OUTPUT
      IF (ERR.LT.1.D0) THEN
         DO I=1,N
            Y(I)=Y(I)+ZZ(I+N4)
            CONT(I+N5)=ZZ(I)/C(1)
         END DO
         DO K=1,NS-1
            FACT=1.D0/(C(NS-K)-C(NS-K+1))
            DO I=1,N
               CONT(I+K*N)=(ZZ(I+(NS-K-1)*N)-ZZ(I+(NS-K)*N))*FACT
            END DO
         END DO
         DO J=2,NS
            DO K=NS,J,-1
               FACT=1.D0/(C(NS-K)-C(NS-K+J))
               DO I=1,N
                  CONT(I+K*N)=(CONT(I+K*N)-CONT(I+(K-1)*N))*FACT
               END DO
            END DO
         END DO
      END IF
C *** *** *** *** *** *** ***
C *** *** *** *** *** *** ***
      ELSE
      IF (NS.EQ.7) THEN
C *** *** *** *** *** *** ***
C *** *** *** *** *** *** ***
      IF (FIRST.OR.STARTN.OR.CHANGE) THEN
         DO I=1,NNS
            ZZ(I)=0.D0
            FF(I)=0.D0
         END DO
      ELSE
         HQUOT=H/HOLD
         DO K=1,NS
            CCQ=C(K)*HQUOT
            DO I=1,N
               VAL=CONT(I+NS*N)
               DO L=NS-1,1,-1
                  VAL=CONT(I+L*N)+(CCQ-C(NS-L)+1.D0)*VAL
               END DO
               ZZ(I+(K-1)*N)=CCQ*VAL
            END DO
         END DO
         DO I=1,N
            Z1I=ZZ(I)
            Z2I=ZZ(I+N)
            Z3I=ZZ(I+N2)
            Z4I=ZZ(I+N3)
            Z5I=ZZ(I+N4)
            Z6I=ZZ(I+N5)
            Z7I=ZZ(I+N6)
            FF(I)=TI711*Z1I+TI712*Z2I+TI713*Z3I+TI714*Z4I+TI715*Z5I
     *               +TI716*Z6I+TI717*Z7I
            FF(I+N)=TI721*Z1I+TI722*Z2I+TI723*Z3I+TI724*Z4I+TI725*Z5I
     *               +TI726*Z6I+TI727*Z7I
            FF(I+N2)=TI731*Z1I+TI732*Z2I+TI733*Z3I+TI734*Z4I+TI735*Z5I
     *               +TI736*Z6I+TI737*Z7I
            FF(I+N3)=TI741*Z1I+TI742*Z2I+TI743*Z3I+TI744*Z4I+TI745*Z5I
     *               +TI746*Z6I+TI747*Z7I
            FF(I+N4)=TI751*Z1I+TI752*Z2I+TI753*Z3I+TI754*Z4I+TI755*Z5I
     *               +TI756*Z6I+TI757*Z7I
            FF(I+N5)=TI761*Z1I+TI762*Z2I+TI763*Z3I+TI764*Z4I+TI765*Z5I
     *               +TI766*Z6I+TI767*Z7I
            FF(I+N6)=TI771*Z1I+TI772*Z2I+TI773*Z3I+TI774*Z4I+TI775*Z5I
     *               +TI776*Z6I+TI777*Z7I
         END DO
      END IF
C *** *** *** *** *** *** ***
C  LOOP FOR THE SIMPLIFIED NEWTON ITERATION
C *** *** *** *** *** *** ***
      NEWT=0
      NIT=NIT1+10
      EXPMI=1.0D0/EXPMNS
      FNEWT=MAX(10*UROUND/RTOL1,MIN(0.03D0,RTOL1**(EXPMI-1.0D0)))
      FACCON=MAX(FACCON,UROUND)**0.8D0
      THETA=ABS(THET)
 240  CONTINUE
      IF (NEWT.GE.NIT) GOTO 78
C ---     COMPUTE THE RIGHT-HAND SIDE
      DO K=0,NS-1
         IADD=K*N
         DO I=1,N
C --- pberndt XXX: Check if the rhs returned a NaN
            IF (ISNAN(ZZ(IADD+I))) GOTO 78
            CONT(I)=Y(I)+ZZ(IADD+I)
         END DO
         CALL FCN(N,X+C(K+1)*H,CONT,ZZ(IADD+1),RPAR,IPAR)
      END DO
      NFCN=NFCN+NS
C ---     SOLVE THE LINEAR SYSTEMS
      DO I=1,N
         Z1I=ZZ(I)
         Z2I=ZZ(I+N)
         Z3I=ZZ(I+N2)
         Z4I=ZZ(I+N3)
         Z5I=ZZ(I+N4)
         Z6I=ZZ(I+N5)
         Z7I=ZZ(I+N6)
         ZZ(I)=TI711*Z1I+TI712*Z2I+TI713*Z3I+TI714*Z4I+TI715*Z5I
     *            +TI716*Z6I+TI717*Z7I
         ZZ(I+N)=TI721*Z1I+TI722*Z2I+TI723*Z3I+TI724*Z4I+TI725*Z5I
     *            +TI726*Z6I+TI727*Z7I
         ZZ(I+N2)=TI731*Z1I+TI732*Z2I+TI733*Z3I+TI734*Z4I+TI735*Z5I
     *            +TI736*Z6I+TI737*Z7I
         ZZ(I+N3)=TI741*Z1I+TI742*Z2I+TI743*Z3I+TI744*Z4I+TI745*Z5I
     *            +TI746*Z6I+TI747*Z7I
         ZZ(I+N4)=TI751*Z1I+TI752*Z2I+TI753*Z3I+TI754*Z4I+TI755*Z5I
     *            +TI756*Z6I+TI757*Z7I
         ZZ(I+N5)=TI761*Z1I+TI762*Z2I+TI763*Z3I+TI764*Z4I+TI765*Z5I
     *            +TI766*Z6I+TI767*Z7I
         ZZ(I+N6)=TI771*Z1I+TI772*Z2I+TI773*Z3I+TI774*Z4I+TI775*Z5I
     *            +TI776*Z6I+TI777*Z7I
      END DO
      CALL SLVRAR(N,FJAC,LDJAC,MLJAC,MUJAC,FMAS,LDMAS,MLMAS,MUMAS,
     &        M1,M2,NM1,FAC1,E1,LDE1,ZZ,FF,IP1,IPHES,IER,IJOB)
      DO K=1,3
         IAD=(K-1)*2*NM1+1
         CALL SLVRAI(N,FJAC,LDJAC,MLJAC,MUJAC,FMAS,LDMAS,MLMAS,MUMAS,
     &      M1,M2,NM1,ALPHN(K),BETAN(K),EE2(1,IAD),EE2(1,IAD+NM1),LDE1,
     &      ZZ(1+(2*K-1)*N),ZZ(1+2*K*N),FF(1+(2*K-1)*N),
     &      FF(1+2*K*N),CONT,IP2((K-1)*NM1+1),IPHES,IER,IJOB)
      END DO
      NSOL=NSOL+1
      NEWT=NEWT+1
      DYNO=0.D0
      DO I=1,N
         DENOM=SCAL(I)
         DO K=0,NS-1
            DYNO=DYNO+(ZZ(I+K*N)/DENOM)**2
         END DO
      END DO
      DYNO=DSQRT(DYNO/NNS)
C ---     BAD CONVERGENCE OR NUMBER OF ITERATIONS TO LARGE
      IF (NEWT.GT.1.AND.NEWT.LT.NIT) THEN
         THQ=DYNO/DYNOLD
         IF (NEWT.EQ.2) THEN
            THETA=THQ
         ELSE
            THETA=SQRT(THQ*THQOLD)
         END IF
         THQOLD=THQ
         IF (THETA.LT.0.99D0) THEN
            FACCON=THETA/(1.0D0-THETA)
            DYTH=FACCON*DYNO*THETA**(NIT-1-NEWT)/FNEWT
            IF (DYTH.GE.1.0D0) THEN
               QNEWT=DMAX1(1.0D-4,DMIN1(20.0D0,DYTH))
               HHFAC=0.8D0*QNEWT**(-1.0D0/(4.0D0+NIT-1-NEWT))
               H=HHFAC*H
               REJECT=.TRUE.
               LAST=.FALSE.
               IF (HHFAC.LE.0.5D0) UNEXN=.TRUE.
               IF (CALJAC) GOTO 20
               GOTO 10
            END IF
         ELSE
            GOTO 78
         END IF
      END IF
      DYNOLD=MAX(DYNO,UROUND)
      DO I=1,N
         Z1I=FF(I)+ZZ(I)
         Z2I=FF(I+N)+ZZ(I+N)
         Z3I=FF(I+N2)+ZZ(I+N2)
         Z4I=FF(I+N3)+ZZ(I+N3)
         Z5I=FF(I+N4)+ZZ(I+N4)
         Z6I=FF(I+N5)+ZZ(I+N5)
         Z7I=FF(I+N6)+ZZ(I+N6)
         FF(I)=Z1I
         FF(I+N)=Z2I
         FF(I+N2)=Z3I
         FF(I+N3)=Z4I
         FF(I+N4)=Z5I
         FF(I+N5)=Z6I
         FF(I+N6)=Z7I
         ZZ(I)=T711*Z1I+T712*Z2I+T713*Z3I+T714*Z4I+T715*Z5I
     *            +T716*Z6I+T717*Z7I
         ZZ(I+N)=T721*Z1I+T722*Z2I+T723*Z3I+T724*Z4I+T725*Z5I
     *            +T726*Z6I+T727*Z7I
         ZZ(I+N2)=T731*Z1I+T732*Z2I+T733*Z3I+T734*Z4I+T735*Z5I
     *            +T736*Z6I+T737*Z7I
         ZZ(I+N3)=T741*Z1I+T742*Z2I+T743*Z3I+T744*Z4I+T745*Z5I
     *            +T746*Z6I+T747*Z7I
         ZZ(I+N4)=T751*Z1I+T752*Z2I+T753*Z3I+T754*Z4I+T755*Z5I
     *            +T756*Z6I+T757*Z7I
         ZZ(I+N5)=T761*Z1I+T762*Z2I+T763*Z3I+T764*Z4I+T765*Z5I
     *            +T766*Z6I+T767*Z7I
         ZZ(I+N6)=T771*Z1I+Z2I+Z4I+Z6I
      END DO
      IF (FACCON*DYNO.GT.FNEWT) GOTO 240
C --- ERROR ESTIMATION  
      CALL ESTRAV (N,FJAC,LDJAC,MLJAC,MUJAC,FMAS,LDMAS,MLMAS,MUMAS,
     &          H,DD,FCN,NFCN,Y0,Y,IJOB,X,M1,M2,NM1,NS,NNS,E1,LDE1,
     &          ZZ,CONT,FF,IP1,IPHES,SCAL,ERR,
     &          FIRST,REJECT,FAC1,RPAR,IPAR)
C       --- COMPUTE FINITE DIFFERENCES FOR DENSE OUTPUT
      IF (ERR.LT.1.D0) THEN
         DO I=1,N
            Y(I)=Y(I)+ZZ(I+(NS-1)*N)
            CONT(I+NS*N)=ZZ(I)/C(1)
         END DO
         DO K=1,NS-1
            FACT=1.D0/(C(NS-K)-C(NS-K+1))
            DO I=1,N
               CONT(I+K*N)=(ZZ(I+(NS-K-1)*N)-ZZ(I+(NS-K)*N))*FACT
            END DO
         END DO
         DO J=2,NS
            DO K=NS,J,-1
               FACT=1.D0/(C(NS-K)-C(NS-K+J))
               DO I=1,N
                  CONT(I+K*N)=(CONT(I+K*N)-CONT(I+(K-1)*N))*FACT
               END DO
            END DO
         END DO
      END IF
C *** *** *** *** *** *** ***
C *** *** *** *** *** *** ***
      ELSE
CASE       (NS.EQ.1) 
C *** *** *** *** *** *** ***
C *** *** *** *** *** *** ***
      IF (FIRST.OR.STARTN.OR.CHANGE) THEN
         DO I=1,NS
            ZZ(I)=0.D0
            FF(I)=0.D0
         END DO
      ELSE
         HQUOT=H/HOLD
         DO I=1,N
            Z1I=HQUOT*CONT(I+N)
            ZZ(I)=Z1I
            FF(I)=Z1I
         END DO
      END IF
C *** *** *** *** *** *** ***
C  LOOP FOR THE SIMPLIFIED NEWTON ITERATION
C *** *** *** *** *** *** ***
      NEWT=0
      NIT=NIT1-3
      EXPMI=1.0D0/EXPMNS
      FNEWT=MAX(10*UROUND/RTOL1,0.03D0)
      FACCON=MAX(FACCON,UROUND)**0.8D0
      THETA=ABS(THET)
 440  CONTINUE
      IF (NEWT.GE.NIT) GOTO 78
C ---     COMPUTE THE RIGHT-HAND SIDE
      DO I=1,N
         CONT(I)=Y(I)+ZZ(I)
      END DO
      CALL FCN(N,XPH,CONT,ZZ,RPAR,IPAR)
C --- pberndt XXX: Check if the rhs returned a NaN
      DO I=1,N
            IF (ISNAN(ZZ(I))) GOTO 78
      END DO
      NFCN=NFCN+1
C ---     SOLVE THE LINEAR SYSTEMS
      CALL SLVRAR(N,FJAC,LDJAC,MLJAC,MUJAC,FMAS,LDMAS,MLMAS,MUMAS,
     &          M1,M2,NM1,FAC1,E1,LDE1,ZZ,FF,IP1,IPHES,IER,IJOB)
      NSOL=NSOL+1
      NEWT=NEWT+1
      DYNO=0.D0
      DO I=1,N
         DENOM=SCAL(I)
         DYNO=DYNO+(ZZ(I)/DENOM)**2
      END DO
      DYNO=DSQRT(DYNO/NNS)
C ---     BAD CONVERGENCE OR NUMBER OF ITERATIONS TO LARGE
      IF (NEWT.GT.1.AND.NEWT.LT.NIT) THEN
         THQ=DYNO/DYNOLD
         IF (NEWT.EQ.2) THEN
            THETA=THQ
         ELSE
            THETA=SQRT(THQ*THQOLD)
         END IF
         THQOLD=THQ
         IF (THETA.LT.0.99D0) THEN
            FACCON=THETA/(1.0D0-THETA)
            DYTH=FACCON*DYNO*THETA**(NIT-1-NEWT)/FNEWT
            IF (DYTH.GE.1.0D0) THEN
               QNEWT=DMAX1(1.0D-4,DMIN1(20.0D0,DYTH))
               HHFAC=0.8D0*QNEWT**(-1.0D0/(4.0D0+NIT-1-NEWT))
               H=HHFAC*H
               REJECT=.TRUE.
               LAST=.FALSE.
               IF (HHFAC.LE.0.5D0) UNEXN=.TRUE.
               IF (CALJAC) GOTO 20
               GOTO 10
            END IF
         ELSE
            GOTO 78
         END IF
      END IF
      DYNOLD=MAX(DYNO,UROUND)
      DO I=1,N
         F1I=FF(I)+ZZ(I)
         FF(I)=F1I
         ZZ(I)=F1I

C --- pberndt XXX: Check if the rhs returned a NaN
         IF (ISNAN(ZZ(I))) GOTO 78
      END DO
      IF (FACCON*DYNO.GT.FNEWT) GOTO 440
C --- ERROR ESTIMATION  
      CALL ESTRAV (N,FJAC,LDJAC,MLJAC,MUJAC,FMAS,LDMAS,MLMAS,MUMAS,
     &          H,DD,FCN,NFCN,Y0,Y,IJOB,X,M1,M2,NM1,NS,NNS,E1,LDE1,
     &          ZZ,CONT,FF,IP1,IPHES,SCAL,ERR,
     &          FIRST,REJECT,FAC1,RPAR,IPAR)
C       --- COMPUTE FINITE DIFFERENCES FOR DENSE OUTPUT
      IF (ERR.LT.1.D0) THEN
         DO I=1,N
            Y(I)=Y(I)+ZZ(I)  
            CONT(I+N)=ZZ(I)
         END DO
      END IF
C *** *** *** *** *** *** ***
C *** *** *** *** *** *** ***
      END IF
      END IF
      END IF
C --- pberndt XXX: Check if the Y update generated a NaN
      DO I=1,N
          IF (ISNAN(Y(I))) GOTO 78
      END DO
C *** *** *** *** *** *** ***
C *** *** *** *** *** *** ***
C --- COMPUTATION OF HNEW
C --- WE REQUIRE .2<=HNEW/H<=8.
      FAC=MIN(SAFE,(1+2*NIT)*SAFE/(NEWT+2*NIT))
      QUOT=MAX(FACR,MIN(FACL,ERR**EXPO/FAC))
      HNEW=H/QUOT
C *** *** *** *** *** *** ***
C  IS THE ERROR SMALL ENOUGH ?
C *** *** *** *** *** *** ***
      IF (ERR.LT.1.D0) THEN
C --- STEP IS ACCEPTED
         FIRST=.FALSE.
         NACCPT=NACCPT+1
         IF (PRED.AND..NOT.CHANGE) THEN
C       --- PREDICTIVE CONTROLLER OF GUSTAFSSON
            IF (NACCPT.GT.1) THEN
               FACGUS=(HACC/H)*(ERR**2/ERRACC)**EXPO/SAFE
               FACGUS=MAX(FACR,MIN(FACL,FACGUS))
               QUOT=MAX(QUOT,FACGUS)
               HNEW=H/QUOT
            END IF
            HACC=H
            ERRACC=MAX(1.0D-2,ERR)
         END IF
         XOLD=X
         HOLD=H
         X=XPH 
C       --- UPDATE SCALING
         IF (ITOL.EQ.0) THEN
            DO I=1,N
               SCAL(I)=ATOL1+RTOL1*ABS(Y(I))
            END DO
         ELSE
            DO I=1,N
               QUOTT=ATOL(I)/RTOL(I)
               RTOL1=0.1D0*RTOL(I)**EXPMNS
               ATOL1=RTOL1*QUOTT
               SCAL(I)=ATOL1+RTOL1*ABS(Y(I))
            END DO
         END IF
         IF (IOUT.NE.0) THEN
             NRSOL=NACCPT+1
             XSOL=X
             XOSOL=XOLD
             DO I=1,N
                CONT(I)=Y(I)
             END DO
             NSOLU=N
             HSOL=HOLD
             CALL SOLOUT(NRSOL,XOSOL,XSOL,Y,CONT,LRC,NSOLU,
     &                   RPAR,IPAR,IRTRN)
             IF (IRTRN.LT.0) GOTO 179
         END IF
         CALJAC=.FALSE.
         IF (LAST) THEN
            H=HOPT
            IDID=1
            RETURN
         END IF
         CALL FCN(N,X,Y,Y0,RPAR,IPAR)
         NFCN=NFCN+1
         HNEW=POSNEG*MIN(ABS(HNEW),HMAXN)
         HOPT=HNEW
         HOPT=MIN(H,HNEW)
         IF (REJECT) HNEW=POSNEG*MIN(ABS(HNEW),ABS(H)) 
         REJECT=.FALSE.
         IF ((X+HNEW/QUOT1-XEND)*POSNEG.GE.0.D0) THEN
            H=XEND-X
            LAST=.TRUE.
         ELSE
            QT=HNEW/H 
            HHFAC=H
            IF (THETA.LE.THET.AND.QT.GE.QUOT1.AND.QT.LE.QUOT2) THEN
               IKEEP=1
               GOTO 30
            END IF
            H=HNEW 
         END IF
         HHFAC=H
         IF (THETA.LE.THET) GOTO 20
         GOTO 10
      ELSE
C --- STEP IS REJECTED  
         REJECT=.TRUE.
         LAST=.FALSE.
         IF (FIRST) THEN
             H=H*0.1D0
             HHFAC=0.1D0
         ELSE 
             HHFAC=HNEW/H
             H=HNEW
         END IF
         IF (NACCPT.GE.1) NREJCT=NREJCT+1
         IF (CALJAC) GOTO 20
         GOTO 10
      END IF
C --- UNEXPECTED STEP-REJECTION
  78  CONTINUE
      UNEXP=.TRUE.
      IF (IER.NE.0) THEN
          NSING=NSING+1
          IF (NSING.GE.5) GOTO 176
      END IF
      H=H*0.5D0 
      HHFAC=0.5D0
      REJECT=.TRUE.
      LAST=.FALSE.
      IF (CALJAC) GOTO 20
      GOTO 10
C --- FAIL EXIT
 175  CONTINUE
      WRITE(9,979)X
      WRITE(6,*) ' RHS EVALUATES TO NAN'
      IDID=-42
      RETURN
 176  CONTINUE
      WRITE(6,979)X   
      WRITE(6,*) ' MATRIX IS REPEATEDLY SINGULAR, IER=',IER
      IDID=-4
      RETURN
 177  CONTINUE
      WRITE(6,979)X   
      WRITE(6,*) ' STEP SIZE T0O SMALL, H=',H
      IDID=-3
      RETURN
 178  CONTINUE
      WRITE(6,979)X   
      WRITE(6,*) ' MORE THAN NMAX =',NMAX,'STEPS ARE NEEDED' 
      IDID=-2
      RETURN
C --- EXIT CAUSED BY SOLOUT
 179  CONTINUE
C      WRITE(6,979)X
 979  FORMAT(' EXIT OF RADAU AT X=',E18.4) 
      IDID=2
      RETURN
      END
C
C     END OF SUBROUTINE RADCOV
C
C ***********************************************************
C
      SUBROUTINE COERTV(NSMAX)
      USE omp_lib
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      COMMON /COE3/ T311,T312,T313,T321,T322,T323,T331,
     *    TI311,TI312,TI313,TI321,TI322,TI323,TI331,TI332,TI333
!$OMP THREADPRIVATE(/COE3/)
      COMMON /COE5/ T511,T512,T513,T514,T515,T521,T522,T523,T524,T525,
     *    T531,T532,T533,T534,T535,T541,T542,T543,T544,T545,T551,
     *    TI511,TI512,TI513,TI514,TI515,TI521,TI522,TI523,TI524,TI525,
     *    TI531,TI532,TI533,TI534,TI535,TI541,TI542,TI543,TI544,TI545,
     *    TI551,TI552,TI553,TI554,TI555
!$OMP THREADPRIVATE(/COE5/)
      COMMON /COE7/ T711,T712,T713,T714,T715,T716,T717,
     *              T721,T722,T723,T724,T725,T726,T727,
     *              T731,T732,T733,T734,T735,T736,T737,
     *              T741,T742,T743,T744,T745,T746,T747,
     *              T751,T752,T753,T754,T755,T756,T757,
     *              T761,T762,T763,T764,T765,T766,T767,T771,
     *              TI711,TI712,TI713,TI714,TI715,TI716,TI717,
     *              TI721,TI722,TI723,TI724,TI725,TI726,TI727,
     *              TI731,TI732,TI733,TI734,TI735,TI736,TI737,
     *              TI741,TI742,TI743,TI744,TI745,TI746,TI747,
     *              TI751,TI752,TI753,TI754,TI755,TI756,TI757,
     *              TI761,TI762,TI763,TI764,TI765,TI766,TI767,
     *              TI771,TI772,TI773,TI774,TI775,TI776,TI777
!$OMP THREADPRIVATE(/COE7/)
C ---
      T311 =  0.9123239487089294279155D-01
      T312 = -0.1412552950209542084280D+00
      T313 = -0.3002919410514742449186D-01
      T321 =  0.2417179327071070189575D+00
      T322 =  0.2041293522937999319960D+00
      T323 =  0.3829421127572619377954D+00
      T331 =  0.9660481826150929361906D+00
      TI311 =  0.4325579890063155351024D+01
      TI312 =  0.3391992518158098695428D+00
      TI313 =  0.5417705399358748711865D+00
      TI321 = -0.4178718591551904727346D+01
      TI322 = -0.3276828207610623870825D+00
      TI323 =  0.4766235545005504519601D+00
      TI331 = -0.5028726349457868759512D+00
      TI332 =  0.2571926949855605429187D+01
      TI333 = -0.5960392048282249249688D+00
      IF (NSMAX.LE.3) RETURN
      T511 = -0.1251758622050104589014D-01
      T512 = -0.1024204781790882707009D-01
      T513 =  0.4767387729029572386318D-01
      T514 = -0.1147851525522951470794D-01
      T515 = -0.1401985889287541028108D-01
      T521 = -0.1491670151895382429004D-02
      T522 =  0.5017286451737105816299D-01
      T523 = -0.9433181918161143698066D-01
      T524 = -0.7668830749180162885157D-02
      T525 =  0.2470857842651852681253D-01
      T531 = -0.7298187638808714862266D-01
      T532 = -0.2305395340434179467214D+00
      T533 =  0.1027030453801258997922D+00
      T534 =  0.1939846399882895091122D-01
      T535 =  0.8180035370375117083639D-01
      T541 = -0.3800914400035681041264D+00
      T542 =  0.3778939022488612495439D+00
      T543 =  0.4667441303324943592896D+00
      T544 =  0.4076011712801990666217D+00
      T545 =  0.1996824278868025259365D+00
      T551 = -0.9219789736812104884883D+00
      TI511 = -0.3004156772154440162771D+02
      TI512 = -0.1386510785627141316518D+02
      TI513 = -0.3480002774795185561828D+01
      TI514 =  0.1032008797825263422771D+01
      TI515 = -0.8043030450739899174753D+00
      TI521 =  0.5344186437834911598895D+01
      TI522 =  0.4593615567759161004454D+01
      TI523 = -0.3036360323459424298646D+01
      TI524 =  0.1050660190231458863860D+01
      TI525 = -0.2727786118642962705386D+00
      TI531 =  0.3748059807439804860051D+01
      TI532 = -0.3984965736343884667252D+01
      TI533 = -0.1044415641608018792942D+01
      TI534 =  0.1184098568137948487231D+01
      TI535 = -0.4499177701567803688988D+00
      TI541 = -0.3304188021351900000806D+02
      TI542 = -0.1737695347906356701945D+02
      TI543 = -0.1721290632540055611515D+00
      TI544 = -0.9916977798254264258817D-01
      TI545 =  0.5312281158383066671849D+00
      TI551 = -0.8611443979875291977700D+01
      TI552 =  0.9699991409528808231336D+01
      TI553 =  0.1914728639696874284851D+01
      TI554 =  0.2418692006084940026427D+01
      TI555 = -0.1047463487935337418694D+01
      IF (NSMAX.LE.5) RETURN
      T711 = -0.2153754627310526422828D-02
      T712 =  0.2156755135132077338691D-01
      T713 =  0.8783567925144144407326D-02
      T714 = -0.4055161452331023898198D-02
      T715 =  0.4427232753268285479678D-02
      T716 = -0.1238646187952874056377D-02
      T717 = -0.2760617480543852499548D-02
      T721 =  0.1600025077880428526831D-02
      T722 = -0.3813164813441154669442D-01
      T723 = -0.2152556059400687552385D-01
      T724 =  0.8415568276559589237177D-02
      T725 = -0.4031949570224549492304D-02
      T726 = -0.6666635339396338181761D-04
      T727 =  0.3185474825166209848748D-02
      T731 = -0.4059107301947683091650D-02
      T732 =  0.5739650893938171539757D-01
      T733 =  0.5885052920842679105612D-01
      T734 = -0.8560431061603432060177D-02
      T735 = -0.6923212665023908924141D-02
      T736 = -0.2352180982943338340535D-02
      T737 =  0.4169077725297562691409D-03
      T741 = -0.1575048807937684420346D-01
      T742 = -0.3821469359696835048464D-01
      T743 = -0.1657368112729438512412D+00
      T744 = -0.3737124230238445741907D-01
      T745 =  0.8239007298507719404499D-02
      T746 =  0.3115071152346175252726D-02
      T747 =  0.2511660491343882192836D-01
      T751 = -0.1129776610242208076086D+00
      T752 = -0.2491742124652636863308D+00
      T753 =  0.2735633057986623212132D+00
      T754 =  0.5366761379181770094279D-02
      T755 =  0.1932111161012620144312D+00
      T756 =  0.1017177324817151468081D+00
      T757 =  0.9504502035604622821039D-01
      T761 = -0.4583810431839315010281D+00
      T762 =  0.5315846490836284292051D+00
      T763 =  0.4863228366175728940567D+00
      T764 =  0.5265742264584492629141D+00
      T765 =  0.2755343949896258141929D+00
      T766 =  0.5217519452747652852946D+00
      T767 =  0.1280719446355438944141D+00
      T771 = -0.8813915783538183763135D+00
      TI711 = -0.2581319263199822292761D+03
      TI712 = -0.1890737630813985089520D+03
      TI713 = -0.4908731481793013119445D+02
      TI714 = -0.4110647469661428418112D+01
      TI715 = -0.4053447889315563304175D+01
      TI716 =  0.3112755366607346076554D+01
      TI717 = -0.1646774913558444650169D+01
      TI721 = -0.3007390169451292131731D+01
      TI722 = -0.1101586607876577132911D+02
      TI723 =  0.1487799456131656281486D+01
      TI724 =  0.2130388159559282459432D+01
      TI725 = -0.1816141086817565624822D+01
      TI726 =  0.1134325587895161100083D+01
      TI727 = -0.4146990459433035319930D+00
      TI731 = -0.8441963188321084681757D+01
      TI732 = -0.6505252740575150028169D+00
      TI733 =  0.6940670730369876478804D+01
      TI734 = -0.3205047525597898431565D+01
      TI735 =  0.1071280943546478589783D+01
      TI736 = -0.3548507491216221879730D+00
      TI737 =  0.9198549132786554154409D-01
      TI741 =  0.7467833223502269977153D+02
      TI742 =  0.8740858897990081640204D+02
      TI743 =  0.4024158737379997877014D+01
      TI744 = -0.3714806315158364186639D+01
      TI745 = -0.3430093985982317350741D+01
      TI746 =  0.2696604809765312378853D+01
      TI747 = -0.9386927436075461933568D+00
      TI751 =  0.5835652885190657724237D+02
      TI752 = -0.1006877395780018096325D+02
      TI753 = -0.3036638884256667120811D+02
      TI754 = -0.1020020865184865985027D+01
      TI755 = -0.1124175003784249621267D+00
      TI756 =  0.1890640831000377622800D+01
      TI757 = -0.9716486393831482282172D+00
      TI761 = -0.2991862480282520966786D+03
      TI762 = -0.2430407453687447911819D+03
      TI763 = -0.4877710407803786921219D+02
      TI764 = -0.2038671905741934405280D+01
      TI765 =  0.1673560239861084944268D+01
      TI766 = -0.1087374032057106164456D+01
      TI767 =  0.9019382492960993738427D+00
      TI771 = -0.9307650289743530591157D+02
      TI772 =  0.2388163105628114427703D+02
      TI773 =  0.3927888073081384382710D+02
      TI774 =  0.1438891568549108006988D+02
      TI775 = -0.3510438399399361221087D+01
      TI776 =  0.4863284885566180701215D+01
      TI777 = -0.2246482729591239916400D+01
      RETURN
      END
C
C     END OF SUBROUTINE COERTV
C
C ***********************************************************
C
      SUBROUTINE COERCV(NS,C,DD,U1,ALPH,BETA)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      DIMENSION C(0:NS),DD(NS),ALPH(NS),BETA(NS)
      C(0)=0.D0
      C(NS)=1.D0
      GOTO (1,11,3,11,5,11,7) NS
 11   CONTINUE
      RETURN
  1   CONTINUE
      C(1)=1.0D0
      U1=1.0D0
      DD(1)=-1.0D0
      RETURN
  3   CONTINUE
      SQ6=DSQRT(6.D0)
      C(1)=(4.D0-SQ6)/10.D0
      C(2)=(4.D0+SQ6)/10.D0
      ST9=9.D0**(1.D0/3.D0)
      U1=(6.D0+ST9*(ST9-1))/30.D0
      ALP=(12.D0-ST9*(ST9-1))/60.D0
      BET=ST9*(ST9+1)*DSQRT(3.D0)/60.D0
      CNO=ALP**2+BET**2
      U1=1.0D0/U1
      ALPH(1)=ALP/CNO
      BETA(1)=BET/CNO
      RETURN
  5   CONTINUE
      C(1)=  0.5710419611451768219312D-01
      C(2)=  0.2768430136381238276800D+00
      C(3)=  0.5835904323689168200567D+00
      C(4)=  0.8602401356562194478479D+00
      DD(1)= -0.2778093394406463730479D+02
      DD(2)=  0.3641478498049213152712D+01
      DD(3)= -0.1252547721169118720491D+01
      DD(4)=  0.5920031671845428725662D+00
      DD(5)= -0.2000000000000000000000D+00
      U1=  0.6286704751729276645173D+01
      ALPH(1)=  0.3655694325463572258243D+01
      BETA(1)=  0.6543736899360077294021D+01
      ALPH(2)=  0.5700953298671789419170D+01
      BETA(2)=  0.3210265600308549888425D+01
      RETURN
  7   CONTINUE
      C(1)=  0.2931642715978489197205D-01
      C(2)=  0.1480785996684842918500D+00
      C(3)=  0.3369846902811542990971D+00
      C(4)=  0.5586715187715501320814D+00
      C(5)=  0.7692338620300545009169D+00
      C(6)=  0.9269456713197411148519D+00
      DD(1)= -0.5437443689412861451458D+02
      DD(2)=  0.7000024004259186512041D+01
      DD(3)= -0.2355661091987557192256D+01
      DD(4)=  0.1132289066106134386384D+01
      DD(5)= -0.6468913267673587118673D+00
      DD(6)=  0.3875333853753523774248D+00
      DD(7)= -0.1428571428571428571429D+00
      U1=  0.8936832788405216337302D+01
      ALPH(1)=  0.4378693561506806002523D+01
      BETA(1)=  0.1016969328379501162732D+02
      ALPH(2)=  0.7141055219187640105775D+01
      BETA(2)=  0.6623045922639275970621D+01
      ALPH(3)=  0.8511834825102945723051D+01
      BETA(3)=  0.3281013624325058830036D+01
      RETURN
      END
C
C     END OF SUBROUTINE COERCV
C
C ***********************************************************
C
      DOUBLE PRECISION FUNCTION CONTRA(I,X,CONT,LRC) 
      USE omp_lib
C ----------------------------------------------------------
C     THIS FUNCTION CAN BE USED FOR CONINUOUS OUTPUT. IT PROVIDES AN
C     APPROXIMATION TO THE I-TH COMPONENT OF THE SOLUTION AT X.
C     IT GIVES THE VALUE OF THE COLLOCATION POLYNOMIAL, DEFINED FOR
C     THE LAST SUCCESSFULLY COMPUTED STEP (BY RADAU).
C ----------------------------------------------------------
      PARAMETER (NSDIM=7)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      DIMENSION CONT(LRC)
      COMMON/WEIGHT/NN,NS,XSOL,HSOL,C(0:NSDIM)
!$OMP THREADPRIVATE(/WEIGHT/)
      S=(X-XSOL)/HSOL+1.D0
      CONTRA=CONT(I+NS*NN)
      DO K=NS-1,0,-1
         CONTRA=CONT(I+K*NN)+(S-C(NS-K))*CONTRA
      END DO
      RETURN
      END
C
C     END OF FUNCTION CONTRA
C
C ***********************************************************