Skip to content
Snippets Groups Projects
Commit 1e249fd7 authored by markr's avatar markr
Browse files

Upload New File

parent 56206752
No related branches found
No related tags found
No related merge requests found
from graphics import * # get here: http://mcsp.wartburg.edu/zelle/python/graphics.py
import time
import random
import matplotlib.pyplot as plt
import numpy as np
# imports from our files
from help_functions import *
from classes import Agent
from check_boundarys import *
# ------------------------------------------------------------------------
# global variables
# whether average distance will be ploted at end of simulation
plot = False
# window dimensions
winWidth = 500
winHeight = 500
window = GraphWin("Window", winWidth, winHeight)
# max time for one simulation
maxTime = 4000
# whether the boundary is "free" or not
# <->
# can they swim through the side of the window y/n?
free = True
# max velocity of the agents
maxV = 8
# constant speed of agents
speed = 4
# number of agents(including leadergroups)
agentNum = 50
# angle of blindness
blind = 80
# maximum turning angle
maxTurn = 50
radTurn = math.radians(maxTurn)
negRadTurn = math.radians(360-maxTurn)
# radii of zones
zor_r = 10
zoo_r = 80
zoa_r = 110
# leadergroup 1, red
lgOneNum = 5 # number of agents in group
prefDirOne = [-1 ,-1] # preferred direction of group
weightOne = 0.2 # weight of group, determines how much they move in prefDir
# leadergroup 2, blue
lgTwoNum = 2 # number of agents in group
prefDirTwo = [1 ,1] # preferred direction of group
weightTwo = 0.2 # weight of group, determines how much they move in prefDir
# -------------------------------------------------------------------------------
# leadership simulation
def wraparound_distance(x1, y1, x2, y2, winWidth, winHeight):
xDis = x1-x2
yDis = y1-y2
x=x1
y=y1
flag = False
if(xDis > winWidth/2):
x -= winWidth
flag = True
elif (xDis < -winWidth/2):
x += winWidth
flag = True
if(yDis > winHeight/2):
y -= winHeight
flag = True
elif (yDis < -winHeight/2):
y += winHeight
flag = True
return [distance(x, y, x2, y2), flag, x-x2, y-y2]
def neigbour_in_zones_free(a, aas, zor_r, zoo_r, zoa_r, blind, winWidth, winHeight):
zor = []
zoo = []
zoa = []
for agent in aas:
wpd = wraparound_distance(a.point.getX(), a.point.getY(), agent.point.getX(), agent.point.getY(), winWidth, winHeight)
dis = wpd[0]
disVecX = wpd[2]
disVecY = wpd[3]
alpha = calc_angle(a.x_velocity,a.y_velocity, disVecX, disVecY)
if (a == agent):
True
elif alpha < 180 - blind and alpha > 180 + blind:
True
else:
dis = absvec(agent.point.getX() - a.point.getX() , agent.point.getY() - a.point.getY() )
if dis <= zor_r:
zor.append([agent, wpd[1]])
elif dis <= zoo_r:
zoo.append([agent, wpd[1]])
elif dis <= zoa_r:
zoa.append([agent, wpd[1]])
return [zor, zoo, zoa]
def updateV_leadership_couzin(a, matrix):
dx=0
dy=0
#zor
if matrix[0] != []:
for agent in matrix[0]:
disX = agent[0].point.getX() - a.point.getX()
disY = agent[0].point.getY() - a.point.getY()
rX = disX/absvec(disX, disY)
rY = disY/absvec(disX, disY)
#flag checkBoundary
if not agent[1]:
dx += rX / absvec(rX, rY)
dy += rY / absvec(rX, rY)
else:
dx -= rX / absvec(rX, rY)
dy -= rY / absvec(rX, rY)
dx = -dx
dy = -dy
# randomness factor / error
#dx += random.uniform(-1, 1)
#dy += random.uniform(-1, 1)
#normalise
dx = dx / absvec(dx, dy)
dy = dy / absvec(dx, dy)
# zoo ; zoa leer
elif matrix[1] != [] and matrix[2] == []:
for b in matrix[1]:
agent = b[0]
if not b[1]:
dx += agent.x_velocity / absvec(agent.x_velocity, agent.y_velocity)
dy += agent.y_velocity / absvec(agent.x_velocity, agent.y_velocity)
else:
dx -= agent.x_velocity / absvec(agent.x_velocity, agent.y_velocity)
dy -= agent.y_velocity / absvec(agent.x_velocity, agent.y_velocity)
dx += a.x_velocity / absvec(a.x_velocity, a.y_velocity)
dy += a.y_velocity / absvec(a.x_velocity, a.y_velocity)
# zoo leer ; zoa
elif matrix[1] == [] and matrix[2] != []:
for b in matrix[2]:
agent = b[0]
disX = agent.point.getX() - a.point.getX()
disY = agent.point.getY() - a.point.getY()
if not b[1]:
dx += ( disX / absvec(disX, disY) ) / absvec( disX / absvec(disX, disY) , disY/ absvec(disX,disY) )
dy += ( disY / absvec(disX, disY) ) / absvec( disX / absvec(disX, disY) , disY/ absvec(disX,disY) )
else:
dx -= ( disX / absvec(disX, disY) ) / absvec( disX / absvec(disX, disY) , disY/ absvec(disX,disY) )
dy -= ( disY / absvec(disX, disY) ) / absvec( disX / absvec(disX, disY) , disY/ absvec(disX,disY) )
#both zones filled
elif matrix[1] != [] and matrix[2] != []:
for b in matrix[1]:
agent = b[0]
dx += agent.x_velocity / absvec(agent.x_velocity, agent.y_velocity)
dy += agent.y_velocity / absvec(agent.x_velocity, agent.y_velocity)
for b in matrix[2]:
agent = b[0]
disX = agent.point.getX() - a.point.getX()
disY = agent.point.getY() - a.point.getY()
rX = disX/absvec(disX, disY)
rY = disY/absvec(disX, disY)
if not b[1]:
dx += rX / absvec(rX, rY)
dy += rY / absvec(rX, rY)
else:
dx -= rX / absvec(rX, rY)
dy -= rY / absvec(rX, rY)
dx += a.x_velocity / absvec(a.x_velocity, a.y_velocity)
dy += a.y_velocity / absvec(a.x_velocity, a.y_velocity)
# all zones empty
else:
dx = a.x_velocity
dy = a.y_velocity
# randomness factor / error
#dx += random.uniform(-1, 1)
#dy += random.uniform(-1, 1)
#normalise
dx = dx / absvec(dx, dy)
dy = dy / absvec(dx, dy)
#prefered direction
dx = (dx + (a.weight * a.prefdir[0]) ) / absvec((dx + (a.weight * a.prefdir[0])) , (dy + (a.weight * a.prefdir[1])))
dy = (dy + (a.weight * a.prefdir[1]) ) / absvec((dx + (a.weight * a.prefdir[0])) , (dy + (a.weight * a.prefdir[1])))
return [dx, dy]
# update function
def update_leadership(agent, agents):
# Velocity update
for agent in agents:
neigh_matrix = neigbour_in_zones_free(agent, agents, zor_r, zoo_r, zoa_r,blind,winWidth, winHeight)
agent.set_temp_velocity(updateV_leadership_couzin(agent, neigh_matrix))
# move, draw
for agent in agents:
# check if rotation is in range of maxTurn
agent = move_agent_couzin(agent, maxTurn, radTurn, negRadTurn)
# if agent is in a leadergroup, find angle between
# preferred direction and actual direction,
# if angle is smaller than 20% increase weight, else decrease
if (agent.prefdir != [0,0]):
angle_pref = math.atan2(agent.prefdir[0], agent.prefdir[1])
angle_new = math.atan2(agent.x_velocity, agent.y_velocity)
beta = math.degrees(angle_new - angle_pref)
if abs(beta) > 180:
if beta < 0:
beta += 360
else:
beta -= 360
if abs(beta) < 20 :
agent.set_weight(min(1, agent.weight+0.001))
else:
agent.set_weight(max(0, agent.weight-0.0001))
# normalise direction vector to 1, and multiply by constant speed
x = agent.x_velocity/absvec(agent.x_velocity, agent.y_velocity) * agent.speed
agent.y_velocity = agent.y_velocity/absvec(agent.x_velocity, agent.y_velocity) * agent.speed
agent.x_velocity = x
if free:
agent = checkBoundary_free(agent, winWidth, winHeight)
else:
agent = checkBoundary(agent, winWidth, winHeight)
# draw arrow
agent.draw_Line()
return agents
# -----------------------------------------------------------------------------------
# main
def main():
agents = []
if plot:
# data for plotting
distancedata = np.array([])
distancestd = np.array([])
numpycount = np.array([])
# generate agents
for i in range(agentNum):
agent = Agent(Point(random.uniform(0,winWidth), random.uniform(0,winHeight)),window, maxV)
agent.speed = speed
# give them a random starting direction
agent.set_xvelocity(random.uniform(-2,2))
agent.set_yvelocity(random.uniform(-2,2))
agent.draw_Line()
agents.append(agent)
# set preferred direction/weight/colour of leadergroup one
for i in range(lgOneNum):
agents[i].set_prefdir(prefDirOne)
agents[i].set_weight(weightOne)
agents[i].set_colour("red")
# set preferred direction/weight/colour of leadergroup one
for i in range(lgOneNum, lgOneNum + lgTwoNum):
agents[i].set_prefdir(prefDirTwo)
agents[i].set_weight(weightTwo)
agents[i].set_colour("blue")
# main loop
for i in range(maxTime):
if plot:
rawdata = totalavgdistance(agents,distancedata)
#print ("rawdata: "+ str(rawdata))
distancedata = np.append(distancedata,np.mean(rawdata))
distancestd = np.append(distancestd,np.std(rawdata))
numpycount = np.append(numpycount,i)
agents = update_leadership(agent, agents)
time.sleep(0.01)
if plot:
plt.errorbar(numpycount,distancedata,yerr=distancestd)
window.getMouse()
window.close()
main()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment