Skip to content
Snippets Groups Projects
Commit 468e9ace authored by krzok's avatar krzok
Browse files

Upload New File

parent bdec9655
Branches
No related tags found
No related merge requests found
import matplotlib.pyplot as plt
import matplotlib
import math
from matplotlib.gridspec import GridSpec
import csv
INPUT = "avgGen_mutHigh_food_2_64.csv"
INPUT2 = "avgGen_mutHigh_food_32_4.csv"
INPUT3 = "avgGen_mutLow_food_2_64.csv"
INPUT4 = "avgGen_mutLow_food_32_4.csv"
INPUTP = "avgGen_mutHigh_pred_45_140.csv"
INPUTP2 = "avgGen_mutHigh_pred_135_70.csv"
INPUTP3 = "avgGen_mutLow_pred_45_140.csv"
INPUTP4 = "avgGen_mutLow_pred_135_70.csv"
INPUTL = "avgDeltaPref.csv"
INPUTL1 = "conf_1.csv"
INPUTL2 = "conf_5.csv"
INPUTL3 = "conf_10.csv"
INPUTL4 = "conf_15.csv"
INPUTL5 = "conf_-10_3_1.csv"
INPUTL6 = "conf_-10_4_3.csv"
INPUTL7 = "conf_-10_5_5.csv"
INPUTL8 = "conf_11_3_1.csv"
INPUTL9 = "conf_11_4_3.csv"
INPUTL10 = "conf_11_5_5.csv"
INPUTL11 = "conf_-11_3_1.csv"
INPUTL12 = "conf_-11_4_3.csv"
INPUTL13 = "conf_-11_5_5.csv"
def parseanddrawfood():
global INPUT
matplotlib.rcParams.update({'font.size': 5})
s = "high mut small clust"
i = 0
maxis = 8
plt.figure(1)
height = math.ceil(maxis/2)
width = 2
gs = GridSpec(height, width)
axeslist = []
for j in range (maxis):
axeslist.append(plt.subplot(gs[j]))
for a1,a2 in zip(axeslist[0::2],axeslist[1::2]):
speed = []
foodpref = []
noise = []
antipred = []
timeneeded = []
zoa = []
zoo = []
blind = []
turn = []
with open(INPUT,'r') as csvfile:
dreader = csv.DictReader(csvfile)
for row in dreader:
speed.append(float(row["Speed"]))
foodpref.append(float(row["food pref"]))
noise.append(float(row["noise"]))
antipred.append(float(row["antipred"]))
zoa.append(float(row["zoa"]))
zoo.append(float(row["zoo"]))
blind.append(float(row["blind"]))
turn.append(float(row["turn"]))
timeneeded.append(float(row["timeNeeded"]))
a1.set_ylabel(s)
a2.set_ylabel(s)
a1.plot(speed,label = "Speed")
a1.plot(foodpref,label = "Foodpref")
a1.plot(noise,label = "Noise")
a1.plot(antipred,label = "antipred")
a2.plot(timeneeded,label = "time")
a2.plot(zoa,label = "zoa")
a2.plot(zoo,label = "zoo")
a2.plot(blind,label = "blind")
a2.plot(turn,label= "turn")
a1.legend(loc = "upper left")
a2.legend(loc = "upper left")
if i == 0:
INPUT = INPUT2
s = "high mut big clust"
s = "high mut big clust"
elif i == 1:
INPUT = INPUT3
s = "low mut small clust"
s = "low mut small clust"
elif i == 2:
INPUT = INPUT4
s= "low mut big clust"
s = "low mut big clust"
elif i == 3:
True
elif i ==4:
True
i += 1
plt.show()
def parseanddrawpred():
global INPUTP
matplotlib.rcParams.update({'font.size': 5})
s = "high mut good Pred"
i = 0
maxis = 8
plt.figure(2)
height = math.ceil(maxis/2)
width = 2
gs = GridSpec(height, width)
axeslist = []
for j in range (maxis):
axeslist.append(plt.subplot(gs[j]))
for a1,a2 in zip(axeslist[0::2],axeslist[1::2]):
speed = []
foodpref = []
noise = []
antipred = []
timeneeded = []
zoa = []
zoo = []
blind = []
turn = []
with open(INPUTP,'r') as csvfile:
dreader = csv.DictReader(csvfile)
for row in dreader:
speed.append(float(row["Speed"]))
foodpref.append(float(row["food pref"]))
noise.append(float(row["noise"]))
antipred.append(float(row["antipred"]))
zoa.append(float(row["zoa"]))
zoo.append(float(row["zoo"]))
blind.append(float(row["blind"]))
turn.append(float(row["turn"]))
timeneeded.append(float(row["timeNeeded"]))
a1.set_ylabel(s)
a2.set_ylabel(s)
a1.plot(speed,label = "Speed")
a1.plot(foodpref,label = "Foodpref")
a1.plot(noise,label = "Noise")
a1.plot(antipred,label = "antipred")
#a2.plot(timeneeded,label = "time")
a2.plot(zoa,label = "zoa")
a2.plot(zoo,label = "zoo")
a2.plot(blind,label = "blind")
a2.plot(turn,label= "turn")
a1.legend(loc = "upper left")
a2.legend(loc = "upper left")
if i == 0:
INPUTP= INPUTP2
s = "high mut bad Pred"
elif i == 1:
INPUTP = INPUTP3
s = "low mut good Pred"
elif i == 2:
INPUTP = INPUTP4
s = "low mut bad Pred"
elif i == 3:
True
elif i ==4:
True
i += 1
plt.show()
def parseanddrawleader():
global INPUTL
matplotlib.rcParams.update({'font.size': 5})
s = "high mut good Pred"
maxis = 8
plt.figure(2)
height = math.ceil(maxis/2)
width = 2
gs = GridSpec(height, width)
axeslist = []
i= 1
INPUTL = INPUTL1
j= 0
for j in range (maxis):
axeslist.append(plt.subplot(gs[j]))
for a in axeslist:
avgdeltaangle = []
confusion1 = []
confusion2 = []
confusion3 = []
confusion4 = []
with open(INPUTL,'r') as csvfile:
dreader = csv.DictReader(csvfile)
for row in dreader:
if i == 0:
avgdeltaangle.append(float(row[0]))
if i >= 1 and i<= 4:
confusion1.append(float(row['Confusion']))
if i == 1:
INPUTL = INPUTL2
with open(INPUTL,'r') as csvfile:
dreader = csv.DictReader(csvfile)
for row in dreader:
confusion2.append(float(row['Confusion']))
INPUTL = INPUTL3
with open(INPUTL,'r') as csvfile:
dreader = csv.DictReader(csvfile)
for row in dreader:
confusion3.append(float(row['Confusion']))
INPUTL = INPUTL4
with open(INPUTL,'r') as csvfile:
dreader = csv.DictReader(csvfile)
for row in dreader:
confusion4.append(float(row['Confusion']))
if i == 2:
INPUTL = INPUTL6
with open(INPUTL,'r') as csvfile:
dreader = csv.DictReader(csvfile)
for row in dreader:
confusion2.append(float(row['Confusion']))
INPUTL = INPUTL7
with open(INPUTL,'r') as csvfile:
dreader = csv.DictReader(csvfile)
for row in dreader:
confusion3.append(float(row['Confusion']))
if i == 3:
INPUTL = INPUTL9
with open(INPUTL,'r') as csvfile:
dreader = csv.DictReader(csvfile)
for row in dreader:
confusion2.append(float(row['Confusion']))
INPUTL = INPUTL10
with open(INPUTL,'r') as csvfile:
dreader = csv.DictReader(csvfile)
for row in dreader:
confusion3.append(float(row['Confusion']))
if i == 4:
INPUTL = INPUTL12
with open(INPUTL,'r') as csvfile:
dreader = csv.DictReader(csvfile)
for row in dreader:
confusion2.append(float(row['Confusion']))
INPUTL = INPUTL13
with open(INPUTL,'r') as csvfile:
dreader = csv.DictReader(csvfile)
for row in dreader:
confusion3.append(float(row['Confusion']))
if i == 0:
a.plot(avgdeltaangle)
INPUTL = INPUTL1
elif i == 1:
a.plot(confusion1,label = "confusion1")
a.plot(confusion2,label = "confusion5")
a.plot(confusion3,label = "confusion10")
a.plot(confusion4,label = "confusion15")
confusion1= []
confusion2=[]
confusion3=[]
confusion4=[]
a.legend(loc = "upper left")
INPUTL = INPUTL5
elif i == 2:
a.plot(confusion1)
a.plot(confusion2)
a.plot(confusion3)
a.plot(confusion4)
confusion1= []
confusion2=[]
confusion3=[]
confusion4=[]
a.legend(loc = "upper left")
INPUTL = INPUTL8
elif i == 3:
a.plot(confusion1)
a.plot(confusion2)
a.plot(confusion3)
a.plot(confusion4)
confusion1= []
confusion2=[]
confusion3=[]
confusion4=[]
a.legend(loc = "upper left")
INPUTL = INPUTL11
elif i == 4:
a.plot(confusion1)
a.plot(confusion2)
a.plot(confusion3)
a.plot(confusion4)
confusion1= []
confusion2=[]
confusion3=[]
confusion4=[]
a.legend(loc = "upper left")
a.set_ylabel(s)
i += 1
plt.show()
parseanddrawleader()
parseanddrawfood()
parseanddrawpred()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment