Newer
Older
#ifndef SRC_PROGRAM_STATE_HH
#define SRC_PROGRAM_STATE_HH
#include <dune/common/parametertree.hh>
#include <dune/fufem/boundarypatch.hh>
#include <dune/tectonic/body.hh>
#include "assemblers.hh"
#include "matrices.hh"
#include "solverfactory.hh"
template <class Vector, class ScalarVector> class ProgramState {
public:
ProgramState(int leafVertexCount)
: u(leafVertexCount),
v(leafVertexCount),
a(leafVertexCount),
alpha(leafVertexCount),
weightedNormalStress(leafVertexCount) {}
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
// Set up initial conditions
template <class Matrix, class GridView>
void setupInitialConditions(
Dune::ParameterTree const &parset,
std::function<void(double, Vector &)> externalForces,
Matrices<Matrix> const matrices,
MyAssembler<GridView, Vector::block_type::dimension> const &myAssembler,
Dune::BitSetVector<Vector::block_type::dimension> const &dirichletNodes,
Dune::BitSetVector<Vector::block_type::dimension> const &noNodes,
BoundaryPatch<GridView> const &frictionalBoundary,
Body<Vector::block_type::dimension> const &body) {
using LocalVector = typename Vector::block_type;
using LocalMatrix = typename Matrix::block_type;
auto const dims = LocalVector::dimension;
// Solving a linear problem with a multigrid solver
auto const solveLinearProblem =
[&](Dune::BitSetVector<dims> const &_dirichletNodes,
Matrix const &_matrix, Vector const &_rhs, Vector &_x,
Dune::ParameterTree const &_localParset) {
using LinearFactory = SolverFactory<
dims, BlockNonlinearTNNMGProblem<ConvexProblem<
ZeroNonlinearity<LocalVector, LocalMatrix>, Matrix>>,
typename GridView::Grid>;
ZeroNonlinearity<LocalVector, LocalMatrix> zeroNonlinearity;
LinearFactory factory(parset.sub("solver.tnnmg"), // FIXME
myAssembler.gridView.grid(), _dirichletNodes);
typename LinearFactory::ConvexProblem convexProblem(
1.0, _matrix, zeroNonlinearity, _rhs, _x);
typename LinearFactory::BlockProblem problem(parset, convexProblem);
auto multigridStep = factory.getStep();
multigridStep->setProblem(_x, problem);
EnergyNorm<Matrix, Vector> const norm(_matrix);
LoopSolver<Vector> solver(
multigridStep.get(), _localParset.get<size_t>("maximumIterations"),
_localParset.get<double>("tolerance"), &norm,
_localParset.get<Solver::VerbosityMode>("verbosity"),
false); // absolute error
solver.preprocess();
solver.solve();
};
relativeTime = 0.0;
relativeTau = 1e-6;
Vector ell0(u.size());
externalForces(relativeTime, ell0);
// Initial velocity
v = 0.0;
// Initial displacement: Start from a situation of minimal stress,
// which is automatically attained in the case [v = 0 = a].
// Assuming dPhi(v = 0) = 0, we thus only have to solve Au = ell0
solveLinearProblem(dirichletNodes, matrices.elasticity, ell0, u,
parset.sub("u0.solver"));
// Initial acceleration: Computed in agreement with Ma = ell0 - Au
// (without Dirichlet constraints), again assuming dPhi(v = 0) = 0
Vector accelerationRHS = ell0;
Arithmetic::subtractProduct(accelerationRHS, matrices.elasticity, u);
solveLinearProblem(noNodes, matrices.mass, accelerationRHS, a,
parset.sub("a0.solver"));
// Initial state
alpha = parset.get<double>("boundary.friction.initialAlpha");
// Initial normal stress
myAssembler.assembleWeightedNormalStress(
frictionalBoundary, weightedNormalStress, body.getYoungModulus(),
body.getPoissonRatio(), u);
}
public:
Vector u;
Vector v;
Vector a;
ScalarVector alpha;
ScalarVector weightedNormalStress;
double relativeTime;
double relativeTau;
size_t timeStep;
};
namespace boost {
namespace serialization {
template <class Archive, class Vector, class ScalarVector>
void serialize(Archive &ar, ProgramState<Vector, ScalarVector> &ps,
const unsigned int version) {
ar &ps.u;
ar &ps.v;
ar &ps.a;
ar &ps.alpha;
ar &ps.relativeTime;
ar &ps.relativeTau;
ar &ps.timeStep;
}
}
}