Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#include <Python.h>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifndef HAVE_PYTHON
#error Python is required
#endif
#ifdef HAVE_IPOPT
#undef HAVE_IPOPT
#endif
#ifndef datadir
#error datadir unset
#endif
#ifndef DIM
#error DIM unset
#endif
#if !HAVE_ALUGRID
#error ALUGRID is required
#endif
#include <cmath>
#include <exception>
#include <fstream>
#include <iostream>
#include <dune/common/bitsetvector.hh>
#include <dune/common/exceptions.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/function.hh>
#include <dune/common/fvector.hh>
#include <dune/common/parametertree.hh>
#include <dune/common/parametertreeparser.hh>
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wignored-qualifiers"
#include <dune/grid/alugrid.hh>
#pragma clang diagnostic pop
#include <dune/grid/common/mcmgmapper.hh>
#include <dune/grid/utility/structuredgridfactory.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/bvector.hh>
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
#include <dune/fufem/boundarypatch.hh>
#pragma clang diagnostic pop
#include <dune/fufem/dunepython.hh>
#include <dune/fufem/functions/basisgridfunction.hh>
#include <dune/fufem/functionspacebases/p1nodalbasis.hh>
#include <dune/fufem/sharedpointermap.hh>
#include <dune/solvers/norms/energynorm.hh>
#include <dune/solvers/norms/sumnorm.hh>
#include <dune/solvers/solvers/loopsolver.hh>
#include <dune/solvers/solvers/solver.hh>
#include <dune/tnnmg/nonlinearities/zerononlinearity.hh>
#include <dune/tnnmg/problem-classes/blocknonlineartnnmgproblem.hh>
#include <dune/tnnmg/problem-classes/convexproblem.hh>
#include <dune/tectonic/myblockproblem.hh>
#include <dune/tectonic/globalnonlinearity.hh>
#include "assemblers.hh"
#include "enum_parser.cc"
#include "enum_scheme.cc"
#include "enum_state_model.cc"
#include "enum_verbosity.cc"
#include "enums.hh"
#include "friction_writer.hh"
#include "sand-wedge-data/mybody.hh"
#include "sand-wedge-data/mygeometry.hh"
#include "sand-wedge-data/mygeometry.cc" // FIXME
#include "sand-wedge-data/myglobalfrictiondata.hh"
#include "sand-wedge-data/mygrid.cc" // FIXME
#include "sand-wedge-data/mygrid.hh"
#include "sand-wedge-data/special_writer.hh"
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#include "solverfactory.hh"
#include "state.hh"
#include "timestepping.hh"
#include "vtk.hh"
size_t const dims = DIM;
void initPython() {
Python::start();
Python::run("import sys");
Python::run("sys.path.append('" datadir "')");
}
int main(int argc, char *argv[]) {
try {
Dune::ParameterTree parset;
Dune::ParameterTreeParser::readINITree(datadir "/parset.cfg", parset);
Dune::ParameterTreeParser::readOptions(argc, argv, parset);
MyGeometry::render();
MyGeometry::write();
// {{{ Set up grid
using Grid = Dune::ALUGrid<dims, dims, Dune::simplex, Dune::nonconforming>;
auto grid = constructGrid<Grid>();
auto const refinements = parset.get<size_t>("grid.refinements");
grid->globalRefine(refinements);
size_t const fineVertexCount = grid->size(grid->maxLevel(), dims);
using GridView = Grid::LeafGridView;
GridView const leafView = grid->leafView();
MyFaces<GridView> myFaces(leafView);
// Neumann boundary
BoundaryPatch<GridView> const neumannBoundary(leafView);
// Frictional Boundary
BoundaryPatch<GridView> const &frictionalBoundary = myFaces.lower;
Dune::BitSetVector<1> frictionalNodes(fineVertexCount);
frictionalBoundary.getVertices(frictionalNodes);
// Surface
BoundaryPatch<GridView> const &surface = myFaces.upper;
Dune::BitSetVector<1> surfaceNodes(fineVertexCount);
surface.getVertices(surfaceNodes);
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
// Dirichlet Boundary
Dune::BitSetVector<dims> noNodes(fineVertexCount);
Dune::BitSetVector<dims> dirichletNodes(fineVertexCount);
for (size_t i = 0; i < fineVertexCount; ++i) {
if (myFaces.right.containsVertex(i))
dirichletNodes[i][0] = true;
if (myFaces.lower.containsVertex(i))
dirichletNodes[i][1] = true;
}
// Set up functions for time-dependent boundary conditions
using Function = Dune::VirtualFunction<double, double>;
using FunctionMap = SharedPointerMap<std::string, Function>;
FunctionMap functions;
{
initPython();
Python::import("boundaryconditions")
.get("Functions")
.toC<typename FunctionMap::Base>(functions);
}
auto const &velocityDirichletFunction =
functions.get("velocityDirichletCondition"),
&neumannFunction = functions.get("neumannCondition");
using MyAssembler = MyAssembler<GridView, dims>;
using Matrix = MyAssembler::Matrix;
using LocalMatrix = Matrix::block_type;
using Vector = MyAssembler::Vector;
using LocalVector = Vector::block_type;
using ScalarMatrix = MyAssembler::ScalarMatrix;
using ScalarVector = MyAssembler::ScalarVector;
using LocalScalarVector = ScalarVector::block_type;
MyAssembler myAssembler(leafView);
MyBody<dims> const body(parset);
Matrix A, C, M;
myAssembler.assembleElasticity(body.getYoungModulus(),
body.getPoissonRatio(), A);
myAssembler.assembleViscosity(body.getShearViscosityField(),
body.getBulkViscosityField(), C);
myAssembler.assembleMass(body.getDensityField(), M);
EnergyNorm<Matrix, Vector> const ANorm(A), MNorm(M);
// Q: Does it make sense to weigh them in this manner?
SumNorm<Vector> const AMNorm(1.0, ANorm, 1.0, MNorm);
ScalarMatrix frictionalBoundaryMass;
myAssembler.assembleFrictionalBoundaryMass(frictionalBoundary,
frictionalBoundaryMass);
EnergyNorm<ScalarMatrix, ScalarVector> const stateEnergyNorm(
frictionalBoundaryMass);
// Assemble forces
Vector gravityFunctional;
myAssembler.assembleBodyForce(body.getGravityField(), gravityFunctional);
// Problem formulation: right-hand side
auto const computeExternalForces = [&](double _relativeTime, Vector &_ell) {
myAssembler.assembleNeumann(neumannBoundary, _ell, neumannFunction,
_relativeTime);
_ell += gravityFunctional;
};
Vector ell(fineVertexCount);
computeExternalForces(0.0, ell);
// {{{ Initial conditions
using LinearFactory = SolverFactory<
dims, BlockNonlinearTNNMGProblem<ConvexProblem<
ZeroNonlinearity<LocalVector, LocalMatrix>, Matrix>>,
Grid>;
ZeroNonlinearity<LocalVector, LocalMatrix> zeroNonlinearity;
// TODO: clean up once generic lambdas arrive
auto const solveLinearProblem = [&](
Dune::BitSetVector<dims> const &_dirichletNodes, Matrix const &_matrix,
Vector const &_rhs, Vector &_x, EnergyNorm<Matrix, Vector> const &_norm,
Dune::ParameterTree const &_localParset) {
LinearFactory factory(parset.sub("solver.tnnmg"), // FIXME
refinements, *grid, _dirichletNodes);
typename LinearFactory::ConvexProblem convexProblem(
1.0, _matrix, zeroNonlinearity, _rhs, _x);
typename LinearFactory::BlockProblem problem(parset, convexProblem);
auto multigridStep = factory.getSolver();
multigridStep->setProblem(_x, problem);
LoopSolver<Vector> solver(
multigridStep, _localParset.get<size_t>("maximumIterations"),
_localParset.get<double>("tolerance"), &_norm,
_localParset.get<Solver::VerbosityMode>("verbosity"),
false); // absolute error
solver.preprocess();
solver.solve();
};
// Solve the stationary problem
Vector u_initial(fineVertexCount);
u_initial = 0.0;
solveLinearProblem(dirichletNodes, A, ell, u_initial, ANorm,
parset.sub("u0.solver"));
ScalarVector alpha_initial(fineVertexCount);
alpha_initial = parset.get<double>("boundary.friction.initialLogState");
ScalarVector normalStress(fineVertexCount);
myAssembler.assembleNormalStress(frictionalBoundary, normalStress,
body.getYoungModulus(),
body.getPoissonRatio(), u_initial);
MyGlobalFrictionData<dims> frictionInfo(parset.sub("boundary.friction"));
auto myGlobalNonlinearity = myAssembler.assembleFrictionNonlinearity(
frictionalBoundary, frictionInfo, normalStress);
myGlobalNonlinearity->updateLogState(alpha_initial);
Vector v_initial(fineVertexCount);
v_initial = 0.0;
{
double v_initial_const;
velocityDirichletFunction.evaluate(0.0, v_initial_const);
assert(v_initial_const == 0.0);
}
Vector a_initial(fineVertexCount);
a_initial = 0.0;
{
// We solve Ma = ell - [Au + Cv + Psi(v)]
Vector accelerationRHS(fineVertexCount);
{
accelerationRHS = 0.0;
Arithmetic::addProduct(accelerationRHS, A, u_initial);
Arithmetic::addProduct(accelerationRHS, C, v_initial);
// NOTE: We assume differentiability of Psi at 0 here!
myGlobalNonlinearity->addGradient(v_initial, accelerationRHS);
accelerationRHS *= -1.0;
accelerationRHS += ell;
}
solveLinearProblem(noNodes, M, accelerationRHS, a_initial, MNorm,
parset.sub("a0.solver"));
}
// }}}
Vector vertexCoordinates(fineVertexCount);
{
Dune::MultipleCodimMultipleGeomTypeMapper<
GridView, Dune::MCMGVertexLayout> const vertexMapper(leafView);
for (auto it = leafView.begin<dims>(); it != leafView.end<dims>(); ++it) {
auto const geometry = it->geometry();
assert(geometry.corners() == 1);
vertexCoordinates[vertexMapper.map(*it)] = geometry.corner(0);
}
}
FrictionWriter<ScalarVector, Vector> frictionWriter(
vertexCoordinates, frictionalNodes, "friction",
Elias Pipping
committed
MyGeometry::horizontalProjection);
BoundaryWriter<ScalarVector, Vector> verticalSurfaceWriter(
vertexCoordinates, surfaceNodes, "verticalSurface",
MyGeometry::verticalProjection);
BoundaryWriter<ScalarVector, Vector> horizontalSurfaceWriter(
vertexCoordinates, surfaceNodes, "horizontalSurface",
MyGeometry::horizontalProjection);
auto const report = [&](Vector const &_u, Vector const &_v,
ScalarVector const &_alpha) {
horizontalSurfaceWriter.writeKinetics(_u, _v);
verticalSurfaceWriter.writeKinetics(_u, _v);
ScalarVector c;
myGlobalNonlinearity->coefficientOfFriction(_v, c);
frictionWriter.writeKinetics(_u, _v);
frictionWriter.writeOther(c, _alpha);
};
report(u_initial, v_initial, alpha_initial);
MyVTKWriter<typename MyAssembler::VertexBasis,
typename MyAssembler::CellBasis> const
vtkWriter(myAssembler.cellBasis, myAssembler.vertexBasis, "obs");
if (parset.get<bool>("io.writeVTK")) {
ScalarVector stress;
myAssembler.assembleVonMisesStress(
body.getYoungModulus(), body.getPoissonRatio(), u_initial, stress);
vtkWriter.write(0, u_initial, v_initial, alpha_initial, stress);
}
SpecialWriter<GridView, dims> specialVelocityWriter("specialVelocities",
leafView);
SpecialWriter<GridView, dims> specialDisplacementWriter(
"specialDisplacements", leafView);
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
// Set up TNNMG solver
using NonlinearFactory =
SolverFactory<dims, MyBlockProblem<ConvexProblem<
GlobalNonlinearity<Matrix, Vector>, Matrix>>,
Grid>;
NonlinearFactory factory(parset.sub("solver.tnnmg"), refinements, *grid,
dirichletNodes);
auto multigridStep = factory.getSolver();
std::fstream iterationWriter("iterations", std::fstream::out),
relaxationWriter("relaxation", std::fstream::out);
auto timeSteppingScheme =
initTimeStepper(parset.get<Config::scheme>("timeSteps.scheme"),
velocityDirichletFunction, dirichletNodes, M, A, C,
u_initial, v_initial, a_initial);
auto stateUpdater = initStateUpdater<ScalarVector, Vector>(
parset.get<Config::stateModel>("boundary.friction.stateModel"),
alpha_initial, frictionalNodes,
parset.get<double>("boundary.friction.L"));
Vector v = v_initial;
Vector v_m(fineVertexCount);
ScalarVector alpha(fineVertexCount);
auto const timeSteps = parset.get<size_t>("timeSteps.number"),
maximumStateFPI = parset.get<size_t>("v.fpi.maximumIterations"),
maximumIterations =
parset.get<size_t>("v.solver.maximumIterations");
auto const tau = parset.get<double>("problem.finalTime") / timeSteps,
tolerance = parset.get<double>("v.solver.tolerance"),
fixedPointTolerance = parset.get<double>("v.fpi.tolerance"),
relaxation = parset.get<double>("v.fpi.relaxation"),
requiredReduction =
parset.get<double>("v.fpi.requiredReduction");
auto const printProgress = parset.get<bool>("io.printProgress");
auto const verbosity =
parset.get<Solver::VerbosityMode>("v.solver.verbosity");
for (size_t timeStep = 1; timeStep <= timeSteps; ++timeStep) {
if (printProgress)
std::cout << std::setw(7) << timeStep << " " << std::flush;
stateUpdater->nextTimeStep();
timeSteppingScheme->nextTimeStep();
auto const relativeTime = double(timeStep) / double(timeSteps);
computeExternalForces(relativeTime, ell);
Matrix velocityMatrix;
Vector velocityRHS(fineVertexCount);
Vector velocityIterate(fineVertexCount);
stateUpdater->setup(tau);
timeSteppingScheme->setup(ell, tau, relativeTime, velocityRHS,
velocityIterate, velocityMatrix);
LoopSolver<Vector> velocityProblemSolver(multigridStep, maximumIterations,
tolerance, &AMNorm, verbosity,
false); // absolute error
size_t iterationCounter;
auto solveVelocityProblem = [&](Vector &_velocityIterate,
ScalarVector const &_alpha) {
myGlobalNonlinearity->updateLogState(_alpha);
// NIT: Do we really need to pass u here?
typename NonlinearFactory::ConvexProblem convexProblem(
1.0, velocityMatrix, *myGlobalNonlinearity, velocityRHS,
_velocityIterate);
typename NonlinearFactory::BlockProblem velocityProblem(parset,
convexProblem);
multigridStep->setProblem(_velocityIterate, velocityProblem);
velocityProblemSolver.preprocess();
velocityProblemSolver.solve();
iterationCounter = velocityProblemSolver.getResult().iterations;
};
Vector u;
Vector v_saved;
ScalarVector alpha_saved;
double lastStateCorrection;
for (size_t stateFPI = 1; stateFPI <= maximumStateFPI; ++stateFPI) {
timeSteppingScheme->extractOldVelocity(v_m);
v_m *= 0.5;
Arithmetic::addProduct(v_m, 0.5, v);
stateUpdater->solve(v_m);
stateUpdater->extractLogState(alpha);
if (stateFPI == 1)
relaxationWriter << "N ";
else {
double const stateCorrection =
stateEnergyNorm.diff(alpha, alpha_saved);
if (stateFPI <= 2 // lastStateCorrection is only set for stateFPI > 2
or stateCorrection < requiredReduction * lastStateCorrection)
relaxationWriter << "N ";
else {
alpha *= (1.0 - relaxation);
Arithmetic::addProduct(alpha, relaxation, alpha_saved);
relaxationWriter << "Y ";
}
lastStateCorrection = stateCorrection;
}
solveVelocityProblem(velocityIterate, alpha);
timeSteppingScheme->postProcess(velocityIterate);
timeSteppingScheme->extractDisplacement(u);
timeSteppingScheme->extractVelocity(v);
iterationWriter << iterationCounter << " ";
if (printProgress)
std::cout << '.' << std::flush;
if (stateFPI > 1) {
double const velocityCorrection = AMNorm.diff(v_saved, v);
if (velocityCorrection < fixedPointTolerance)
break;
}
if (stateFPI == maximumStateFPI)
DUNE_THROW(Dune::Exception, "FPI failed to converge");
alpha_saved = alpha;
v_saved = v;
}
if (printProgress)
std::cout << std::endl;
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
iterationWriter << std::endl;
relaxationWriter << std::endl;
{
BasisGridFunction<typename MyAssembler::VertexBasis, Vector> velocity(
myAssembler.vertexBasis, v);
BasisGridFunction<typename MyAssembler::VertexBasis, Vector>
displacement(myAssembler.vertexBasis, u);
specialVelocityWriter.write(velocity);
specialDisplacementWriter.write(displacement);
}
if (parset.get<bool>("io.writeVTK")) {
ScalarVector stress;
myAssembler.assembleVonMisesStress(body.getYoungModulus(),
body.getPoissonRatio(), u, stress);
vtkWriter.write(timeStep, u, v, alpha, stress);
}
}
iterationWriter.close();
relaxationWriter.close();
Python::stop();
}
catch (Dune::Exception &e) {
Dune::derr << "Dune reported error: " << e << std::endl;
}
catch (std::exception &e) {
std::cerr << "Standard exception: " << e.what() << std::endl;
}
}