Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifdef HAVE_IPOPT
#undef HAVE_IPOPT
#endif
#include <atomic>
#include <cmath>
#include <csignal>
#include <exception>
#include <fstream>
#include <iostream>
#include <iomanip>
#include <memory>
#include <dune/common/bitsetvector.hh>
#include <dune/common/exceptions.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/function.hh>
#include <dune/common/fvector.hh>
#include <dune/common/parallel/mpihelper.hh>
#include <dune/common/parametertree.hh>
#include <dune/common/parametertreeparser.hh>
#include <dune/grid/common/mcmgmapper.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/bvector.hh>
#include <dune/fufem/boundarypatch.hh>
#include <dune/fufem/formatstring.hh>
#include <dune/solvers/norms/energynorm.hh>
/*
#include <dune/solvers/solvers/loopsolver.hh>
#include <dune/solvers/solvers/solver.hh>*/
#include <dune/tnnmg/problem-classes/convexproblem.hh>
#include <dune/contact/common/deformedcontinuacomplex.hh>
#include <dune/contact/common/couplingpair.hh>
#include <dune/contact/assemblers/nbodyassembler.hh>
//#include <dune/contact/assemblers/dualmortarcoupling.hh>
#include <dune/contact/projections/normalprojection.hh>
#include <dune/tectonic/geocoordinate.hh>
#include <dune/tectonic/myblockproblem.hh>
#include <dune/tectonic/globalfriction.hh>
#include <dune/fufem/hdf5/file.hh>
#include "assemblers.hh"
#include "diameter.hh"
#include "enumparser.hh"
#include "enums.hh"
#include "gridselector.hh"
#include "hdf5-writer.hh"
#include "hdf5/restart-io.hh"
#include "matrices.hh"
#include "program_state.hh"
#include "multi-body-problem-data/bc.hh"
#include "multi-body-problem-data/mybody.hh"
#include "multi-body-problem-data/cuboidgeometry.hh"
#include "multi-body-problem-data/myglobalfrictiondata.hh"
#include "multi-body-problem-data/mygrids.hh"
#include "multi-body-problem-data/weakpatch.hh"
//#include "spatial-solving/solverfactory.hh"
//#include "time-stepping/adaptivetimestepper.hh"
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#include "vtk.hh"
// for getcwd
#include <unistd.h>
#include <dune/grid/io/file/vtk/vtkwriter.hh>
#define USE_OLD_TNNMG
size_t const dims = MY_DIM;
template <class GridView>
void writeToVTK(const GridView& gridView, const std::string path, const std::string name) {
Dune::VTKWriter<GridView> vtkwriter(gridView);
//std::ofstream lStream( "garbage.txt" );
std::streambuf* lBufferOld = std::cout.rdbuf();
//std::cout.rdbuf(lStream.rdbuf());
vtkwriter.pwrite(name, path, path);
std::cout.rdbuf( lBufferOld );
}
Dune::ParameterTree getParameters(int argc, char *argv[]) {
Dune::ParameterTree parset;
Dune::ParameterTreeParser::readINITree("/home/mi/podlesny/software/dune/dune-tectonic/src/multi-body-problem.cfg", parset);
Dune::ParameterTreeParser::readINITree(
Dune::Fufem::formatString("/home/mi/podlesny/software/dune/dune-tectonic/src/multi-body-problem-%dD.cfg", dims), parset);
Dune::ParameterTreeParser::readOptions(argc, argv, parset);
return parset;
}
static std::atomic<bool> terminationRequested(false);
void handleSignal(int signum) { terminationRequested = true; }
int main(int argc, char *argv[]) {
try {
Dune::MPIHelper::instance(argc, argv);
char buffer[256];
char *val = getcwd(buffer, sizeof(buffer));
if (val) {
std::cout << buffer << std::endl;
std::cout << argv[0] << std::endl;
}
auto const parset = getParameters(argc, argv);
using Vector = Dune::BlockVector<Dune::FieldVector<double, dims>>;
using DeformedGridComplex = typename Dune::Contact::DeformedContinuaComplex<Grid, Vector>;
using DeformedGrid = DeformedGridComplex::DeformedGridType;
using DefLeafGridView = DeformedGrid::LeafGridView;
using DefLevelGridView = DeformedGrid::LevelGridView;
using Assembler = MyAssembler<DefLeafGridView, dims>;
using Matrix = Assembler::Matrix;
using ScalarMatrix = Assembler::ScalarMatrix;
using ScalarVector = Assembler::ScalarVector;
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
using field_type = Matrix::field_type;
// set up material properties of all bodies
MyBody<dims> const body(parset);
// set up cuboid geometries
const size_t bodyCount = parset.get<int>("problem.bodyCount");
std::vector<std::shared_ptr<CuboidGeometry>> cuboidGeometries(bodyCount);
double const length = 1.00;
double const width = 0.27;
double const weakLength = 0.20;
#if MY_DIM == 3
double const depth = 0.60;
// TODO: replace with make_shared
cuboidGeometries[0] = std::shared_ptr<CuboidGeometry>(new CuboidGeometry({0,0,0}, {0.2,width,0}, weakLength, length, width, depth));
for (size_t i=1; i<bodyCount; i++) {
cuboidGeometries[i] = std::shared_ptr<CuboidGeometry>(new CuboidGeometry(cuboidGeometries[i-1]->D, {0.6,i*width,0}, weakLength, length, width, depth));
}
#else
// TODO: replace with make_shared
cuboidGeometries[0] = std::shared_ptr<CuboidGeometry>(new CuboidGeometry({0,0}, {0.2,width}, weakLength, length, width));
for (size_t i=1; i<bodyCount; i++) {
cuboidGeometries[i] = std::shared_ptr<CuboidGeometry>(new CuboidGeometry(cuboidGeometries[i-1]->D, {0.6,i*width}, weakLength, length, width));
}
#endif
GridsConstructor<Grid> gridConstructor(cuboidGeometries);
auto& grids = gridConstructor.getGrids();
for (size_t i=0; i<grids.size(); i++) {
const auto& cuboidGeometry = *cuboidGeometries[i];
auto& weakPatch = weakPatches[i];
weakPatch = getWeakPatch<LocalVector>(parset.sub("boundary.friction.weakening"), cuboidGeometry);
refine(*grids[i], weakPatch, parset.get<double>("boundary.friction.smallestDiameter"), cuboidGeometry.lengthScale);
writeToVTK(grids[i]->leafGridView(), "", "grid" + std::to_string(i));
// determine minDiameter and maxDiameter
double minDiameter = std::numeric_limits<double>::infinity();
double maxDiameter = 0.0;
for (auto &&e : elements(grids[i]->leafGridView())) {
auto const geometry = e.geometry();
auto const diam = diameter(geometry);
minDiameter = std::min(minDiameter, diam);
maxDiameter = std::max(maxDiameter, diam);
}
std::cout << "Grid" << i << " min diameter: " << minDiameter << std::endl;
std::cout << "Grid" << i << " max diameter: " << maxDiameter << std::endl;
// set up deformed grids
DeformedGridComplex deformedGridComplex;
for (size_t i=0; i<grids.size(); i++) {
deformedGridComplex.addGrid(*grids[i], "body" + std::to_string(i));
}
/*
// test deformed grids
for (size_t i=0; i<deformedGrids.size(); i++) {
Vector def(deformedGrids[i]->size(dims));
def = 1;
deformedGridComplex.setDeformation(def, i);
writeToVTK(deformedGrids[i]->leafGridView(), "", "deformedGrid" + std::to_string(i));
}
// test deformed grids
*/
std::vector<std::shared_ptr<DefLeafGridView>> leafViews(deformedGrids.size());
std::vector<std::shared_ptr<DefLevelGridView>> levelViews(deformedGrids.size());
using LeafFaces = MyFaces<DefLeafGridView>;
using LevelFaces = MyFaces<DefLevelGridView>;
std::vector<std::shared_ptr<LeafFaces>> leafFaces(deformedGrids.size());
std::vector<std::shared_ptr<LevelFaces>> levelFaces(deformedGrids.size());
for (size_t i=0; i<deformedGrids.size(); i++) {
leafViews[i] = std::make_shared<DefLeafGridView>(deformedGrids[i]->leafGridView());
levelViews[i] = std::make_shared<DefLevelGridView>(deformedGrids[i]->levelGridView(0));
leafFaces[i] = std::make_shared<LeafFaces>(*leafViews[i], cuboidGeometry);
levelFaces[i] = std::make_shared<LevelFaces>(*levelViews[i], cuboidGeometry);
}
// set up contact couplings
using LeafBoundaryPatch = BoundaryPatch<DefLeafGridView>;
using LevelBoundaryPatch = BoundaryPatch<DefLevelGridView>;
using CouplingPair = Dune::Contact::CouplingPair<DeformedGrid, DeformedGrid, field_type>;
std::vector<std::shared_ptr<CouplingPair>> couplings(bodyCount-1);
for (size_t i=0; i<couplings.size(); i++) {
auto nonmortarPatch = std::make_shared<LevelBoundaryPatch>(levelFaces[i]->upper);
auto mortarPatch = std::make_shared<LevelBoundaryPatch>(levelFaces[i+1]->lower);
auto contactProjection = std::make_shared<Dune::Contact::NormalProjection<LeafBoundaryPatch>>();
std::shared_ptr<CouplingPair::BackEndType> backend = nullptr;
couplings[i]->set(i, i+1, nonmortarPatch, mortarPatch, 0.1, Dune::Contact::CouplingPairBase::STICK_SLIP, contactProjection, backend);
}
// set up dune-contact nBodyAssembler
Dune::Contact::NBodyAssembler<DeformedGrid, Vector> nBodyAssembler(bodyCount, bodyCount-1);
for (size_t i=0; i<couplings.size(); i++) {
nBodyAssembler.setCoupling(*couplings[i], i);
}
nBodyAssembler.assembleTransferOperator();
nBodyAssembler.assembleObstacle();
// set up boundary conditions
std::vector<BoundaryPatch<DefLeafGridView>> neumannBoundaries(bodyCount);
std::vector<BoundaryPatch<DefLeafGridView>> surfaces(bodyCount);
// friction boundary
std::vector<BoundaryPatch<DefLeafGridView>> frictionalBoundaries(bodyCount);
std::vector<Dune::BitSetVector<1>> frictionalNodes(bodyCount);
// Dirichlet boundary
std::vector<Dune::BitSetVector<dims>> noNodes(bodyCount);
std::vector<Dune::BitSetVector<dims>> dirichletNodes(bodyCount);
// set up functions for time-dependent boundary conditions
using Function = Dune::VirtualFunction<double, double>;
const Function& neumannFunction = NeumannCondition();
for (size_t i=0; i<grids.size(); i++) {
const auto& leafVertexCount = leafVertexCounts[i];
std::cout << "Grid" << i << " Number of DOFs: " << leafVertexCount << std::endl;
// Neumann boundary
auto& neumannBoundary = neumannBoundaries[i];
// friction boundary
auto& frictionalBoundary = frictionalBoundaries[i];
if (i==0) {
frictionalBoundary = BoundaryPatch<DefLeafGridView>(leafFaces[i]->lower);
frictionalBoundary.addPatch(BoundaryPatch<DefLeafGridView>(leafFaces[i]->upper));
//surfaces[i] = BoundaryPatch<GridView>(myFaces.upper);
// TODO: Dirichlet Boundary
noNodes[i] = Dune::BitSetVector<dims>(leafVertexCount);
dirichletNodes[i] = Dune::BitSetVector<dims>(leafVertexCount);
auto& gridDirichletNodes = dirichletNodes[i];
for (int j=0; j<leafVertexCount; j++) {
if (leafFaces[i]->right.containsVertex(j))
gridDirichletNodes[j][0] = true;
if (leafFaces[i]->lower.containsVertex(j))
gridDirichletNodes[j][0] = true;
#if MY_DIM == 3
if (leafFaces[i]->front.containsVertex(j) || leafFaces[i]->back.containsVertex(j))
gridDirichletNodes[j][2] = true;
#endif
}
}
// set up individual assemblers for each body, assemble problem (matrices, forces, rhs)
Matrices<Matrix> matrices(bodyCount);
std::vector<Vector> gravityFunctionals(bodyCount);
std::vector<std::function<void(double, Vector&)>> externalForces(bodyCount);
std::vector<const EnergyNorm<ScalarMatrix, ScalarVector>* > stateEnergyNorms(bodyCount);
for (size_t i=0; i<assemblers.size(); i++) {
auto& assembler = assemblers[i];
assembler->assembleElasticity(body.getYoungModulus(), body.getPoissonRatio(), *matrices.elasticity[i]);
assembler->assembleViscosity(body.getShearViscosityField(), body.getBulkViscosityField(), *matrices.damping[i]);
assembler->assembleMass(body.getDensityField(), *matrices.mass[i]);
ScalarMatrix relativeFrictionalBoundaryMass;
assembler->assembleFrictionalBoundaryMass(frictionalBoundaries[i], relativeFrictionalBoundaryMass);
relativeFrictionalBoundaryMass /= frictionalBoundaries[i].area();
stateEnergyNorms[i] = new EnergyNorm<ScalarMatrix, ScalarVector>(relativeFrictionalBoundaryMass);
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
// assemble forces
assembler->assembleBodyForce(body.getGravityField(), gravityFunctionals[i]);
// Problem formulation: right-hand side
externalForces[i] =
[&](double _relativeTime, Vector &_ell) {
assembler->assembleNeumann(neumannBoundaries[i], _ell, neumannFunction,
_relativeTime);
_ell += gravityFunctionals[i];
};
}
/* Jonny 2bcontact
// make dirichlet bitfields containing dirichlet information for both grids
int size = rhs[0].size() + rhs[1].size();
Dune::BitSetVector<dims> totalDirichletNodes(size);
for (size_t i=0; i<dirichletNodes[0].size(); i++)
for (int j=0; j<dims; j++)
totalDirichletNodes[i][j] = dirichletNodes[0][i][j];
int offset = rhs[0].size();
for (size_t i=0; i<dirichletNodes[1].size(); i++)
for (int j=0; j<dims; j++)
totalDirichletNodes[offset + i][j] = dirichletNodes[1][i][j];
// assemble separate linear elasticity problems
std::array<MatrixType,2> stiffnessMatrix;
std::array<const MatrixType*, 2> submat;
for (size_t i=0; i<2; i++) {
OperatorAssembler<P1Basis,P1Basis> globalAssembler(*p1Basis[i],*p1Basis[i]);
double s = (i==0) ? E0 : E1;
StVenantKirchhoffAssembler<GridType, P1Basis::LocalFiniteElement, P1Basis::LocalFiniteElement> localAssembler(s, nu);
globalAssembler.assemble(localAssembler, stiffnessMatrix[i]);
submat[i] = &stiffnessMatrix[i];
}
MatrixType bilinearForm;
contactAssembler.assembleJacobian(submat, bilinearForm);
*/
using MyProgramState = ProgramState<Vector, ScalarVector>;
MyProgramState programState(leafVertexCounts);
auto const firstRestart = parset.get<size_t>("io.restarts.first");
auto const restartSpacing = parset.get<size_t>("io.restarts.spacing");
auto const writeRestarts = parset.get<bool>("io.restarts.write");
auto const writeData = parset.get<bool>("io.data.write");
bool const handleRestarts = writeRestarts or firstRestart > 0;
auto dataFile =
writeData ? std::make_unique<HDF5::File>("output.h5") : nullptr;
auto restartFile = handleRestarts
? std::make_unique<HDF5::File>(
"restarts.h5",
writeRestarts ? HDF5::Access::READWRITE
: HDF5::Access::READONLY)
: nullptr;
? std::make_unique<RestartIO<MyProgramState>>(
*restartFile, leafVertexCounts)
if (firstRestart > 0) // automatically adjusts the time and timestep
restartIO->read(firstRestart, programState);
else
programState.setupInitialConditions(parset, nBodyAssembler, externalForces,
matrices, assemblers, dirichletNodes,
noNodes, frictionalBoundaries, body);
// assemble friction
std::vector<std::shared_ptr<MyGlobalFrictionData<LocalVector>>> frictionInfo(weakPatches.size());
std::vector<std::shared_ptr<GlobalFriction<Matrix, Vector>>> globalFriction(weakPatches.size());
for (size_t i=0; i<frictionInfo.size(); i++) {
frictionInfo[i] = std::make_shared<MyGlobalFrictionData<LocalVector>>(parset.sub("boundary.friction"), weakPatches[i]);
globalFriction[i] = assemblers[i]->assembleFrictionNonlinearity(parset.get<Config::FrictionModel>("boundary.friction.frictionModel"), frictionalBoundaries[i], *frictionInfo[i], programState.weightedNormalStress[i]);
globalFriction[i]->updateAlpha(programState.alpha[i]);
}
/*
Vector vertexCoordinates(leafVertexCount);
{
Dune::MultipleCodimMultipleGeomTypeMapper<
GridView, Dune::MCMGVertexLayout> const vertexMapper(leafView, Dune::mcmgVertexLayout());
for (auto &&v : vertices(leafView))
vertexCoordinates[vertexMapper.index(v)] = geoToPoint(v.geometry());
}
auto dataWriter =
writeData ? std::make_unique<
HDF5Writer<MyProgramState, MyVertexBasis, GridView>>(
*dataFile, vertexCoordinates, myAssembler.vertexBasis,
surface, frictionalBoundary, weakPatch)
: nullptr;
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
auto const report = [&](bool initial = false) {
if (writeData) {
dataWriter->reportSolution(programState, *myGlobalFriction);
if (!initial)
dataWriter->reportIterations(programState, iterationCount);
dataFile->flush();
}
if (writeRestarts and !initial and
programState.timeStep % restartSpacing == 0) {
restartIO->write(programState);
restartFile->flush();
}
if (parset.get<bool>("io.printProgress"))
std::cout << "timeStep = " << std::setw(6) << programState.timeStep
<< ", time = " << std::setw(12) << programState.relativeTime
<< ", tau = " << std::setw(12) << programState.relativeTau
<< std::endl;
if (parset.get<bool>("io.vtk.write")) {
ScalarVector stress;
myAssembler.assembleVonMisesStress(body.getYoungModulus(),
body.getPoissonRatio(),
programState.u, stress);
vtkWriter.write(programState.timeStep, programState.u, programState.v,
programState.alpha, stress);
}
};
report(true);
*/
using NonlinearFactory = SolverFactory<DeformedGrid, GlobalFriction<Matrix, Vector>, Matrix, Vector>;
NonlinearFactory factory(parset.sub("solver.tnnmg"), nBodyAssembler, dirichletNodes);
using MyUpdater = Updaters<RateUpdater<Vector, Matrix, Function, dims>,
StateUpdater<ScalarVector, Vector>>;
std::vector<double> L(bodyCount, parset.get<double>("boundary.friction.L"));
std::vector<double> V0(bodyCount, parset.get<double>("boundary.friction.V0"));
MyUpdater current(
initRateUpdater(parset.get<Config::scheme>("timeSteps.scheme"),
programState.u, programState.v, programState.a),
initStateUpdater<ScalarVector, Vector>(
parset.get<Config::stateModel>("boundary.friction.stateModel"),
auto const refinementTolerance =
parset.get<double>("timeSteps.refinementTolerance");
auto const mustRefine = [&](MyUpdater &coarseUpdater,
MyUpdater &fineUpdater) {
ScalarVector::field_type energyNorm = 0;
for (size_t i=0; i<stateEnergyNorms.size(); i++) {
energyNorm += stateEnergyNorms[i]->diff(fineAlpha[i], coarseAlpha[i]);
}
return energyNorm > refinementTolerance;
std::signal(SIGXCPU, handleSignal);
std::signal(SIGINT, handleSignal);
std::signal(SIGTERM, handleSignal);
AdaptiveTimeStepper<NonlinearFactory, MyUpdater,
EnergyNorm<ScalarMatrix, ScalarVector>>
while (!adaptiveTimeStepper.reachedEnd()) {
programState.timeStep++;
iterationCount = adaptiveTimeStepper.advance();
programState.relativeTime = adaptiveTimeStepper.relativeTime_;
programState.relativeTau = adaptiveTimeStepper.relativeTau_;
current.rate_->extractDisplacement(programState.u);
current.rate_->extractVelocity(programState.v);
current.rate_->extractAcceleration(programState.a);
current.state_->extractAlpha(programState.alpha);
for (size_t i=0; i<deformedGridComplex.size() ; i++) {
deformedGridComplex.setDeformation(programState.u[i], i);
}
nBodyAssembler.assembleTransferOperator();
nBodyAssembler.assembleObstacle();
// report();
if (terminationRequested) {
std::cerr << "Terminating prematurely" << std::endl;
break;
}
}