Forked from
agnumpde / dune-tectonic
1002 commits behind the upstream repository.
-
Elias Pipping authoredElias Pipping authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
myblockproblem.hh 10.59 KiB
// Based on dune/tnnmg/problem-classes/blocknonlineargsproblem.hh
#ifndef MY_BLOCK_PROBLEM_HH
#define MY_BLOCK_PROBLEM_HH
#include <dune/common/bitsetvector.hh>
#include <dune/common/nullptr.hh>
#include <dune/common/parametertree.hh>
#include <dune/fufem/arithmetic.hh>
#include <dune/tnnmg/problem-classes/bisection.hh>
#include "globalnonlinearity.hh"
#include "localnonlinearity.hh"
#include "mydirectionalconvexfunction.hh"
#include "samplefunctional.hh"
/* Just for debugging */
template <int dim, class VectorType, class MatrixType>
double computeEnergy(
MatrixType const &A, VectorType const &b,
Dune::GlobalNonlinearity<dim, VectorType, MatrixType> const &phi,
VectorType const &x) {
double ret;
VectorType tmp(x.size());
A.mv(x, tmp); // Ax
ret = 0.5 * (tmp * x); // ret = 1/2 <Ax,x>
ret -= b * x; // ret = 1/2 <Ax,x> - <b,x>
ret += phi(x); // ret = 1/2 <Ax,x> - <b,x> + phi(x)
return ret;
}
/** \brief Base class for problems where each block can be solved with a
* modified gradient method */
template <class MyConvexProblemTypeTEMPLATE> class MyBlockProblem {
public:
typedef MyConvexProblemTypeTEMPLATE MyConvexProblemType;
typedef typename MyConvexProblemType::VectorType VectorType;
typedef typename MyConvexProblemType::MatrixType MatrixType;
typedef typename MyConvexProblemType::LocalVectorType LocalVectorType;
typedef typename MyConvexProblemType::LocalMatrixType LocalMatrixType;
int static const block_size = MyConvexProblemType::block_size;
int static const coarse_block_size = block_size;
/** \brief Solves one local system using a modified gradient method */
class IterateObject;
struct Linearization {
static const int block_size = coarse_block_size;
typedef typename MyBlockProblem<MyConvexProblemType>::LocalMatrixType
LocalMatrixType;
typedef Dune::BCRSMatrix<typename Linearization::LocalMatrixType>
MatrixType;
typedef Dune::BlockVector<
Dune::FieldVector<double, Linearization::block_size>> VectorType;
typedef Dune::BitSetVector<Linearization::block_size> BitVectorType;
typename Linearization::MatrixType A;
typename Linearization::VectorType b;
typename Linearization::BitVectorType ignore;
Dune::BitSetVector<Linearization::block_size> truncation;
};
MyBlockProblem(Dune::ParameterTree const &parset,
MyConvexProblemType &problem)
: parset(parset), problem(problem) {
bisection = Bisection(
0.0, // acceptError: Stop if the search interval has
// become smaller than this number
1.0, // acceptFactor: ?
parset.get<double>("bisection.requiredResidual"), true, // fastQuadratic
0); // safety: acceptance factor for inexact minimization
}
std::string getOutput(bool header = false) const {
if (header) {
outStream.str("");
for (int j = 0; j < block_size; ++j)
outStream << " trunc" << std::setw(2) << j;
}
std::string s = outStream.str();
outStream.str("");
return s;
}
void projectCoarseCorrection(VectorType const &u,
typename Linearization::VectorType const &v,
VectorType &projected_v,
Linearization const &linearization) const {
// TODO: implement (not urgent)
projected_v = v;
for (size_t i = 0; i < v.size(); ++i)
for (int j = 0; j < block_size; ++j)
if (linearization.truncation[i][j])
projected_v[i][j] = 0;
}
double computeDampingParameter(VectorType const &u,
VectorType const &projected_v) const {
VectorType v = projected_v;
double const vnorm = v.two_norm();
if (vnorm == 0) // This can (and needs to be able to) be very small
return 0.0;
v /= vnorm; // Rescale for numerical stability
VectorType tmp = problem.f;
problem.A.mmv(u, tmp);
double const localb = tmp * v;
problem.A.mv(v, tmp);
double const localA = tmp * v;
/*
1/2 <A(u + hv),u + hv> - <b, u + hv>
= 1/2 <Av,v> h^2 - <b - Au, v> h + const.
localA = <Av,v>
localb = <b - Au, v>
*/
MyDirectionalConvexFunction<Dune::GlobalNonlinearity<block_size>> const psi(
localA, localb, problem.phi, u, v);
Interval<double> D;
psi.subDiff(0, D);
// FIXME: this should never happen to begin with
if (D[1] >= 0)
return 0.0;
int bisectionsteps = 0;
Bisection bisection(0.0, 1.0, 1e-12, true, 0); // TODO
return bisection.minimize(psi, vnorm, 0.0, bisectionsteps) / vnorm; // TODO
}
void assembleTruncate(VectorType const &u, Linearization &linearization,
Dune::BitSetVector<block_size> const &ignore) const {
// we can just copy the ignore information
linearization.ignore = ignore;
// determine truncation pattern
linearization.truncation.resize(u.size());
linearization.truncation.unsetAll();
for (size_t i = 0; i < u.size(); ++i) {
if (problem.phi.regularity(i, u[i]) > 1e8) {
linearization.truncation[i] = true;
continue;
}
for (int j = 0; j < block_size; ++j)
if (linearization.ignore[i][j])
linearization.truncation[i][j] = true;
}
// construct sparsity pattern for linearization
Dune::MatrixIndexSet indices(problem.A.N(), problem.A.M());
indices.import(problem.A);
problem.phi.addHessianIndices(indices);
// construct matrix from pattern and initialize it
indices.exportIdx(linearization.A);
linearization.A = 0.0;
// compute quadratic part of hessian (linearization.A += problem.A)
for (size_t i = 0; i < problem.A.N(); ++i) {
typename MatrixType::row_type::ConstIterator it = problem.A[i].begin();
typename MatrixType::row_type::ConstIterator end = problem.A[i].end();
for (; it != end; ++it)
Arithmetic::addProduct(linearization.A[i][it.index()], 1.0, *it);
}
// compute nonlinearity part of hessian
problem.phi.addHessian(u, linearization.A);
// compute quadratic part of gradient
linearization.b.resize(u.size());
linearization.b = 0.0;
problem.A.template umv<VectorType, VectorType>(u, linearization.b);
linearization.b -= problem.f;
// compute nonlinearity part of gradient
problem.phi.addGradient(u, linearization.b);
// -grad is needed for Newton step
linearization.b *= -1.0;
// apply truncation to system
typename Linearization::MatrixType::row_type::Iterator it;
typename Linearization::MatrixType::row_type::Iterator end;
for (size_t row = 0; row < linearization.A.N(); ++row) {
it = linearization.A[row].begin();
end = linearization.A[row].end();
for (; it != end; ++it) {
int const col = it.index();
for (size_t i = 0; i < it->N(); ++i) {
typename Linearization::MatrixType::block_type::row_type::Iterator
blockIt = (*it)[i].begin();
typename Linearization::MatrixType::block_type::row_type::
Iterator const blockEnd = (*it)[i].end();
for (; blockIt != blockEnd; ++blockIt)
if (linearization.truncation[row][i] or linearization
.truncation[col][blockIt.index()])
*blockIt = 0.0;
}
}
for (int j = 0; j < block_size; ++j)
if (linearization.truncation[row][j])
linearization.b[row][j] = 0.0;
}
for (int j = 0; j < block_size; ++j)
outStream << std::setw(9) << linearization.truncation.countmasked(j);
}
/** \brief Constructs and returns an iterate object */
IterateObject getIterateObject() {
return IterateObject(parset, bisection, problem);
}
private:
// problem data
MyConvexProblemType &problem;
// commonly used minimization stuff
Bisection bisection;
Dune::ParameterTree const &parset;
mutable std::ostringstream outStream;
};
/** \brief Solves one local system using a scalar Gauss-Seidel method */
template <class MyConvexProblemTypeTEMPLATE>
class MyBlockProblem<MyConvexProblemTypeTEMPLATE>::IterateObject {
friend class MyBlockProblem;
protected:
/** \brief Constructor, protected so only friends can instantiate it
* \param bisection The class used to do a scalar bisection
* \param problem The problem including quadratic part and nonlinear part
*/
IterateObject(Dune::ParameterTree const &parset, Bisection const &bisection,
MyConvexProblemType &problem)
: parset(parset), problem(problem), bisection(bisection) {}
public:
/** \brief Set the current iterate */
void setIterate(VectorType &u) {
this->u = u;
return;
}
/** \brief Update the i-th block of the current iterate */
void updateIterate(LocalVectorType const &ui, int i) {
u[i] = ui;
return;
}
/** \brief Minimise a local problem using a modified gradient method
* \param[out] ui The solution
* \param m Block number
* \param ignore Set of degrees of freedom to leave untouched
*/
void solveLocalProblem(
LocalVectorType &ui, int m,
typename Dune::BitSetVector<block_size>::const_reference ignore) {
{
int ignore_component =
block_size; // Special value that indicates nothing should be ignored
switch (ignore.count()) {
case 0: // Full problem
break;
case 1: // 1 Dimension is fixed
assert(
ignore[1]); // Only the second component is allowed to stay fixed
ignore_component = 1;
break;
case block_size: // Ignore the whole node
return;
default:
assert(false);
}
LocalMatrixType const *localA = nullptr;
LocalVectorType localb(problem.f[m]);
typename MatrixType::row_type::ConstIterator it;
typename MatrixType::row_type::ConstIterator end = problem.A[m].end();
for (it = problem.A[m].begin(); it != end; ++it) {
int const j = it.index();
if (j == m)
localA = &(*it); // localA = A[m][m]
else
it->mmv(u[j], localb); // localb -= A[m][j] * u[j]
}
assert(localA != nullptr);
auto const phi = problem.phi.restriction(m);
Dune::SampleFunctional<block_size> localJ(*localA, localb, phi,
ignore_component);
LocalVectorType correction;
Dune::minimise(localJ, ui, parset.get<size_t>("localsolver.steps"),
bisection);
}
}
private:
Dune::ParameterTree const &parset;
// problem data
MyConvexProblemType &problem;
// commonly used minimization stuff
Bisection bisection;
// state data for smoothing procedure used by:
// setIterate, updateIterate, solveLocalProblem
VectorType u;
};
#endif